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This paper investigates the effects of structural tests on aircraft safety. In particular, the 

paper focuses on the effect of the number of coupon tests and structural element tests on the 

final distribution of failure stress. The mean failure stress is assumed to be predicted by a 

failure criterion (e.g. Tsai-Wu), and the initial distribution of this mean failure stress reflects 

the uncertainty in the analysis procedure that uses coupon test data to predict structural 

failure. In addition to the uncertainty in the mean failure stress, there is also uncertainty in 

its variability due to the finite number of coupon tests. The Bayesian technique is used to 

update the failure stress distribution based on results of the element tests. Structural design 

following the FAA regulations is considered and the tradeoffs between the number of tests, 

weight and probability of failure in certification and in service are explored. We find that 

these are not very sensitive to the number of tests. 

Nomenclature 

A = load carrying area of a small part of the overall structure 

bt = bound of error in the design thickness, et 

bw = bound of error in the design width, ew 

eef = error associated with failure criterion used while predicting failure in the structural element tests 

ef = error in predicting failure of the entire structure in certification or proof test 

ep = error in load calculation 

eσ = error in stress calculation 

et = error in the design thickness due to construction errors 

ew = error in the design width due to construction errors 

E( ) = expected value (i.e., mean value) 

Pcalc = calculated design load  

Pd = true design load based on the FAA specifications (e.g., gust load specification) 

Pf = probability of failure 

PFCT = probability of failing certification test 

σca = allowable stress (B-basis) from coupon testing 

σea = allowable stress (B-basis) from element testing 

σa = allowable stress (B-basis) of the entire structure 

σcf = failure stress from coupon testing 

σef = failure stress of the structural element 

(σef)
test

 = element failure stress measured in tests 

(σef)calc = calculated (or predicted) element failure stress 

(σef)
upd

 = updated value of the calculated (or predicted) element failure stress 

σf = failure stress of the overall structure 

σ = stress in a small part of the overall structure 

kd = knockdown factor at coupon level due to use of conservative (B-basis) material properties 
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kf = additional knockdown factor at the structural level (taken 0.9 here) 

SF = the FAA load safety factor of 1.5 

t = thickness of a small part of the overall structure 

vt = effect of variability on the built thickness 

vw = effect of variability on the built width 

w = width of a small part of the overall structure 

 

Subscripts 

built-av = average built value that differs from the design value due to errors in construction 

built-var = actual built value that differs from the average built value due to variabilities in construction 

calc = calculated (or predicted) value that differs from the design value due to errors in design 

design = design value 

true = true value (error free value) 

 

I. Introduction 

HE safety of aircraft structure can be achieved by designing the structure against uncertainty and by taking steps 

to reduce the uncertainty. Safety factors and knockdown factors are examples of measures used to compensate 

for uncertainty during the design process. Uncertainty reduction measures (URMs), on the other hand, may be 

employed during the design process or later on throughout the operational lifetime. Examples of URMs for aircraft 

structural systems include structural testing, quality control, inspection, health monitoring, maintenance, and 

improved structural analysis and failure modeling. 

 

In reliability-based design optimization, all uncertainties that are available at the design stage are considered in 

calculating the reliability of the structure. However, the actual aircraft is much safer, because after the design it is 

customary to engage in vigorous uncertainty reduction activities using various URMs. It would be therefore 

beneficial to include the effects of these planned URMs in the design process. It may be even advantageous to 

design the URMs together with the structure; trading off the cost of more weight against additional tests or more 

refined analytical simulations. It is challenging, though, to model the effect of future URMs in the design process.  

 

In probabilistic design, the contribution of each URM can be represented by a distribution. In the case of pre-

design tests, since the tests have already been performed, the parameters (e.g., mean and variance) of the distribution 

are known and can be used to predict the distribution of failure stress. In the case of future tests, however, the 

parameters of the distribution are unknown, and the same is true for other future URMs. In this case, these 

parameters can be considered as random variables. Then, a future URM can be modeled as a distribution of 

distributions. 

 

The objective of the present paper is (1) to explore modeling the effect of future tests on uncertainty in structural 

failure predictions and (2) to study their effects on structural design. Since the distribution type of failure stress is 

unknown a priori, we use one of the most general distribution types, Johnson distribution, which can be represented 

by four quartiles. As mentioned above, since the distribution parameters of future tests are random, the four quartiles 

of the failure stress distributions are modeled as normal distributions. Then, the distribution of these four quartiles 

will depend on the number of tests; more tests will reduce the variance of quartile distributions. Then, the critical 

information for tradeoff analysis will be how much uncertainty can be reduced by a given number of future tests. 

 

In the paper we investigate in particular the effect of the number of coupon and structural element tests on the 

final distribution of the failure stress. It is assumed that the mean value of the failure stress (mean over a large 

number of aircraft) is obtained from a failure criterion (e.g., Tsai-Wu theory [1]) using the results of coupon tests. 

The initial uncertainty in this mean failure stress reflects the confidence of the analytical model in this prediction. 

The Bayesian technique is then used to update the mean failure stress distribution from the results of the element 

tests. In addition, there is the variability of the failure stress from one aircraft to another or from one structural 

component to another. We assume that this variability is the same as the variability in coupon tests. However, this 

variability is not fully known because of the finite number of coupon tests. 

 

T 



 

American Institute of Aeronautics and Astronautics 
 

 

3 

Figure 1. Simplified three-level tests  

Finally, we consider structural design following the FAA regulations (using B-basis allowables). We show 

tradeoffs between the number of tests and the weight of the structure for a given probability of failure. These could 

provide tradeoffs between additional tests and heavier weight depending on the cost of testing and the cost of 

carrying the additional weight.  

 

The paper is organized as follows. Section II discusses the safety measures taken during aircraft structural 

design. Section III presents a simple uncertainty classification that distinguishes uncertainties that affect an entire 

fleet (errors) from the uncertainties that vary from one aircraft to another in the same fleet (variability). Section IV 

discussed modeling of errors and variability throughout the design and testing of an aircraft. Section V discusses 

probability of failure estimation via Monte Carlo simulations. Finally, the results and the concluding remarks are 

given in the last two sections of the paper, respectively. 

II. Safety Measures 

The safety of aircraft structures is achieved by designing these structures to operate well in the presence of 

uncertainties and taking steps to reduce the uncertainties. The following gives brief description of these safety 

measures. 

A. Safety measures for designing structures under uncertainties 

Load Safety Factor: In transport aircraft design, FAA regulations state the use of a load safety factor of 1.5 

(FAR-25.303 [2]). That is, aircraft structures are designed to withstand 1.5 times the limit load without failure. 

 

Conservative Material Properties: In order to account for uncertainty in material properties, FAA regulations 

state the use of conservative material properties (FAR-25.613 [3]). The conservative material properties are 

characterized as A-basis and/or B-basis material property values. Detailed information on these values is provided in 

Volume 1, Chapter 8 of the Composite Materials Handbook [4]. In this paper, we use B-basis values. The B-basis 

value is determined by calculating the value of a material property exceeded by 90% of the population with 95% 

confidence. The basis values are determined by testing a number of coupons selected randomly from a material 

batch. In this paper, the nominal value of the number of coupon tests is taken 50. In the Results section, the effect of 

the number of coupon tests will be explored. 

 

Other measures such as redundancy are not discussed in this paper. 

B. Safety measures for reducing uncertainties 

Improvements in accuracy of structural analysis and failure 

prediction of aircraft structures reduce errors and enhance the 

level of safety of the structures. These improvements may be due 

to better modeling techniques developed by researchers, more 

detailed finite element models made possible by faster computers, 

or more accurate failure theories. Similarly, the variability in 

material properties can be reduced through quality control and 

improved manufacturing processes. Variability reduction in 

damage and ageing effects is accomplished through inspections 

and structural health monitoring. The reader is referred to the 

papers by Acar et al. [5] for effects of error reduction, Qu et al. 

[6] for effects of variability reduction, and Acar et al. [7] for 

effects of reduction of both error and variability. 

 

In this paper, we focus on error reduction through aircraft 

structural tests, while the other uncertainty reduction measures 

are left out for future studies. Structural tests are conducted in a 

building block procedure (Volume I, Chapter 2 of Ref. [4]). First, 

individual coupons are tested to estimate the mean and variability 

in failure stress. The mean structural failure is estimated based on 
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failure criteria (such as Tsai-Wu) and this estimate is further improved using element tests. Then a sub-assembly is 

tested, followed by a full-scale test of the entire structure. In this paper, we use the simplified three-level test 

procedure depicted in Figure 1. The coupon tests, structural element tests and the final certification test are included. 

 

The first level is the coupon tests, where coupons (i.e., material samples) are tested to estimate failure stress. The 

FAA regulation FAR 25-613 requires aircraft companies to perform “enough” tests to establish design values of 

material strength properties (A-basis or B-basis value). As the number of coupon tests increases, the errors in the 

assessment of the material properties are reduced. However, since testing is costly, the number of coupon tests is 

limited to about 100 to 300 for A-basis calculation and 30+ (i.e., more than 30) for B-basis value calculation. In this 

paper, the nominal value of the number of coupon tests is taken 50. 

 

At the second level of testing, structural elements are tested. The main target of element tests is to reduce errors 

related to failure theories (e.g., Tsai-Wu) used in assessing the failure load of the structural elements. In this paper, 

the nominal value of the number of structural element tests is taken as 3. 

 

At the uppermost level, certification (or proof) testing of the overall structure is conducted (FAR 25-307 [8]). 

This final certification or proof testing is intended to reduce the chance of failure in flight due to errors in the 

structural analysis of the overall structure (e.g., errors in finite element analysis, errors in failure mode prediction). 

While failure in flight often has fatal consequences, certification failure often has serious financial implications. So 

we measure the success of the URMs in terms of their effect on probability of failure in flight and in terms of their 

effect on probability of certification failure. 

 

III. Structural Uncertainties 

A good analysis of different sources of uncertainty in engineering simulations is provided by Oberkampf et al. 

[9, 10]. To simplify the analysis, we use a classification that distinguishes between errors (uncertainties that apply 

equally to the entire fleet of an aircraft model) and variability (uncertainties that vary for the individual aircraft) as 

we used in our earlier studies [11-12]. The distinction, presented in Table 1, is important because safety measures 

usually target either errors or variability. While variabilities are random uncertainties that can be readily modeled 

probabilistically, errors are fixed for a given aircraft model (e.g., Boeing 737-400) but they are largely unknown. 

Since errors are epistemic, they are often modeled using fuzzy numbers or possibility analysis. We model errors 

probabilistically by using uniform distributions to maximize the entropy.  

 

Table 1. Uncertainty Classification 

Type of 

Uncertainty 
Spread Cause Remedies 

Error 

(mostly 

epistemic) 

Departure of the average 

fleet of an aircraft model 

(e.g. Boeing 737-400) from 

an ideal 

Errors in predicting 

structural failure, 

construction errors, 

deliberate changes 

Testing and simulation to 

improve the mathematical  

model and the solution 

Variability 

(aleatory) 

Departure of an individual 

aircraft from fleet level 

average 

Variability in tooling, 

manufacturing process, 

and flying environment 

Improvement of tooling 

and construction. Quality 

control 

 

Errors are uncertain at the time of the design but they will not vary for a single structural component on a 

particular aircraft, while the variabilities vary for individual structural components. To model errors, we assume that 

we have a large number of nominally identical aircraft being designed (e.g., by Airbus, Boeing, Embraer, 

Bombardier, etc.), with the errors being fixed for each aircraft. 

 

IV. Modeling Errors and Variability 

A. Errors in estimating material strength properties from coupon testing 

Coupon tests are conducted to obtain the statistical characterization of material strength properties, such as 

failure stress, and their corresponding design values (A-basis or B-basis). With a finite number nc of coupon tests, 
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the statistical characterization involves errors. Therefore, the calculated values of the mean and the standard 

deviation of the failure stress will be uncertain. We assume that the failure stress follows normal distribution, so the 

calculated mean also follows normal distribution. In addition, when nc is larger than 25, the distribution of the 

calculated standard deviation tends to be normal. Then, the calculated failure stress can be expressed as 

 

      ;cf cf cfcalc calc calc
Normal Std   

 
 (1) 

 

where calculated mean and the calculated apparent standard deviation can be expressed as 

 

  
 

;
f

cf fcalc
c

Std
Normal

n


 

 
 
 
 

 (2) 

      

3 3
1 1

1 1
;

2 2

c c

c c

cf f fcalc

n n

n n
Std Normal Std Std  

  
  

  
  

 
 
 

 (3) 

 

where 
f  and ( )fStd   are, respectively, the true values of the mean and standard deviation of failure stress. Note 

that Eqs. (1)–(3) describe a random variable coming from a distribution (normal) whose parameters are also random. 

In this paper, this will be referred to as a distribution of distributions. 

 

The allowable stress at the coupon level, 
ca , is computed from the failure stress calculated at the coupon level, 

 cf calc
 , by using a knockdown factor, 

dk , as 

 

  ca d cf calc
k   (4) 

 

The knockdown factor dk  is specified by the FAA regulations (FAR). For instance, for the B-basis value of the 

failure stress, 90% of the failure stresses (measured in coupon tests) must exceed the allowable stress with 95% 

confidence. The requirement of 90% probability and 95% confidence is responsible for the knockdown factor 
dk  in 

Eq. (4). For normal distribution, the knockdown factor depends on the number coupon tests and the c.o.v. of the 

failure stress as 

 

  1d B cf calc
k k c   (5) 

 

where  cf calc
c  is the c.o.v. of failure stress calculated from coupon tests. The tolerance coefficient kB is a function of 

the number of coupon tests nc as given in Ref. [4] (Volume 1, Chapter 8, page 84) as  

 

 
3.19

1.282 exp 0.958 0.520ln( )B c

c

k n
n

 
    

 
 (6) 

B. Errors in structural element strength predictions 

The second level in the testing sequence is structural element testing, where structural elements are tested to 

validate the accuracy of the failure criterion used (e.g., Tsai-Wu). Here, we assume that structural element tests are 

conducted for a specified combination of loads corresponding to critical loading. For this load combination, the 

failure surface can be boiled down to a single failure stress ef  where the subscript „e‟ stands for structural element 

tests.  

 



 

American Institute of Aeronautics and Astronautics 
 

 

6 

If the failure theory used to predict the failure was perfect, and we performed infinite number of coupon tests, 

then we could predict the true mean element failure stress at the structural element tests. The actual value would 

vary only due to material variability. However, neither the failure theory is perfect nor infinite tests are performed, 

so the calculated value of the mean failure stress at the element level is  

 

     1ef ef cfcalc calc
e    (7) 

 

where eef is the error in the failure theory. Note that the sign in front of the error term is negative, since we 

consistently formulate the error expressions such that a positive error implies a conservative decision. The initial 

distribution of  ef calc
  is obtained by estimate of the error 

efe  and using the results of coupon tests  cf calc
 . The 

information from element tests is used by performing Bayesian procedure to update the failure stress distribution 

(see An et al. [13] for details). In practice, simpler procedures are often used, such as selecting the lowest failure 

stress from element tests. Therefore, our assumption will tend to overestimate the beneficial effect of element tests. 

 

The allowable stress based on the element test is calculated from 

 

  
updated

ea d ef calc
k   (8) 

 

where the  
updated

ef calc
  is the value of the mean failure stress corresponding to the maximum PDF. 

 

Redesign based on element tests: 

Besides updating the failure stress, element tests have an important role of leading to design changes if the 

design is unsafe or overly conservative. That is, if very large or very small failure stress values are obtained from the 

element tests, the company may want to increase or reduce the thicknesses of the elements. We did not find 

published data on redesign practices, and so we devised a common sense approach reflected in Table 2. We assumed 

that if the B-basis value obtained after element tests, 
ea , is more than 5% higher than the B-basis value obtained 

from coupon tests, 
ca , then the element thickness is reduced by /ca ea   ratio. If the B-basis value obtained after 

element tests is more than 2% lower than the B-basis value obtained from coupon tests, the element thickness is 

increased by /ca ea   amount. This lower tolerance reflects the need for safety. Otherwise, no redesign was 

performed. The thickness of the element is obtained through  

 

 
1

(1 ) F d

elem ef

ea

S P
t e

w 
   (no redesign) 

 
2

1.01
(1 )

. .

F d

elem ef

ea

S P
t e

w C F
  = 

2

1.01
(1 ) F d ea

ef

ca ea

S P
e

w



 
  (redesign) (8) 

 

where SF is the load safety factor, Pd is the design load for testing the elements. Since redesign requires new 

elements to be built and tested, it is costly. Therefore, we do not have a redesign over redesigned elements. In order 

to protect against uncertainties in the test of the redesigned element we have an additional 1% reduction in the 

calculated allowable value (see the term 1.01 in Eq. (8)).  

 

Table 2. Simulation of element tests 

1. Generate random numbers for the quartiles of the mean failure stress 

2. Calculate the B-basis value using the quartiles 

3. Check to see if redesign is needed 

4. If redesign is needed 

a. Generate new random numbers for the quartiles 

b. Calculate the new B-basis value using the new quartiles 

5. Compute the design thickness of the element 

6. Compute probabilities of failure in certification tests and under service loads 
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C. Errors in structural strength predictions 

Due to the complexity of the overall structural system, there will be errors in failure prediction of the overall 

structure that we denote as 
fe . Therefore, the calculated value of the failure stress of the overall structure,  f calc

 , 

can be expressed as 

 

     1f f efcalc calc
e    (9) 

 

The allowable stress at the structural design level, 
a , can be related to the allowable stress computed at the 

element level, 
ea , through the following relation 

 

  1a f f eak e    (10) 

 

where 
fk  is an additional knockdown factor used at the structural level as an extra precaution. Here 

fk is taken 0.9. 

D. Errors in design 

We consider static point stress design for simplicity. Other types of failures such as fatigue, corrosion or crack 

instability are not taken into account. Before starting the structural design, aerodynamic analysis needs to be 

performed to determine the loads acting on the aircraft. However, the calculated design load value, Pcalc, differs from 

the actual loading Pd under conditions corresponding to FAA design specifications (e.g., gust-strength 

specifications). Since each company has different design practices, the error in load calculation, ep, is different from 

one company to another. The calculated design load Pcalc is expressed in terms of the true design load Pd as 

 

 (1 )calc P dP e P   (11) 

 

Notice here that the sign in front of the load error term is positive while the sign in front of the failure stress error 

terms were negative. The reason for this choice, as we noted earlier, is that we consistently formulate the error 

expressions such that a positive error implies a conservative decision. 

 

Besides the error in load calculation, an aircraft company may also make errors in stress calculation. We 

consider a small region in a structural part, characterized by a thickness t and width w, that resists the load in that 

region. The value of the stress in a structural part calculated by the stress analysis team, σcalc, can be expressed in 

terms of the load values calculated by the load team Pcalc, the design width wdesign, and the thickness t of the 

structural part by introducing the term eσ representing error in the stress analysis 

 

 (1 ) calc

calc

design

P
e

w t
    (12) 

 

In this paper, we assume that the aircraft companies have the capability of predicting the stresses very accurately so 

that the effect of e  is negligible and is taken as zero. The calculated stress value is then used by a structural 

designer to calculate the design thickness tdesign required to carry the calculated design load times the safety factor SF. 

That is,  

 

 
 

 
1

1

PF calc F d

design

design a design f eaf

eS P S P
t

w w ke 


 


 (13) 

 

From Eq. (13), we can express the design value of the load carrying area as 

 

 
 

 
1

1

P F d

design design design

f eaf

e S P
A t w

ke 


 


 (14) 
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E. Errors in construction 

 In addition to the above errors, there will also be construction errors in the geometric parameters. These 

construction errors represent the difference between the values of these parameters in an average airplane (fleet-

average) built by an aircraft company and the design values of these parameters. The error in width, 
we , represents 

the deviation of the design width of the structural part, 
designw , from the average value of the width of the structural 

part built by the company, 
built avw 

. Thus, 

 

  1built av w designw e w    (15) 

 

Similarly, the built thickness value will differ from its design value such that 

 

  1built av t designt e t    (16) 

 

Then, the built load carrying area 
built avA 

 can be expressed using the first equality of Eq. (14) as 

 

   1 1built av t w designA e e A     (17) 

 

Table 3 presents nominal values for the errors assumed here. In the results section of the paper we will vary these 

error bounds and investigate the effects of these changes on the probability of failure. 

 

Table 3. Distribution of error terms and their bounds 

Error factors Distribution Type Mean Bounds 

Error in load calculation, eP Uniform 0.0 ± 10% 

Error in width, ew Uniform 0.0 ± 1% 

Error in thickness, et Uniform 0.0 ± 3% 

Error in failure prediction, ef Uniform 0.0 ± 10% 

Error in failure prediction, eef Uniform 0.0 ± 10% 

 

 

The errors here are modeled by uniform distributions, following the principle of maximum entropy. For instance, 

the error in the built thickness of a structural part (et) is defined in terms of the error bound  t built
b  using 

 

  0,t t built av
e U b


     (18) 

 

Here „U’ indicates that the distribution is uniform, „0 (zero)‟ is the average value of et, and the error bound is 

 t built av
b


=0.03. Hence, the lower bound for the thickness value is the average value minus 3% of the average and 

the upper bound for the thickness value is the average value plus 3% of the average. Commonly available random 

number generators provide random numbers uniformly distributed between 0 and 1. Then, the error in the built 

thickness can be calculated using such random numbers r as 

 

   2 1t t built av
e r b


   (19) 

F. Total error, etotal 

The expression for the built load carrying area, built avA  , of a structural part can be reformulated by combining 

Eqs. (14) and (17) as  

 

  1 F d

built av total

f ea

S P
A e

k 
    (20) 

where 
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   

 
1 1 1

1
1

P t w

total

f

e e e
e

e

  
 


 (21) 

 

Here etotal represents the cumulative effect of the individual errors on the load carrying capacity of the structural part. 

G. Variability 

In the previous sections, we analyzed the different types of errors made in the design and construction stages, 

representing the differences between the fleet average values of geometry, material and loading parameters and their 

corresponding design values. For a given design, these parameters vary from one aircraft to another in the fleet due 

to variability in tooling, construction, flying environment, etc. For instance, the actual value of the thickness of a 

structural part, 
varbuiltt 

, is defined in terms of its fleet average built value, 
built avt 

, by 

 

  var 1built t built avt v t    (22) 

 

We assume that 
tv  has a uniform distribution with 3% bounds (see Table 4). Then, the actual load carrying area 

varbuiltA 
 can be defined as 

 

   var var var 1 1built built built t w built avA t w v v A        (23) 

 

where 
wv  represents effect of the variability on the fleet average built width. 

 

Table 4 presents the assumed distributions for variabilities. Note that the thickness error in Table 3 is uniformly 

distributed with bounds of ±3%. Thus the difference between all thicknesses over the fleets of all companies is up to 

±6%. However, the combined effect of the uniformly distributed error and variability is not uniformly distributed.  

 

 

Table 4. Distribution of random variables having variability 

Variables Distribution type Mean Scatter 

Actual service load, Pact Lognormal Pd = 2/3 10% c.o.v. 

Actual built width, varbuiltw   Uniform built avw 
 1% bounds 

Actual built thickness, varbuiltt   Uniform built avt 
 3% bounds 

Failure stress, σf Normal 1.0 8% c.o.v. 

wv  Uniform 0 1% bounds 

tv  Uniform 0 3% bounds 

c.o.v.= coefficient of variation 

 

H. Certification test 

After a structural part has been built with random errors in stress, load, width, allowable stress and thickness, it 

may fail in certification testing part of the airplane. Recall that the structural part will not be manufactured with 

complete fidelity to the design due to variability in the geometric properties. That is, the actual values of these 

parameters varbuiltw   and varbuiltt  will be different from their fleet-average values built avw   and built avt   due to 

variability. The structural part is then loaded with the design axial force of SF times Pcalc, and if the stress exceeds 

the failure stress of the structure σf, then the structure fails and the design is rejected; otherwise it is certified for use. 

That is, the structural part is certified if the following inequality is satisfied  

 

 
var var

0F calc

f f

built built

S P

w t
  

 

     (24) 
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V. Probability of Failure Calculation by Separable MCS 

 

To calculate the probability of failure, we first incorporate the statistical distributions of errors and variability in 

a Monte Carlo simulation. Errors are uncertain at the time of design, but do not change for individual realizations (in 

actual service) of a particular design. On the other hand, all individual realizations of a particular design are different 

from each other due to variability. The simulation of error and variability can be easily implemented through a two-

level Monte Carlo simulation [11]. At the upper level different aircraft companies can be simulated by assigning 

random errors to each, and at the lower level we simulated variability in dimensions, material properties, and loads 

related to manufacturing variability and variability in service conditions can be simulated.  

 

The effect of element tests on failure stress distribution is modeled using Bayesian updating. If the Bayesian 

updating is used directly within an MCS loop for design thickness determination, the computational cost will be 

very high. In this paper, instead, the Bayesian updating is performed aside in a separate MCS, before starting with 

the MCS loop for design thickness determination (the details of thickness calculation is provided in Table 5). The 

procedure followed for Bayesian updating can be described briefly as follows. First, the four quartiles of the mean 

failure stress are modeled as normal distributions. Then, these quartiles are used to fit a Johnson distribution to the 

mean failure stress. That is, the mean failure stress is represented as a Johnson distribution, whose parameters are 

themselves distributions that depend on the quality of the tests. Finally, Bayesian updating is used to update the 

mean failure stress distribution. Details of this procedure are provided in Appendix. 

 

Table 5. Detailed simulation of element tests 

1. Generate random numbers for the quartiles of the mean failure stress (see Appendix) 

2. Calculate the B-basis value using the quartiles, 
ea  

a. Compute the bounds for mean failure stress  0.9 1 eflb e   and  1.1 1 efub e   

b. Compute the PDF of the mean failure stress having Johnson distribution within the bounds, and select the 

mean failure stress value with the highest PDF 

c. Compute B-basis value,    1
updated

ea B cf efcalc calc
k c   

 
 

3. If redesign is selected as an option, check to see if redesign is needed 

a. Compute a correction factor for the B-basis value, . . ea

ca

C F



 . Limit the value of the correction factor to 

[0.9, 1.1]. 

b. If . . 0.98C F  => redesign is needed, we will increase the thickness by C.F. 

  If 0.98 . . 1.05C F  => no redesign is needed 

     If . . 1.05C F  => redesign is needed, we will decrease the thickness by C.F. 

4. If redesign is needed 

a. Generate new random numbers for the quartiles 

b. Calculate the new B-basis value using the new quartiles, 
2ea  (see Step 2). 

5. Compute the design thickness of the element 

a. If no redesign, 
1

(1 ) F d

elem ef

ea

S P
t e

w 
   

b. If redesign, 
2

1.01
(1 )

. .

F d

elem ef

ea

S P
t e

w C F
  = 

2

1.01
(1 ) F d ea

ef

ca ea

S P
e

w



 
  

 

The prediction of probability of failure via the conventional Monte Carlo procedure requires trillions of 

simulations for the level of 10
-7

 failure probability. In order to address the computational burden, separable Monte 

Carlo procedure can be used [12]. The reader is referred to Smarslok and Haftka [14] for more information on the 

separable Monte Carlo procedure. This procedure applies when the failure condition can be expressed as 

g1(x1)>g2(x2), where x1 and x2 are two disjoint sets of random variables. To take advantage of this procedure, we 

need to formulate the failure condition in a separable form, so that g1 will depend only on variabilities and g2 only 

on errors. The common formulation of the structural failure condition is in the form of a stress exceeding the 

material limit. This form, however, does not satisfy the separability requirement. For example, the stress depends on 
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variability in material properties as well as design area, which reflects errors in the analysis process. To bring the 

failure condition to the right form, we instead formulate it as the required cross sectional area 
reqA  being larger than 

the built area 
built avA 

, as given in Eq (25).  

 

 
  1 1

req

built av req

t w

A
A A

v v


 
 

 (25) 

 

where 
reqA  is the cross-sectional area required to carry the actual loading conditions for a particular copy of an 

aircraft model, and 
reqA  is what the built area (fleet-average) needs to be in order for the particular copy to have the 

required area after allowing for variability in width and thickness. 

 

 
req fA P   (26) 

 

The required area depends only on variability, while the built area depends only on errors. When certification 

testing is taken into account, the built area, 
built avA 

, is replaced by the certified area, 
certA , which is the same as the 

built area for companies that pass certification. However, companies that fail are not included. That is, the failure 

condition is written as 

 

 failure without certification tests:     0built av reqA A
   (27a) 

 failure with certification tests:     0cert reqA A   (27b) 

 

The separable Monte Carlo simulation procedure is summarized in Figure 2. 

 

 
 

Figure 2. Flowchart for separable Monte Carlo simulations 

 

VI. Results 

In this section, the effects of the number of coupon tests, the number of element tests, redesign of element tests 

and certification test are reported. As noted earlier, the nominal values of the number of coupon tests and the number 

of element tests are taken as 50 and 3, respectively. The redesign of element tests and the certification test are 

included in the analysis except for the cases that investigated the effect of redesign of element tests and the 

certification test. 
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A. Effect of the number of coupon tests 

The effects of increasing the number of coupon tests on the thickness and probability of failure are presented in 

Table 6. The thickness values provided in Table 6 are based on the load and material property values assumed in 

Table 5. As the number of coupon tests increases, both the mean thickness is reduced (since B-basis value is 

increased), the coefficient of variation of the thickness is reduced (since the coefficient of variation of the B-basis 

value is reduced). These two reductions have opposing effect on the probability of failure, and the probability of 

failing in certification. However, the net effect is that both probabilities of failure increase. This reflects the fact that 

the knockdown factor used by the FAA to compensate for small number of coupon tests (Eq. 6) is conservative, so 

performing more tests, actually makes the aircraft less safe!  

 

Table 6. Effects of the number of coupon tests. Number of element tests, nc, is 3. Redesign of element tests and 

certification test are included in the analysis. 

nc tmean tcov Pf PFCT* 

30 1.268 0.116 1.02×10
-4

 0.0576 

50 1.253 0.114 1.27×10
-4

 0.0654 

80 1.245 0.113 1.44×10
-4

 0.0711 

* PFCT: Probability of failing in certification tests 

 

To provide an indication of the accuracy of the numbers in Table 6, simulations are rerun with a different seed 

for the random number generator. Regenerated results are provided in Table 7. We see that the mean stress results 

are accurate to the fourth digit, while the probabilities are only accurate to the second digit. 

 

Table 7. Regeneration of Table 6 results by using a different seed for the random number generator. 

nc tmean tcov Pf PFCT* 

30 1.268 0.116 1.03×10
-4

 0.0566 

50 1.254 0.114 1.23×10
-4

 0.0664 

80 1.246 0.113 1.38×10
-4

 0.0702 

* PFCT: Probability of failing in certification tests 

 

Since the mean thickness reduces as the number of coupon tests increases, the aircraft builder may decide to 

keep the mean thickness constant. This can be achieved by adjusting the knockdown factor kf in Eq. (13) so as to 

have same mean thickness for different number of coupon tests. First, the knockdown factor kf is varied by -10%, -

5%, 5%, and 10% of its nominal value and simulations are performed. Then, response surfaces are constructed for 

the mean thickness (tmean), the probability of failure (Pf), and the probability of failing in certification test (PFCT) for 

each value of number of coupon tests. Finally, Pf and PFCT values corresponding to the mean thickness value of 

1.253 are computed. This practice also reduces the numerical noise in simulation results. Table 8 shows that 

increasing the number of coupon tests from 50 to 80 leads to 13% reduction in probability of failure, whereas 

reducing the number of coupon tests to 30 yields 20% probability of failure inflation. We can also conclude that 

increasing the number of coupon tests reduces the probability of failure for the same weight, but the rate of 

reduction diminishes with the number of tests. Overall, it appears that increasing the number of coupon tests has 

only small effect on the probability of failure in service or on the probability of failing certification. 

 

Table 8. Effects of the number of coupon tests for the same weight. Number of element tests, ne, is 3. Redesign of 

element tests and certification test are included in the analysis. 

nc tmean Pf PFCT* 

30_adjusted 1.253 1.32×10
-4

 0.0685 

50 1.253 1.27×10
-4

 0.0654 

80_adjusted 1.253 1.22×10
-4

 0.0649 

* PFCT: Probability of failing in certification tests 

 

 



 

American Institute of Aeronautics and Astronautics 
 

 

13 

B. Effect of the number of element tests 

The effects of increasing the number of element tests on the thickness and probability of failure are presented in 

Table 9. Increasing the number of element tests does not have a significant effect on the mean thickness, but we just 

see some fluctuations in the mean thickness values due to numerical noise. The coefficient of variation of the 

thickness, on the other hand, is reduced significantly because of the reduction of the error term 
efe .  

 

Table 9. Effect of the number of element tests. Number of coupon tests, nc, is 50. Redesign of element tests and 

certification test are included in the analysis. 

ne tmean tcov Pf PFCT 

0 1.244 0.119 1.81×10
-4

 0.0880 

1 1.257 0.119 1.37×10
-4

 0.0714 

2 1.254 0.115 1.29×10
-4

 0.0676 

3 1.253 0.114 1.27×10
-4

 0.0654 

4 1.253 0.112 1.20×10
-4

 0.0637 

5 1.252 0.111 1.18×10
-4

 0.0636 

 

To provide an indication of the accuracy of the numbers in Table 9, simulations are repeated with a different 

seed for the random number generator, as we did earlier for Table 6. Regenerated results are provided in Table 10. 

We see that the mean stress results are accurate to the fourth digit, while the probabilities are only accurate to the 

second digit. 

 

Table 10. Regeneration of Table 9 results by using a different seed for the random number generator. 

ne tmean tcov Pf PFCT 

0 1.244 0.119 1.75×10
-4

 0.0866 

1 1.258 0.119 1.39×10
-4

 0.0713 

2 1.255 0.115 1.32×10
-4

 0.0674 

3 1.253 0.114 1.29×10
-4

 0.0651 

4 1.254 0.113 1.20×10
-4

 0.0639 

5 1.252 0.112 1.16×10
-4

 0.0625 

 

 

To remove the effect of the mean thickness fluctuations on the results, the mean thickness is adjusted to the 

nominal value of 1.253 by varying the knockdown factor kf in Eq. (13). Table 9 shows that increasing the number of 

element tests from three to five leads to a 10% reliability improvement, while reducing the number of element tests 

to one causes a 21% increase in probability of failure. Similar effects are observed on the probability of failing 

certification. It appears that three element tests (typical of present practice) is a reasonable choice. 

 

Table 9. Effects of the number of element tests for the same weight. Number of coupon tests, nc, is 50. Redesign 

of element tests and certification test are included in the analysis. 

ne tmean Pf PFCT 

0 1.253 1.55×10
-4

 0.0785 

1 1.253 1.45×10
-4

 0.0736 

2 1.253 1.32×10
-4

 0.0691 

3 1.253 1.27×10
-4

 0.0654 

4 1.253 1.20×10
-4

 0.0642 

5 1.253 1.17×10
-4

 0.0632 

 

 

To analyze the probability of failure and weight tradeoffs, the probability of failure can be fixed to a value and 

the variation of the weight with number of tests can be explored. Here, the probability of failure can be fixed to 

1.27×10
-4

, which corresponds to performing three element tests and fifty coupon tests (the nominal values). Table 10 

shows that if we want to do away with element tests, then we will need to put 1% extra weight to achieve to the 

same probability of failure.  
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Table 10. Effects of the number of element tests for the same probability of failure. Number of coupon tests, nc, 

is 50. Redesign of element tests and certification test are included in the analysis. 

ne tmean % increase in 

thickness 

Pf PFCT 

0 1.266 1.0 1.27×10
-4

 0.0653 

1 1.263 0.8 1.27×10
-4

 0.0656 

2 1.256 0.2 1.27×10
-4

 0.0668 

3 1.253 --- 1.27×10
-4

 0.0654 

4 1.250 -0.2 1.27×10
-4

 0.0672 

5 1.249 -0.3 1.27×10
-4

 0.0672 

 

 

The probability of failing in the certification tests is high likely a big motivator for the aircraft companies, hence 

we also investigate how much extra weight would be needed to maintain the probability of failing in certification 

test if the company intends to eliminate the element tests. Table 11 shows that if a company aims to eliminate the 

element tests, the structural weight must be increased by 1% to achieve to the same probability of failing in 

certification tests.  

 

Table 11. Effects of the number of element tests for the same probability of failing in certification test. 

Number of coupon tests, nc, is 50. Redesign of element tests and certification test are included in the analysis. 

ne tmean % increase in 

thickness 

Pf PFCT 

0 1.266 1.0 1.28×10
-4

 0.0654 

1 1.263 0.8 1.27×10
-4

 0.0654 

2 1.257 0.3 1.24×10
-4

 0.0654 

3 1.253 --- 1.27×10
-4

 0.0654 

4 1.252 -0.1 1.22×10
-4

 0.0654 

5 1.251 -0.2 1.22×10
-4

 0.0654 

 

C. Effect of the certification test 

Finally, the effect of certification test on the mean thickness and reliability are explored. Table 12 shows that if 

certification is not performed, then the mean thickness is reduced by a small amount while the coefficient of 

variation of the thickness is increased significantly. Therefore, the probability of failure is increased by almost twice. 

Even if the mean thickness is adjusted to its nominal value, the probability of failure is 54% larger! The overall 

conclusion is that the certification test is very effective of maintaining the reliability. 

 

Table 12. Effects of certification test. Number of coupon tests=50. Number of element tests=3. 

 tmean tcov Pf 

Certification 1.253 0.114 1.27×10
-4

 

No certification 1.244 0.119 2.31×10
-4

 

No certification with 

adjusted mean thickness 

1.253 0.119 1.94×10
-4

 

 

VII. Concluding remarks 

The effects of aircraft structural tests on aircraft structural safety were explored. In particular, the effects of the 

number of coupon tests and the number of structural element tests on the final distribution of the failure stress were 

investigated. We simulated a structural design following the FAA regulations and explored the tradeoffs between the 

number of tests, weight and probability of failure. From the results obtained in this study, following conclusions can 

be drawn. 
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o As the number of coupon tests is increased, the mean allowable stress increases so the mean thickness 

reduces. While the standard deviation of the thickness decreases, the probability of failure increases as does 

the probability of failing certification. This indicates that the FAA knockdown factor for compensating for 

small number of coupon tests is conservative. 

o As the number of coupon tests is increased maintaining the same weight as the nominal case, the probability 

of failure reduces, but the rate of the reduction diminishes with the number of coupon tests. Overall, the 

number of coupon tests has only marginal effect on probability of failure. 

o If the number of element tests is increased, the probability of failure reduces for the same weight, and the rate 

of this reduction decreases with the number of tests. 

o If we want to dispense with element tests, then we will need to put about 1% extra structural weight to 

achieve to the same probability of failure. 

o If certification test is not performed, the probability of failure is increased by 54%, so the certification test is 

an effective way of maintaining the reliability. 

 

Appendix: Updating the failure stress distribution from the results of element tests 

The initial distribution of the element failure stress is obtained by using a failure criterion (e.g., Tsai-Wu theory) 

using the results of coupon tests. There will be two sources of error in this prediction. First, since a finite number of 

coupon tests are performed, the mean and standard deviation of the failure stress obtained through the coupon tests 

will be different from the actual mean and standard deviation.  

 

In our earlier work [13], we neglected the effect of coupon tests and assumed the initial distribution of the mean 

failure stress  ini

ff   uniform within the bounds 
eb  as 

      
1

  if 1
2

0

f

eini

f e f fcalc calc

b
f b

othewise



  


  

 



 (A1) 

 

Then, the distribution of the mean failure stress is updated using the Bayesian technique with a given  
1,f test

 as 

 

  
   

   

1,

1,

ini

test f fupd

f

ini

test f f f

f f
f

f f d

 


  








 (A2) 

 

where       1, 1,
; ,test f f f ftest

f Normal Std     is the likelihood function reflecting possible variability of the 

first test result  
1,f test

 . Note that  1,test ff  is not a probability distribution in f ; it is the conditional probability 

density of obtaining test result  
1,f test

 , given that the mean value of the failure stress is f . Subsequent tests are 

handled by the same equations, using the updated distribution, as the initial one.  

 

 If the Bayesian updating procedure defined above is used directly within an MCS loop for design thickness 

determination, the computational cost will be very high. In this paper, instead, the Bayesian updating is performed 

aside in a separate MCS loop. In this separate loop, we first simulate the coupon tests by drawing random samples 

for the mean and standard deviation of the calculated failure stress cf  and  cfStd  . Then, we simulate ne number 

of element tests,  ef test
 . The element test results along with the mean and the standard deviation are used to define 

the likelihood function as       1, 1,
; ,test f ef cf cftest

f Normal Std     in Eq. (A2). The initial distribution 

 ini

ff   in Eq. (A2) is uniformly distributed within some bounds as given in Eq. (A3).  
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  
1

  if 1
2

0

f

eini

f e cf cf

b
f b

othewise



  


 

 



 (A3) 

 

We found that applying the error bounds 
eb  before the Bayesian updating or after the updating do not matter. 

Applying the error bounds before Bayesian updating means calculating the initial distribution  ini

ff   from Eq. 

(A3) and then using Eq. (A2). To apply the error bounds after the Bayesian updating, however, we first assume very 

large error bounds 
eb , calculate the initial distribution  ini

ff   from Eq. (3), and finally apply the error bounds 
eb  

to the distribution obtained using Eq. (A2).  

 

Applying the error bounds after the Bayesian updating is more useful when we want to fit distributions (e.g., 

Johnson distribution) to the mean failure stress obtained through Bayesian updating. If we apply the error bounds at 

the beginning, the distribution after Eq. (A2) will be a truncated one and it will be difficult to fit a distribution with 

good fidelity. However, if we apply the error bounds at the end, the distribution after Eq. (A2) will be a continuous 

one and we will high likely fit a good distribution. 

 

So the overall procedure is as follows. Within an MCS loop, we generate random mean and standard deviation 

values for the failure stress to be obtained through coupon tests. Then, we assume large error bounds to be used in 

Eq. (A3), simulate element tests and use Eq. (A2) to obtain the distribution of the mean failure stress. Then, we 

compute the four quartiles of the mean failure stress distribution. Finally, we compute the mean and standard 

deviations of the quartiles and we model these quartiles as normal distributions. Note that the quartiles are the values 

of failure stress for CDF values of [0.067, 0.309, 0.691, 0.933]. 

 

At first, we wanted to build response surfaces for the mean and standard deviation of the quartiles (after each 

element test) in terms of the number of coupon tests. Our numerical analysis revealed, on the other hand, that the 

number of coupon tests do not have a noticeable effect on the mean and standard deviation of the quartiles The 

variations of the of the mean and standard deviation of the first quartile of the mean failure stress (after the third 

element test) with number of coupon tests are depicted in Figure A1. Tables A1 through A3 presents the mean and 

standard deviation of the quartiles for the cases of 30, 50 and 80 coupon tests, respectively. We see that the effect of 

coupon tests is buried under the numerical noise due to limited number of Monte Carlo sampling (10,000 samples).  

 

Table A1. The mean and standard deviation of the quartiles of the mean failure stress after element tests 

if 30 coupon tests are performed. 

 Mean values of the quartiles (Q1-4) Standard deviation of the quartiles (Q1-4) 

 1Q  
2Q  

3Q  
4Q   1std Q   2std Q   3std Q   4std Q  

test1 0.897 0.967 1.048 1.144 0.090 0.096 0.105 0.115 

test2 0.924 0.975 1.032 1.096 0.076 0.080 0.084 0.090 

test3 0.935 0.977 1.023 1.074 0.071 0.074 0.077 0.081 

test4 0.943 0.980 1.020 1.063 0.068 0.070 0.073 0.076 

test5 0.949 0.982 1.018 1.056 0.066 0.068 0.070 0.073 

 

Table A2. The mean and standard deviation of the quartiles of the mean failure stress after element tests 

if 50 coupon tests are performed. 

 Mean values of the quartiles (Q1-4) Standard deviation of the quartiles (Q1-4) 

 1Q  2Q  3Q  4Q   1std Q   2std Q   3std Q   4std Q  

test1 0.901 0.970 1.051 1.146 0.092 0.098 0.106 0.115 

test2 0.929 0.980 1.036 1.100 0.078 0.082 0.087 0.092 

test3 0.940 0.982 1.028 1.078 0.073 0.076 0.080 0.084 

test4 0.948 0.984 1.024 1.067 0.071 0.073 0.076 0.080 

test5 0.952 0.986 1.021 1.059 0.068 0.070 0.072 0.075 
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Table A3. The mean and standard deviation of the quartiles of the mean failure stress after element tests 

if 80 coupon tests are performed. 

 Mean values of the quartiles (Q1-4) Standard deviation of the quartiles (Q1-4) 

 1Q  
2Q  

3Q  
4Q   1std Q   2std Q   3std Q   4std Q  

test1 0.895 0.965 1.045 1.140 0.089 0.095 0.103 0.112 

test2 0.922 0.972 1.029 1.092 0.074 0.078 0.082 0.087 

test3 0.935 0.977 1.023 1.073 0.069 0.072 0.075 0.079 

test4 0.943 0.979 1.019 1.062 0.065 0.068 0.070 0.074 

test5 0.949 0.982 1.017 1.055 0.065 0.067 0.069 0.072 

 

  
(a) mean value of the first quartile (a) standard deviation of the first quartile 

Figure A1. Variation of the mean and standard deviation of the first quartile of the mean failure stress 

with number of coupon tests (after the third element test) 

 

As noted earlier, the quartiles are assumed to have normal distributions. Figure A2 show the histograms of the 

first and second quartiles of the mean failure stress (after the third element test) obtained through MCS with 10,000 

samples. We see that the quartiles do not exactly follow normal distributions. 

 

  
(a) histogram of the first quartile (a) histogram of the second quartile 

Figure A2. Histograms of the first and the second quartiles of the mean failure stress (after the third 

element test). The continuous lines show the normal fits. 
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The results obtained in this separate MCS loop are used in the main MCS loop for design thickness 

determination. The mean and standard deviations of the quartiles are used to fit a Johnson distribution to the mean 

failure stress. The error bounds 
eb  are then applied to the Johnson distribution and random values from this 

distribution are drawn whenever element tests are simulated. Note also that the quartiles are strongly correlated to 

each other, so this correlation is also included in our analysis while random quartiles are generated in the main MCS 

loop for design thickness determination. 
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