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a b s t r a c t 

Accurate prediction of the remaining useful life (RUL) of plant turbines is a major scientific challenge for effective 

operation and maintenance in the power plant industry. This paper proposes an RUL prediction methodology 

that incorporates a damage index into the damage growth model. A Bayesian inference technique is used to 

consider uncertainties while estimating the probability distribution of a damage index from on-site hardness 

measurements. A Bayesian approach is proposed for the damage growth model for use with aged steam turbines. 

The predictive distribution of the damage index is estimated using its mean and standard deviation. As a case 

study, real steam turbines from power plants are examined to demonstrate the effectiveness of the proposed 

Bayesian approach. The results from the proposed damage growth model can be used to predict the RULs of the 

steam turbines of power plants regardless of load types (peak-load or base-load) of the power plant. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The design life of steam turbines is typically 25 years or 200,000–
50,000 h [1–3] . The power plant industry focuses significant effort on
educing operation costs and extending the service life of critical ma-
hines (e.g., steam turbines) to avoid premature failure. Condition-based
aintenance (CBM) has drawn great attention as a strategy for cost-

ffective operation and maintenance (O&M) decisions. A CBM program
onsists of four main steps: data acquisition, data processing, health
rognostics, and maintenance decision-making [4,5] . The health prog-
ostics step includes not only diagnostics for fault detection, isolation,
nd identification; it also includes prognostics for predicting the re-
aining useful life (RUL) before failure [6–8] . There are increasing de-
ands for engineering aftermarket services to manage steam turbines

n a timely and proper manner [9] . RUL prediction for complicated and
arge-scale systems is a major scientific challenge and a significant issue
or effective O&M. With respect to turbines that are already in service,
n effective method is required to accurately predict RUL through the
imited available resources [10] . 

Numerous elements of steam turbines in power plants are exposed
o harsh thermal loading conditions. Theoretically, the RUL of key ele-
ents could be predicted by metallurgical or theoretical analysis of as-

eceived and degraded elements [1] . Creep and fatigue life have been
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hown to be associated with the material damage rate. Damage rate
easurement methods, such as microscopic observation and indirect
easurement of hardness, have been proposed [11] . However, in real-
orld applications, it is not easy to implement damage rate measure-
ent methods since the specimens available from actual steam turbines

re limited. 
Non-destructive techniques, such as replication analysis and hard-

ess tests, can also be used to evaluate the damage rate. Replication
nalysis has been widely adopted to evaluate the damage rate of in-
ervice steam turbines. It can be used to classify the level of material
egradation in accordance with guidelines such as Neubauer or Vere-
nigung der Großkesselbesitzer e.V (VGB) [9,10,12–16] . Damage rates
or steam turbines with ferritic steel have been determined by investi-
ating the degree of micro-structural phase evolution, micro-void forma-
ion of grain boundaries, and evolution of carbides from visual inspec-
ion via scanning electron microscope (SEM) images [12,17,18] . Several
lements (e.g., tubes, turbines, and pipes) have been studied to quan-
ify damage via replication analysis. However, the replication method
s based on five or six states; thus, results of its RUL prediction are clas-
ified as five or six states. Quantitative and accurate RUL prediction is
elatively difficult [19] . For example, there was little difference in mi-
rostructures between low-stress and high-stress locations (See Fig. 1 ).
ikewise, the hardness at the locations shows relatively little difference
oom 215, Building 301, Seoul 08826, Republic of Korea. 
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Fig. 1. Microstructures of 1Cr1Mo1/4 V rotor steel after 146,708 h operation. 

Table 1 

Metallurgical analysis results. 

Location Averaged 

hardness 

Degradation grade Creep grade Micro crack Abnormal 

microstructure 

High-stress 150° 251.5 Level 4 A No No 

330° 251.7 Level 5 A No No 

Low-stress 150° 260.0 Level 3 A No No 

330° 257.6 Level 3 A No No 
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see Table 1 ). Therefore, it is difficult to use these results to quantify
he health conditions from visual inspection of optical microscope (OM)
r SEM images. Thus, rather than qualitative measures, a quantitative
easure is appropriate to predict RUL related to creep or fatigue dam-

ge. 
Rebound hardness test methods provide quantitative measures to

valuate the relative damage rate. These measures can be easily imple-
ented, and measured hardness values can be calibrated with results

rom the conventional Vickers hardness test, which is only available in
 laboratory setting [20] . Fujiyama et al. [21,22] used hardness val-
es as a correction factor to supplement empirical formulas (e.g., the
arson-Miller Parameter (LMP)) for RUL prediction that considers creep
amage. Recently, Mukhopadhyay et al. [23] proposed a hardness-ratio-
ased creep life model that considers dislocation and precipitate phe-
omena. However, in this approach, the predicted creep life can signif-
cantly deviate due to variations in temperature, as hardness values are
ombined with the LMP relation. Recently, instrumented indentation
est methods were developed to measure strength in-situ. The indenta-
ion test is a non-destructive technique that determines material prop-
rties – including elastic modulus, tensile strength, and residual stress –
y analyzing the indentation load-depth curve [24] . Despite its poten-
ial advantages, to date, a very limited amount of scientific work has
138 
een conducted in the research area of damage rate evaluation or RUL
rediction of in-service components [25–27] . Also, there is almost no ac-
ual measurement data available from indentation testers that includes
perating time. 

In this study, the hardness measurement method that is most com-
only and easily used in actual field settings is used for RUL pre-
iction. Nonetheless, RUL predictions based on the rebound hardness
est method are subject to uncertainties. Those uncertainties are due to
leatory and epistemic uncertainties in irregular and discontinuous mea-
urement and non-homogeneous samples. In particular, discrepancy re-
uction and a damage growth model that considers uncertainties should
e developed to accurately predict the RULs of aged components in
ower plants [28,29] . 

Bayesian approaches have been used to address uncertainty for
odel-based prognostics. For example, Guan et al. [30] proposed a gen-

ral framework for probabilistic prognosis using maximum entropy ap-
roach with the classical Bayesian method for fatigue damage assess-
ent. Dawn et al. [31] used Bayesian inferences with the MCMC al-

orithm to estimate fatigue and wear damage. More recently, Chiachío
t al. [32] presented a Bayesian approach to update model parameters of
xisting fatigue models for composites. Compare et al. [33] proposed a
emi-Markov degradation model based on expert knowledge and few
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Fig. 2. Schematic of a steam turbine (high and intermediate pressure parts). 
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eld data within the Bayesian statistical framework. In the previous
ayesian approaches for model-based prognostics, the correlation be-
ween hyper-parameters and uncertainties of damage model’s param-
ters was not accounted for. To the best of our knowledge, this study
s the first attempt to define a damage threshold for steam turbines to
xecute an RUL prediction. 

To this end, this paper presents a Bayesian approach to a new dam-
ge growth model that can utilize sporadically measured and heteroge-
eous on-site data from steam turbines. A hardness-based damage index
s selected as a damage indicator to evaluate the damage rate. Using
his, a new damage growth model is proposed as a function of operating
ime. Sporadically measured hardness is random due to the uncertainty
hat arises from the heterogeneity of turbines in terms of manufacturers,
izes, operating conditions, sites, etc. Therefore, the mean and standard
eviation of the damage index are predicted considering the parameters’
orrelation and the distribution can be identified simultaneously by us-
ng Bayesian inference [28] and MCMC simulation. The predicted dam-
ge growth results from the Bayesian and nonlinear regression method
re compared and validated using actual field data from ten turbine
nits. 

The remainder of the paper is organized as follows.
ection 2 presents an overview of steam turbines and sporadi-
ally measured and heterogeneous on-site data with uncertainties.
ection 3 focuses on the damage growth model using the Bayesian
pdating method and MCMC simulation. Section 4 presents the RUL
rediction results of Bayesian and the nonlinear least square (Nlsq)
ethod. A damage threshold is proposed to determine design life, the
roposed methodology is validated, and the RUL distribution for an
ged steam turbine is predicted based on the proposed damage growth
odel. Section 5 presents the conclusions of the research. 

. Overview of steam turbines and On-site measured data 

.1. Description of steam turbines and failure mechanisms 

Steam turbines are one of the most popular power generating ma-
hines used in the power industry. They are widely used because water is
revalent, boiling points are moderate, and the operating cost is reason-
ble. Steam turbines are machines that convert thermal energy from hot
nd pressurized steam to mechanical (rotational motion) work. Steam
urbines are designed to improve thermodynamic efficiency by adopting
ultiple stages to expand steam [34] . As shown in Fig. 2 , high-pressure
arts of steam turbines consist of (1) a casing or shell that is usually
ivided at the horizontal center line and contains the stationary blade
ystem; (2) a rotor carrying the moving buckets (blades or vanes) either
n wheels or drums, with journal bearings at the ends of the rotor; (3)
 set of bearings attached to the casing to support the shaft; (4) a cou-
ling to connect with the driven machine; and (5) pipe connections to
139 
he steam supply at the inlet and to an exhaust system at the outlet of
he casing or shell. 

Failure mode and effect analysis (FMEA) of steam turbines was con-
ucted over twenty years in the electric power industry; results are
hown in Table 2 . FMEA qualitatively shows the occurrence, sever-
ty, and risk of key components in a steam turbine. Among the many
urbine components, this study looks specifically at the HIP rotor for
UL prediction due to its high risk. Creep and low/high cycle fatigue
LCF/HCF) are known to be the dominant failure mechanisms of steam
urbines [35,36] . High temperatures and centrifugal force causes creep
amage in high-stress regions, such as bore and wheel hooks. Thermo-
echanical fatigue damage from the thermal cyclic load causes cracking

t the wheel corner [1,22,36] . Material degradation related to damage
n the turbines, such as low-cycle fatigue and creep, leads to unexpected
reakdown and economic losses in the electric industry. 

.2. Characteristics of on-site measurement data 

It is extremely difficult to measure material degradation directly. De-
tructive analysis is available only in well-controlled laboratories, while
on-destructive analysis (i.e., the replication method) is limited in its
bility to accurately predict the damage rate or RUL. 

This study employed a rebound hardness tester (Leeb hardness tester
n accordance with DIN 50,156-1 and ISO/FDIS 16,859-1) because of
he need for on-site and non-destructive measurement. The load of the
andheld probe of the hardness tester was 10 kgf. This study used Vick-
rs hardness values. The hardness data are subject to uncertainty due
o inconsistency in turbine targets, measurement locations, and testing
perators [37] . To take into consideration the uncertainty effect, a set of
easurement data were collected from ten turbine units: five base-load

nd five peak-load units. More than five repeated data measurements
rom each turbine were used in this study, as prior work showed that
etween 3 and 10 measured hardness data points are generally accept-
ble [38] . 

It is well known that virgin rotors and the low-temperature regions
f the retired rotors have almost the same microstructure, consisting
f finely dispersed carbide precipitates and densely distributed disloca-
ions [39] . Within the turbine rotor, therefore, the hardness in a low-
emperature region can be used as a reference hardness. Fig. 3 shows
wo different types of a steam turbine; typical base-load and peak-load
team turbines. To acquire material hardness data of both low-stress
nd high-stress conditions from the same turbine, as shown in Fig. 3 ,
he wheel corner of the 1st stage of the turbine rotor was selected as a
igh-stress location. The groove of the exhaust section was chosen as the
ow-stress location. Steam turbines have different overhaul periods and
chedules. Ten sets of the hardness data set, which were sporadically
easured at overhauls over 10 years, are shown in Table 3 . Thus, hard-
ess data sets from both low and high-stress locations were arranged
ccording to the equivalent operating hours (EOH). For both base-load
r peak-load turbines, EOH can be calculated by using actual operating
ours, the number of starts, and life factor as [40] 

𝑂𝐻 = 𝑡 𝑜𝑝 + 

(
𝐿𝐹 ×𝑁 𝑜𝑝 

)
(1)

here t op is the actual hours of operation, N op is the number of starts,
nd LF is the life factor. 

Development of a damage growth model that utilizes on-site hard-
ess data encounters two major hurdles: (a) heterogeneity and (b) un-
ertainty in data. First, data can be collected during scheduled major
verhauls in accordance with the maintenance strategy of the particu-
ar power generation company. Major overhauls are typically executed
very four years and involve the complete disassembly, inspection, and
eassembly of the steam turbine. In practice, sporadically measured data
re also acquired from turbine units. Turbine units in coal power plants
un at the base load continuously throughout a year, while peak-load
urbines in a combined cycle power plant generally run only during pe-
iods of peak demand for electricity [41] . Based on these factors, turbine
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Table 2 

FMEA results for a steam turbine. 

Comp. Failure cause Failure mechanism Failure mode Occurrence Severity Risk 

HIP(High-Intermediate Pressure) steam turbine 

Rotor Temp. cycling Creep, LCF Fracture Not often Very high High 

HP blade Temp. cycling LCF, HCF Failure Not often High Moderate 

HP casing Temp. cycling CREEP, LCF Crack Not often Moderate Moderate 

IP blade Temp. cycling LCF, HCF Failure Not often High Moderate 

IP casing Temp. cycling CREEP, LCF Crack Not often Moderate Moderate 

LP(Low Pressure) steam turbine 

Rotor Wet. Cycling Corrosion, LCF Fracture Not often High High 

Blade Wet. Cycling LCF,HCF, Corrosion Failure Often Moderate Moderate 

Bearing Wear Wear Vibration often Low Moderate 

 
(a) Steam turbine of base-load power plant 

 

 
(b) Steam turbine of peak-load power plant 

Fig. 3. Measurement locations for material properties of turbines. 
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nits operate with different fuel sources and power outputs, as shown
n Table 3 . Second, measurement data are subject to various sources
f uncertainty, such as variability in material properties, measurement
ocations, surface conditions, and testing operators [42,43] . Even if tur-
ines are made of the same material, the strengths of different turbines
re different. In addition, the operator also represents a potential source
f error related to testing conditions. Slightly mismatched measurement
ocations and/or different handling of the instrument may occasionally

ead to deviations in the results.  

o

140 
In Table 3 , H a signifies the hardness at high-stress locations and H v 

epresents hardness at low-stress locations. These values are distributed,
hich means that uncertainty from sporadic measurements in heteroge-
eous turbines exists for each data set. Since the measured hardness is
ndirectly related to strength, the damage rate can be quantified and
amage growth can be predicted for RUL calculation. In this paper, a
amage growth model that uses a hardness-based damage index is pro-
osed in Section 3 . 

To develop the damage growth model in this setting requires the use
f heterogeneous and sporadic measurement data. 
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Table 3 

Hardness data for ten turbine units. 

Plant Unit A1 B6 C2 B6 (replaced) B3 D1 (retired) E2 F1 G4 (retired) H5 (retired) 

Output (MW) 500 500 500 500 500 200 182 350 200 200 

Load Base Peak 

Fuel Coal Coal Coal Coal Coal Oil NG Oil NG NG 

EOH (h) 74,327 95,097 115,671 146,708 157,995 186,478 201,671 212,522 213,175 255,288 

Ha # 5 10 5 17 9 10 20 10 9 5 

Mean 260.0 241.1 260.5 251.6 241.7 260.1 222.0 237.8 243.5 222.0 

St. dev. 3.34 4.01 4.87 3.99 5.35 4.34 4.96 3.43 5.79 6.28 

Hv # 5 10 5 17 9 10 20 10 9 5 

Mean 263.0 245.7 265.8 258.8 249.3 271.6 236.1 261.9 267.8 272.8 

St. dev. 2.49 2.41 3.18 3.18 5.70 1.78 5.31 4.72 5.70 5.10 

EOH: Equivalent Operating Hours. 

Table 4 

Damage index by direct damage measurement. 

Damage measurement Damage index Creep Fatigue Etc 

Hardness 𝐷 = 1 − 𝐻̃ ∕ 𝐻 Normal Good Non-destructive 

Elasticity modulus 𝐷 = 1 − 𝐸̃ ∕ 𝐸 Good Good Non-destructive 

Density 𝐷 = ( 1 − ̃𝜌2 ∕ 𝜌) 2∕3 Bad Bad Destructive 

Ultrasonic waves 𝐷 = ( 1 − ̃𝑣 2 ∕ 𝑣 ) 2∕3 Normal Bad Destructive 

Cyclic stress amplitude 𝐷 = ( 1 − Δ𝜎∗ ∕Δ𝜎) Bad Normal Destructive 

Tertiary creep 𝐷 = 1 − ( ̇ε ∗ p ∕ ̇ε p ) 
1∕ 𝑁 Good Bad Destructive 

Electrical resistance 𝐷 = 1 − 𝑉 ∕ 𝑉 Normal Bad Destructive 

Micrography 𝐷 = 𝜕 S D ∕ 𝜕S Normal Bad Destructive 
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.3. Existing damage indices 

Eight damage measurement methods and damage indices are com-
ared in Table 4 [37] . Most damage measurements are destructive; thus,
hey are not suitable for in-service facilities and have limitations in
heir ability to consider both creep and fatigue damage. Among non-
estructive methods, it is relatively easy to measure material hardness
rom actual steam turbines. Moreover, hardness is more sensitive to
amage than the replication method due to the softening effect of dam-
ge [20] . From Table 4 , thus, this study makes use of hardness data
o define a hardness based damage index that takes into account both
reep and fatigue damage as [44] 

 = 1 − 

𝐻̃ 

𝐻 

= 1 − 

𝐻 𝑎 

𝐻 𝑣 

(2)

here H a and H v are the hardness values measured at aged (or damaged)
nd virgin (or undamaged) material states, respectively, using the Leeb
ardness test. The hardness at the aged state is measured in a high-
tress region ( H a ), while the one at the virgin state is measured in a
ow-stress region ( H v ), as shown in Fig. 3 . Fig. 4 illustrates the box plots
f measured hardness at different operating hours. Although the spread
n the levels of hardness are not the same, the difference between high-
tress and low-stress hardness increased. Due to previously mentioned
ncertainties, hardness data are statistically distributed so that the prob-
bility density functions (PDF) of the damage index are shown in Fig. 5
t different operating hours. Since damage indices are able to track the
rogress of damage with operating hours, distributed damage indices
ased on hardness can be used to develop a damage growth model for
UL prediction. 

. Damage growth model using sporadically measured and 

eterogeneous on-site data 

This section proposes a new damage growth model that utilizes the
amage indices from hardness data. Bayesian inference and MCMC tech-
iques are used to update the parameters of the damage growth model
141 
n conjunction with the stochastic nature of the damage indices. The
roposed model is applied to predict the RUL of steam turbines in a
ase study outlined in Section 4 . 

.1. Proposed damage growth model 

Damage growth models based on hardness data are rarely studied,
ven though damage growth or degradation models are needed for pre-
icting the RUL of steam turbines. In general, model parameters can be
stimated using expert knowledge and experimental data. Fig. 5 shows
he histograms of the hardness-based damage index estimated from het-
rogeneous turbines with different operating times. The histograms pro-
ide an important observation. The damage index monotonically in-
reases over operating time, although there is uncertainty that arises
ue to sporadic measurements from heterogeneous turbines. It is con-
rmed from observation that the hardness-based damage index can be
sed to represent damage growth. 

A regression curve was built to understand damage growth be-
aviour over operating time, as shown in Fig. 6 . Ten sets of hardness
ata measured at different operating times were used to estimate the
amage indices plotted in the figure. The regression curve demonstrates
he monotonic increase of the damage index over the entire lifetime.
oreover, the variability of the damage index increases with time. It

s believed that greater variability over time mainly arises from spo-
adic measurements and the heterogeneity of turbines in terms of man-
facturers and operating conditions. This necessitates the definition of
 damage growth model in a Bayesian sense. This study thus proposes
 Bayesian approach to the damage growth model as a function of op-
rating times, as shown in Eq. (3) . It is assumed that the time-varying
amage index follows a Gaussian distribution, of which parameters can
e updated with new hardness data using Bayesian inference. This as-
umption may not be ideal at the beginning of operation due to its biased
ature. However, the normal distribution can represent the distribution
f the damage index well at later operating times. This assumption is
ore important than at beginning times from the viewpoint of damage
rediction, because the histograms become a uni-modal and symmetric



W. Choi et al. Reliability Engineering and System Safety 184 (2019) 137–150 

Fig. 4. Comparison of hardness; box plots by operation time. 
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istribution at later operating times. The damage growth model can be
hus defined in the form of a distribution as 

 ( t ) ∼ N 

(
𝜇𝐷 ( 𝑡 ) , 𝜎𝐷 ( 𝑡 ) 

)
(3)

here the mean 𝜇D ( t ) and standard deviation 𝜎D ( t ) of the time-varying
amage exponentially increase over operating time, as shown in Fig. 7 .
hey are thus modeled as 𝜇𝐷 ( 𝑡 ) = 𝛼𝜇𝑒𝑥𝑝 𝛽𝜇𝑡 and 𝜎𝐷 ( 𝑡 ) = 𝛼𝜎𝑒𝑥𝑝 𝛽𝜎𝑡 . The
arameters of the mean and standard deviation of the damage are up-
ated through Bayesian inference to reduce the uncertainty in remaining
142 
seful life, which comes from the uncertainty in the hyper-parameters
, 𝛽 for the mean and standard deviation of the damage indices. 

The probability distributions of the damage index were indepen-
ently developed using sporadic and heterogeneous experimental data
easured at different operating (or service) times. However, it is still

uestionable whether hardness datasets measured from different sites at
arious operating times can be integrated to a single a damage growth
odel as a homogeneous dataset. To address the challenge, the U-
ooling test is used to validate the adequacy of a distribution model
f damage indices obtained under homogeneous conditions. This is
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Fig. 5. Histograms based on the damage index. 

143 
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Fig. 6. Fitted line using regression methods. 

Fig. 7. Fitted line with mean and standard deviation of the damage index dis- 

tribution. 
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Fig. 8. Calculation of area metric, U m . 
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enerally used to check the degree of mismatch between the disper-
ion of experimental data and the distribution of predicted results by
alculating the area between the CDF of the uniform distribution and
he empirical CDF of u i values corresponding to the experimental data
45–49] . If valid, damage indices obtained under heterogeneous condi-
ions can be integrated into a single metric to assess the global predictive
apability of a model. In order to develop a single metric, the goodness-
f-fit is first evaluated for each damage index at each data set. For each
ample ‘k’ of damage index, u k is the value of goodness-of-fit. Then, the
rea metric is calculated by integrating the difference between the CDF
144 
f uniform distribution U(0,1) and the experimental CDF of u k . There-
ore, the area metric based on damage indices is defined as: 

 𝑚 = ∫
1 

0 
||𝐹 𝑢 − 𝐹 𝑢𝑛𝑖 

||𝑑𝑢 (4)

here F u is the transformation of every damage index D i into the CDF
f responses from an assumed model; F uni is the CDF of a uniform dis-
ribution U(0,1) . 

In this study, there are ten damage indices D i from experiments. The
 i of each damage index is calculated and the empirical CDF of each
s shown in Fig. 8 (a). Initial damage index values less than zero are
hysically impossible; therefore, they are excluded for data homogeniza-
ion at an early stage. The calculated area after data homogenization is
.0144; this is smaller than the threshold of 0.0175. The number of dam-
ge indices from data combination results is 1,116 and the significance
evel is 0.05. As a result, the null hypothesis of a normal distribution
f the damage indices cannot be rejected, as shown in Fig. 8 (b), and
ata homogenization enables integration of heterogeneous measured
ata from different turbines. 

Though hardness data are obtained from heterogeneous situations,
he homogeneity of the normally distributed damage index is validated
nd a developed damage growth model is available. 
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Fig. 9. Trace iteration of a random sample. 
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.2. Bayesian updating scheme of the damage growth model 

Damage growth can be predicted by the mean and standard deviation
f the damage indices. The parameters of the mean and standard devia-
ion can be estimated by a regression technique, such as the least squares
ethod in Eq. (3) . Since typical regression methods cannot consider the

tatistical correlation of hyper-parameters of the damage model, the ac-
uracy of the life prediction results is low. One of the advantages of
ayes’ theorem over other parameter identification methods (e.g., the

east squares method and maximum likelihood method) is its ability to
dentify the uncertainty structure of the identified parameters [31] . In
his study, the Bayesian technique is employed to estimate the coeffi-
ients of mean, standard deviation, and statistical correlation for dam-
ge index distribution. Bayesian inference is based on Bayes’ theorem:

 ( 𝜃|𝑧 ) = 𝐿 ( 𝑧 |𝜃) 𝑝 ( 𝜃) (5)

here L ( z | 𝜃) is the likelihood of the observed data, z is conditional on
he given parameters 𝜃; p ( 𝜃) is the prior distribution of 𝜃; and p ( 𝜃| z ) is
he posterior distribution of 𝜃 conditional on z . We consider posterior
istributions of the coefficients of the mean and standard deviation mod-
ls in the same type. The posterior distributions of the coefficients are
iven as: 

 ( 𝛼𝜇, 𝛽𝜇|𝜇) ∝ 𝐿 

(
𝜇|𝛼𝜇, 𝛽𝜇

)
𝑝 
(
𝛼𝜇, 𝛽𝜇

)
(6)

In the Bayesian approach, the joint posterior distribution of the
yper-parameters 𝛼, 𝛽 for the mean and standard deviation of the dam-
ge indices is obtained by multiplying likelihoods L ( 𝜇| 𝛼𝜇 , 𝛽𝜇), L ( 𝜎| 𝛼𝜎 ,

𝜎) with prior distributions p ( 𝛼𝜇 , 𝛽𝜇), p ( 𝛼𝜎 , 𝛽𝜎), respectively. The likeli-
ood is the probability of obtaining the mean and standard deviation for
iven hyper-parameters 𝛼, 𝛽 from measured hardness data. It has been
hown previously that material hardness follows a normal distribution
38] . For simplicity, it is assumed that a non-conjugate Bayes model is
sed for the updating process of the damage growth model. Therefore,
he likelihood also follows a normal distribution, with variances 𝑠 2 

𝜇
, 𝑠 2 

𝜎
.

he likelihood of the mean of the damage index can be expressed as: 

 

(
𝜇|𝛼𝜇, 𝛽𝜇

)
= 

1 √
2 𝜋𝑠 𝜇

𝑒𝑥𝑝 

⎡ ⎢ ⎢ ⎣ − 

1 
2 

( 

𝜇 − 𝜇𝐷 

(
𝛼𝜇, 𝛽𝜇

)
𝑠 2 
𝜇

) 2 ⎤ ⎥ ⎥ ⎦ (7)

here 𝜇D ( 𝛼𝜇 , 𝛽𝜇) is an estimated mean of the damage index equa-
ion derived from Eq. (3) . The standard deviation of the damage index
an be modeled, similar to Eq. (7) . No prior information of the hyper-
arameters 𝛼, 𝛽 of the mean and standard deviation is available. For
ractical scenario, it is difficult to obtain the prior information for the
ctual steam turbine’s prognostics. In this paper, therefore, the prior
istributions of the hyper-parameters are assumed to follow a uniform
istribution whose ranges are twice larger than 90% confidence bound
145 
f the estimated hyper-parameter 𝛼, 𝛽 by the Nlsq method 

 

(
𝛼0 
𝜇,𝜎

)
∼ 𝑈 

(
𝛼𝐿 
𝜇,𝜎

, 𝛼𝑈 
𝜇,𝜎

)
, 𝑝 

(
𝛽0 
𝜇,𝜎

)
∼ 𝑈 

(
𝛽𝐿 
𝜇,𝜎

, 𝛽𝐿 
𝜇,𝜎

)
(8)

here 𝛼L , 𝛼U , 𝛽L , 𝛽U are the lower and upper bounds of the hyper-
arameters of the mean and standard deviation, respectively. 

Consequently, the posterior becomes a multiplication of the likeli-
ood and prior distributions. The prior distribution and the likelihood
unction, respectively, are uniform and normal distribution, as intro-
uced here to estimate parameters of the damage growth model using
ayesian inference. 

.3. Damage growth model updating 

Since the expression of the posterior distribution of the mean and
tandard deviation of the damage index is available as a product of the
ikelihood and prior in Eq. (8) , the shape of the posterior distribution
an be estimated by calculating its parameters of mean and standard de-
iation at each time. The posterior distribution is complicated due to the
orrelation between multiple parameters in practical engineering appli-
ations; thus, a sampling method is effective to generate samples from
n arbitrary posterior distribution. As a sampling method, Markov Chain
onte Carlo (MCMC) simulation is used to evaluate the posterior distri-

ution after Bayesian updating [39,40] . MCMC simulation, in conjunc-
ion with the data augmentation technique, is computationally effective
nd useful to identify the correlation between hyper-parameters of the
amage growth model [50,51] . This paper uses a general Metropolis-
astings (M-H) algorithm to generate samples that simulate the poste-

ior distribution of two hyper-parameters 𝛼 and 𝛽 of the damage index.
s shown in Fig. 9 , 20,000 samples for the hyper-parameters of the mean
nd standard deviation are generated to capture the nature of the dis-
ributions of the hyper-parameters. 4000 samples from the initial stage
re discarded for data homogenization. 

In general, the Nlsq method is easily used to estimate the mean and
tandard deviation of the damage index. Nonlinear models are more dif-
cult to fit than linear models because hyper-parameters of the damage

ndex cannot be estimated using regression. The Levenberg–Marquardt
lgorithm is used for solving the Nlsq problem [52] , which estimates
he distribution parameters of the damage growth model. 

Figs. 10 (a) and (b) show the joint random samples of the hyper-
arameters ( 𝛼 and 𝛽) generated by using the Nlsq method and Bayesian
ethod (BM). The Nlsq method yields the linear correlation of the ran-
om samples of the hyper-parameters with a constant correlation value.
n contrast BM can reproduce the nonlinear correlation of the random
amples. The correlation can be identified well; this is more impor-
ant for accurately predicting damage growth and RUL. Table 5 shows
he confidence intervals of the hyper-parameters of the damage growth
odel, along with the lower and upper bounds of the 90% intervals us-

ng both the Nlsq method and BM. Since the confidence bounds from BM
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Table 5 

Confidence intervals of parameters for damage growth model. 

Mean 𝛼𝜇 𝛽𝜇

5% 50% 95% Interval 5% 50% 95% Interval 

Bayesian 0.0018 0.0031 0.0041 0.0023 1.46E − 05 1.58E − 05 1.80E − 05 3.4E − 06 

Nlsq 0.0010 0.00260 0.0041 0.0031 1.406E − 05 1.66Ee0 − 5 1.93E − 05 5.2E − 06 

Standard deviation 𝛼𝜎 𝛽𝜎

5% 50% 95% Interval 5% 50% 95% Interval 

Bayesian 0.0059 0.0106 0.0162 0.0103 2.02E − 06 4.14E − 06 7.02E − 06 5.0E − 6 
Nlsq 0.0057 0.0110 0.0163 0.0106 1.50E − 07 3.98E − 06 6.46E − 06 6.3E − 6 

Fig. 10. Correlated random samples of the damage index. 

Fig. 11. Mean and standard deviation results obtained by performing the 

Bayesian updating. 
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146 
re relatively narrower, the predicted mean and the standard deviation
or the damage index hold less uncertainty. The probability distributions
f the mean and standard deviation of the damage index can be obtained
sing Eq. (3) once the joint samples are obtained. To understand the ef-
ects of the correlation of the parameters in the damage growth model,
he mean and standard deviation for the damage index are predicted
sing the Nlsq method and BM, as shown in Fig. 11 . It is observed that
he second quartile (50%) of the mean and standard deviation derived
rom the two methods are quite similar. However, BM gives a smaller
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Fig. 12. Damage growth prediction curves with all ten data. 
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Table 6 

Comparison of RUL. 

Operating Time(h) Threshold 0.2 Threshold 0.8 

B10 B50 B10 B50 

0 240,000 250,000 325,000 335,000 

200,000 40,000 50,000 125,000 135,000 

250,000 − 9,000 0 75,000 85,000 
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eviation of the mean and standard deviation. It is known that predic-
ion accuracy is more sensitive to correlation than uncertainty type [53] .
ach hyper-parameter is deterministically estimated and a linear corre-
ation is added to the estimated results based on the covariance matrix
n the Nlsq method. In the Bayesian method, on the other hand, the un-
ertainties in the unknown hyper-parameters are considered with a joint
osterior distribution, and the parameters’ correlation and the distribu-
ion can be identified simultaneously. As a result, it can be seen that the
ncertainty of the damage growth model can be reduced by considering
he nonlinear correlation of parameters for mean and standard deviation
hat constitute the damage growth model. 

Even though measured hardness data are heterogeneous and ran-
om, a damage growth model can be constructed using the data ho-
ogenization process and Bayesian updating. Posterior distributions of

he hyper-parameters ( 𝛼 and 𝛽) are used to predict the damage growth
y using Eq. (3) . 

Fig. 12 shows the results of damage growth prediction by the
ayesian and Levenberg–Marquardt method, with the 10 data sets of
amage indices shown in Fig. 5 . The threshold lines of 0.2 and 0.8 are as-
umed and plotted as the typical ranges of the critical damage [30] . Even
hough both results are similar in the upper bound, differences of mean
nd lower bound gradually increase with time. Also, the Nlsq method
learly shows a different prediction with much wider uncertainty, even
hough the median is close to the true value. These results show that the
ayesian method that uses the mean and standard deviation of the dam-
ge index is applicable for predicting damage distribution and damage
rowth with uncertainty. Since damage growth is predicted with all ten
ata sets with operating times, the results from the two methods seem
o have a similar trend. 

. Predicting the remaining useful life (RUL) of steam turbines 

Once the parameters of the damage growth model are identified us-
ng Bayesian inference, the model can be used to predict the RUL, which
s the remaining time until the damage indices grow to a threshold. 

.1. Damage threshold 

Typically, RUL is expressed in terms of a damage index D and an
peration hour t op as 𝑡 𝑟 = ( 1∕ 𝐷 − 1 ) 𝑡 𝑜𝑝 [54] . Ideally, failure can be de-
ned according to Eq. (2) when a damage index becomes 1. Once the
yper-parameters of the damage growth model are estimated, however,
he future damage state and remaining useful life (RUL) can be pre-
147 
icted by progressing the damage state until the damage index reaches
 threshold [55] . 

A damage threshold is of great importance to RUL prediction. How-
ver, there is to date no study about a damage threshold for steam tur-
ines. Since a steam turbine is a rotating machine under high speed, tem-
erature, and pressure conditions, crack initiation or fracture in elastic-
lastic stress fields should be considered to be the criteria to determine
he end of life. Sumio [56] proposed that the value of critical damage
 c has been ascertained to be 0.2 < D c < 0.8 for elastic-plastic damage. 

It is well known that the average design life of a steam turbine is ap-
roximately 200,000 h (around 25 years) [34,57–60] . RUL prediction
as been carried out to decide between life extension or retirement. Ap-
roximately 25 to 30 years is generally accepted as an acceptable usage
ife time. However, experience shows that a turbine can operate beyond
ts design life because of its designed safety margin. Table 3 shows two
nits that were retired after operating 213,175 and 255,288 h; a ser-
ice life beyond the average design life. In this study, the damage index
nd RUL are estimated for retired turbines to determine a threshold for
amage growth of a steam turbine. 

For the case of damage growth prediction shown in Fig. 13 , there are
arge differences between Bayesian and Nlsq methods at 90% confidence
ntervals; this relates to the B-10 life. The B10 life metric, associated
ith 90% reliability, originated in the ball and roller bearing industry.
his metric has become widely used in across a variety of industries
61,62] . The Bayesian methods predict damage growth accurately with
elatively small uncertainty, compared with the Nlsq method, as shown
n Fig. 13 . This study conducted RUL prediction at three operating times
0, 200,000, and 250,000 h ) to determine an appropriate failure crite-
ion for the damage growth model. Table 6 shows comparison results
rom the damage growth model derived using Bayesian inference. By
ccepting the damage index, 0.2, as a failure criterion, the B50 life is
50,000 h and B10 life is 241,000 h. On the other hand, a failure cri-
erion of the damage index 0.8 yields 325,000 and 335,000 h as the
10 and B50 life, respectively. By comparing these findings with the ac-
ual retirement history of steam turbines, it is concluded that a failure
riterion of the damage index 0.2 gives a reasonable RUL for a steam
urbine. 

.2. Validation of the proposed damage growth model 

Since a new damage index distribution and damage growth model,
ased on sporadic and heterogeneous data, is proposed, it is necessary
o validate the proposed model. We used the data sets in Table 3 to val-
date the proposed Bayesian method. The prior distribution is uniform
istributions as discussed in Section 3.2 . The posterior distributions of
he hyper-parameters 𝛼, 𝛽 of the mean and standard deviation for the
amage growth model are obtained with seven sets of ten data (i.e.,
1 to E2) without 8 ∼10th data set (i.e., F1 and H5). For the purpose of
omparison, the distributions of hyper-parameters 𝛼, 𝛽 are also obtained
sing the Nlsq method. The mean value of the last data set is used to
alidate the prediction. The results of damage growth prediction using
he Bayesian and Nlsq methods are given in Fig. 13 (a). Next, the pos-
erior distributions of the hyper-parameters 𝛼, 𝛽 of the damage growth
odel are obtained with eight sets of ten data (i.e., A1 to F1) with-

ut 9–10th data set (i.e., G4 and H5). As shown in Fig. 13 (b), the 8th
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Fig. 13. Progressive damage growth predictions with variable number of train- 

ing data. 

d  

d  

m  

a  

b  

I  

o  

(  

o
 

e  

b  

d  

i  

A  

d  

r  

Fig. 14. Damage index distribution at 255,000 h operation. 
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ata point overlaps the 9th data point because their operating times and
amage indices are almost identical. Compared to the actual data, the
ean value calculated by the Bayesian method shows good agreement

nd narrow confidence bounds, whereas the damage growth prediction
y the Nlsq method does poor agreement and wider confidence bounds.
n Fig. 13 (c), posterior distributions of the hyper-parameters 𝛼, 𝛽 are
btained with nine sets of data (i.e., A1 to G4) without the last data set
i.e., H5). As expected, the results with the proposed Bayesian method
utperformed the Nlsq method. 

Although the estimation results are fairly exact in the early stages,
arly stages are not of interest in terms of prognostics of a steam tur-
ine. Thus, common Nlsq methods may not be suitable to predict the
amage index distribution and the RUL of a steam turbine with lim-
ted and distributed data that does not follow a normal distribution.
dditionally, it is observed that uncertainty in the mean and standard
eviation is reduced with more data; thus, the confidence intervals are
educed from Figs. 12 and 13 . Fig. 14 shows a comparison of the dam-
148 
ge index distribution between the predicted one and the measured true
ne at 255,000 h operation. Even though the number of data in the true
amage index distribution is quite small at 25, in Fig. 14 , the damage
istribution from the Bayesian method is very close to the true one. Ad-
itionally, the area metrics from the Bayesian and Levenberg-Marquardt
ethod are calculated with the aggregated 25 data. The threshold was
.11785 for the sample size of 25 and a significance level of 0.05. The
rea metric result of the Bayesian method of 0.09423 is less than the
hreshold; whereas, the Levenberg–Marquardt result is larger than the
hreshold. We can also conclude that the Bayesian approach can accept
he assumption of a normally distributed distribution of the damage in-
ex in the validation process. 

.3. RUL prediction 

Although advanced maintenance techniques are available in the lit-
rature, they have not been well implemented in the industry for various
easons, including lack of data, lack of an efficient model, and difficulty
f implementation [4] . A common practice in condition-based mainte-
ance for turbines in power plants is to analyze the condition of the
quipment at regular or irregular intervals; the measurement of such
ondition information is then used in RUL prediction. RUL predictions
f steam turbines can be used to determine the maintenance schedule
f whole power plants. RUL can be predicted by subtracting the PDF of
he damage index from the threshold by using the mean and standard
eviation distribution. Since there is no information about actual fail-
re data of steam turbines, in this study, operating times of 0, 200,000,
nd 250,000 h are used to predict RUL in the proposed damage growth
odel. These operating times represent the initial and average design

ife, respectively. PDFs and CDFs of the damage index with a 0.2 damage
hreshold at each operating time are shown in Fig. 15 . The change of
UL with respect to operating times is shown in Fig. 16 . In Fig. 16 , the
lack solid line represents the true RUL. The true RUL is a negative slope
ine as the RUL decreases at every operating time. The red-dashed line
s the predicted RUL using the damage growth model and threshold. It
as clearly shown that the confidence bound became narrow with the

ncrease of operating times. To show the differences between thresh-
lds, additionally, distributions of RUL at 255,000 h are compared in
ig. 17 and in Table 6 . By considering the average design life and actual
etirement history of steam turbines, as a result, it is concluded that a
amage threshold of 0.2 yields a reasonable RUL for a steam turbine.
s a result, the RUL distribution of a steam turbine can be predicted
sing the Bayesian method, and B-lives can be determined by using the
roposed damage threshold value of 0.2. 
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Fig. 15. RUL distributions with different operating times under damage threshold 0.2. 

Fig. 16. RUL prediction at each operating time. 

Fig. 17. RUL distribution under damage threshold 0.2 at 255,000 h operation. 

5

 

t  

B  

d  

i  

S  

v  

i  

d  

o  

A  

d  

v  

t  

L  

k  

p  

N  

p  

i  

r  

h  

g  

T  

a  

r

A

 

(

R

 

 

 

 

 

 

 

 

149 
. Conclusions 

This paper presented a damage growth model and an RUL predic-
ion methodology for aged steam turbines by using Bayesian inference.
ased on the study described in this paper, several conclusions can be
rawn. First, RUL prediction methodologies developed in this research
ncorporate the damage index into damage growth model estimation.
ince the damage index, as a function of hardness, is distributed due to
arious uncertainties, the mean and standard deviation from the damage
ndex distribution are used to predict the damage growth. Second, the
amage growth model for a steam turbine was proposed as a function
f mean and standard deviation from the damage index distribution.
 Bayesian inference technique was used to estimate the probability
istribution of the damage index from on-site measurements. Hardness
alues of the damage index were measured using a rebound hardness
ester. Third, the damage growth predicted using both Bayesian and
evenberg-Marquardt methods was compared and validated. It is well
nown that the ability to use prior information and to choose an appro-
riate statistical model are advantages of Bayesian inference over the
lsqs method, especially in cases of nonlinear correlation of unknown
arameters for a damage index. Also, as more measurement data are
ntegrated into the updating process, uncertainties in prediction can be
educed. Fourth, by comparing predictions with the actual retirement
istory of steam turbines, it is concluded that a damage threshold of 0.2
ives a reasonable damage distribution and RUL for a steam turbine.
hrough the proposed methodology, it is expected that damage states
nd RULs of steam turbines can be predicted using the operating time,
egardless of the type of turbine. 
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