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Abstract

The paper reviews options for structural design sensitivity analysis, including global finite differences, continuum

derivatives, discrete derivatives, and computational or automated differentiation. The objective is to put these different

approaches to design sensitivity analysis in the context of accuracy and consistency, computational cost, and implemen-

tation options and effort. Linear static analysis and transient dynamic analysis are reviewed. In a separate appendix,

special attention is paid to the semi-analytical method. A future paper will address design sensitivity analysis in non-

linear structural problems.
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1. Introduction

There are currently four broad categories of methods in common use for obtaining the derivatives of

performance measures with respect to structural parameters: (a) overall finite differences; (b) discrete deriv-

atives; (c) continuum derivatives; and (d) computational or automatic differentiation. The differences be-

tween these methods are particularly important for shape sensitivities, because shape design variables

change the discretization, i.e. mesh or grid, when numerical techniques such as finite element, boundary

element, or meshfree methods are used. In this paper, the sensitivity is defined as a derivative of a perfor-
mance measure with respect to a design variable.

Except for the finite differences option, the other three come in direct and adjoint methods (called the

reverse mode for automatic differentiation). In the direct mode, one obtains the derivatives of the entire
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structural response, and often of intermediate quantities as well. The sensitivities of performance measures

can then be obtained from the chain rule of differentiation. In the adjoint mode, one defines an adjoint

problem, which depends on the performance measure. The sensitivities of performance measures can then

be obtained using the structural and adjoint responses. Thus not all system response sensitivities are re-

quired, which is particularly advantageous in cases with many design variables, but few performance mea-
sures of interest.

One criterion for choosing a class of methods is accuracy. Clearly, accuracy of the sensitivities may influ-

ence the optimization solution, the required number of optimization cycles and premature convergence.

Unfortunately, accuracy is subjective, and here we differentiate between accuracy and consistency. We de-

fine accuracy to be the difference between the derivatives we obtain and the exact derivatives obtained from

an exact solution of the governing continuum equations. Obviously such an exact solution is not known for

most practical problems and can only be approximated by sufficiently accurate numerical models. We de-

fine consistency as the difference between the derivatives we obtain and the exact derivatives of the numer-
ical model. Thus, in the context of consistency the accuracy of the underlying (numerical) model used for

the response functions is irrelevant. The difference between consistency and accuracy is due to the fact that

the accuracy of the numerical solution changes over the design space, and different discretizations may be

used for evaluating response functions and derivatives. These definitions are illustrated in Fig. 1 for a noise-

less response (a), as well as a noisy response (b). This noise could, for example, be the result of remeshing.

The choice between the different options for calculating derivatives is also influenced by two other cri-

teria: computational cost and implementation effort. The objective of the present paper is to focus on papers

that provide guidance on the choice of methods based on the three criteria: accuracy and consistency, com-
putational costs and implementation efforts.

Design sensitivity analysis has been addressed in other survey papers. We first refer to the review by

Haftka and Adelman [1], which is already somewhat dated. Kwak [2] and Hsu [3] summarize available tech-

niques in computational shape optimization. The review of Ref. [4] is focused on aerodynamic optimization

and related (multidisciplinary) complexities. Kleijnen [5] describes the use of sensitivities in a broad

sense.
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Fig. 1. Sketch of response and different sensitivities for a nearly noisefree simulation (a) and a noisy (possibly due to remeshing)

simulation (b). The curves labeled ‘‘A’’ correspond to the exact solution of the governing continuum equations. The computational

counterparts are denoted ‘‘B’’. The differences between these curves is the modeling error, denoted ‘‘C’’. Exact derivatives are identified

with ‘‘D’’. Consistent derivatives are labeled ‘‘E’’, whereas non-exact and non-consistent COMPUTED derivatives are denoted by ‘‘F’’.
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In order to achieve a maximum level of coherence we limit ourselves to linear static and transient anal-

yses. One important area not discussed is the sensitivity of bifurcation, limit loads, and vibration problems

that lead to eigenvalue problems. The methods used for calculating sensitivity of eigenvalues are quite spe-

cialized and are difficult to integrate in this paper. The interested reader may refer to Refs. [6,7].

Other areas not discussed herein include coupled multidisciplinary problems, such as system sensitivity
using Sobieski�s global sensitivity equations [8–11], fracture [12–14], and structural-acoustics [15–17].

Section 2 introduces the four methods herein. Section 3 compares them for linear static analysis, while

Section 4 compares them for transient analysis. The semi-analytical method is discussed briefly in Section 3

and Appendix A provides much more detail. Finally, in Appendix B an index to the references in this paper

is given.

The calculation of sensitivities usually requires the solution of systems of algebraic equations. Through-

out the paper a direct solver is assumed unless specified otherwise. For a more detailed discussion on iter-

ative matrix solver in sensitivity analysis, the reader is referred to Refs. [18–26].
2. Methods of sensitivity calculations

2.1. Introduction

Linear structural behavior is often assumed or invoked as an initial approximation. Linearity implies

that the strain tensor �c is given in terms of the displacement vector uc as
�c ¼ 1
2
graduc þ gradT uc
� �

: ð1Þ
The subscript ‘‘c’’ is introduced to emphasize that these quantities belong to the continuum description.
Linearity also implies that the stress tensor rc is given as
rc ¼ Sc : �c; ð2Þ
with Sc being the fourth-order elasticity tensor, which may be a function of the spatial coordinates but is

independent of the deformations and the stresses. Finally, the loads acting on the structure must be inde-

pendent of the displacements. The principle of virtual work, convenient for formulating the equations of

equilibrium, reads as
Z
V
d�c : Sc : �c dV ¼

Z
V
qbc � duc dV þ

Z
A
hc � duc dA ð3Þ
for all duc that belong to the space of kinematically admissible displacements. In (3), q is the mass density;

d�c is the virtual strain interpreted from (1) using duc; bc denotes the external load per unit mass; and hc
reflects tractions acting on the outer surface A of the structure.

As the above equations can be solved analytically for only few practical cases, discrete approximations

are commonly formulated. With the finite element method, the discrete counterpart of (1) becomes
�e ¼ Deue; ð4Þ

where �e denotes a set of generalized deformations for a single element and ue are the element nodal degrees

of freedom. Note that, the subscript ‘‘e’’ implies the discretized element level. Since the discussion is re-

stricted to the linear regime, (4) can be used for the definition of d�e when ue are replaced by due. Denoting

energetically conjugate generalized stresses as re, the internal virtual work for a single element (dW i
e) is
dW i
e ¼

Z
V e

rc : d�c dV ¼ re � d�e: ð5Þ
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The linear discrete constitutive equations are expressed as
re ¼ Se�e; ð6Þ
where Se is an elasticity matrix. Due to the discretization process and the particular definitions used for the
generalized deformations and stresses, the matrix Se will be a function of the dimensions of the elements as

well. Summing over all elements, the principle of virtual work for the entire discretized model then yields
X
e

re � d�e ¼ f � du; ð7Þ
where u is a system vector containing all nodal degrees of freedom and f is a vector of nodal loads. Note

that the subscripts have been omitted for the system level. Eq. (7) must be satisfied for all du that satisfy the

homogeneous essential boundary conditions. Combining (4)–(7), the well-known result
Ku ¼ f ð8Þ

is found, where K is the stiffness matrix which is assembled from the individual element matrices Ke, with
Ke ¼ DT
e SeDe: ð9Þ
Note that the matrix K is symmetric and generally sparse. A boundary element method produces a linear set

of equations similar to (8). For comparable accuracy, the boundary elements requires fewer equations, but
K is not sparse and may not be symmetric.

The choice of solver for Eq. (8) affects to what extent investments made for solving (8) can be reused for

design sensitivity analysis. A direct solver typically factorizes K taking advantage of features such as sym-

metry and sparsity. This factorization can easily be used for other load cases or, as will be shown later, for

calculation of the design sensitivities. This can substantially reduce the computational cost of design sen-

sitivities. Direct solvers are particularly efficient for sets of equations with a special structure, e.g. with a

small profile or tightly banded, or relatively small sets of equations, or sets of equations that suffer from

bad conditioning. Because iterative solvers are sensitive to conditioning, they are often combined with
pre-conditioners. For design sensitivity analysis, iterative solvers have the disadvantage that investments

made for solving (8) are difficult to reuse. The exception is the investments involving pre-conditioning.

These efforts can normally be reused for the sensitivity analysis. Moreover, the investments for precondi-

tioning can also be used in a global finite difference setting. In that case the preconditioner for the original

configuration is used for the perturbed configurations as well.

Depending on the structure of the matrix (symmetric versus non-symmetric) and the convergence char-

acteristics of the iterative solution procedure (linear versus super-linear), methods that ease the solution for

another right-hand side vector may also be available [27–29].

2.2. Global finite differences

Overall or global finite difference consist of repeated execution of the analysis code and the use of a finite

difference formula to obtain the derivative. Forward or backward differences are the most popular, the use

of central differences is not uncommon, but higher order difference formulae are very rare.

Finite difference derivatives can suffer from truncation errors with large step sizes and also from errors

when the step size is too small. The most obvious source of the latter type of error is computational errors
associated with arithmetic involving a finite number of digits, i.e. round-off errors, and possibly ill-condi-

tioning in the problem. Other potential sources are the discretizations of both the spatial and the temporal

domains. A typical example could be numerical noise induced by remeshing (see, e.g., Fig. 1b). Finally, this

type of error may be triggered by iterative processes which are stopped as soon as a certain accuracy cri-

terion is satisfied. In the sequel we shall refer to this type of error as noise error.
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Computational efficiency, accuracy and consistency, and implementation effort for global finite differ-

ences depend to a large extent on the type of solvers used for the linear equations (8). The main issue is

whether computational investments associated with solving the equations for the nominal structure can

help reduce the effort associated with their solution for a perturbed structure.

When direct solvers are used for the solution, so that the matrix K has been factored, there is an array of
methods that provides fast re-analysis of the perturbed structure. A disadvantage of many of these tech-

niques is that accuracy is generally compromised, i.e. certain inaccuracies will be introduced. When the per-

turbation leads to a low rank modification of K, for example because only a single finite element is

modified, then an exact analysis of the perturbed structure can be performed using the Sherman–Morri-

son–Woodbury formulae [30]. The main computational cost of this approach is the solution of (8) for a

number of right-hand sides equal to the rank of the perturbation in K. Akgün et al. [30] discuss several vari-

ants of this approach including the method of virtual distortions.

When the perturbation in the matrix is more extensive, as in shape variation, it is still possible to use a
binomial series solution [31,32] or a similar approximation of the inverse of K using a Neuman series

[33,34]. A more sophisticated reanalysis technique can be found in Ref. [35].

When iterative solvers are used for the solution, they are often combined with pre-conditioners. It may

be possible to use the same pre-conditioner for the perturbed solution, thus reducing the computational

cost of the derivative. Moreover, the nominal solution can be used as a good starting point for the iteration

process associated with the perturbed configuration.

It must be emphasized, that reanalysis techniques have often been published in a different context to glo-

bal finite differences. The point is that the distinct differences between global finite differences and more
sophisticated discrete sensitivities fade as soon as refinements to the global finite difference schemes are

introduced [36]. This is particularly so for very small design perturbations. Yet it may be advantageous

to look at reanalysis from the aspect of global finite differences with full reanalysis in the loop since a full

reanalysis may result in better accuracy. More sophisticated methods generally result in better computa-

tional efficiency, although they may be less accurate.

A very special form of finite differences is the one which relies on complex variables. As this method can

be seen as a special form of computational derivatives, the discussion of the complex variables approach is

included in the section on computational derivatives.
2.3. Continuum derivatives

Continuum derivatives are obtained by differentiating the continuum equations that govern structural

behavior. Most commonly these consist of partial differential equations or an integral form, for example,

derived from the principle of virtual work. The differentiation leads to a set of continuum sensitivity equa-

tions that are then solved numerically, usually with the same discretization, but not necessarily, as used for

the original structural response. For shape sensitivities, the two main approaches for continuum derivatives
are the material derivative approach [37–42,13] and the control volume approach [43–45].

In the continuum approach, the design variables may be considered as fields which are functions of the

spatial coordinates. As a consequence, sensitivity is to be understood as a variation of a function. Let us

consider that the design variable s is perturbed to s + sg in which s is the scalar that measures the pertur-

bation size and g is the direction of design change. For simplicity, it is assumed that the structural design

variable s does not affect the domain. The variation of field response uc with respect to s can then be defined

as
u0c � lim
s!0

ucðsþ sgÞ � ucðsÞ
s

� �
¼ ouc

os

����
s¼0

g: ð10Þ
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Since the direction of design change g can be arbitrary, (10) must be linear with respect to g and the coef-

ficient of g is called the sensitivity of field response uc, which is equivalent to the derivative in the context of

other approaches.

Using (10) and the linear property, the variation of continuum strain tensor in (1) can be obtained

as
�0c ¼ 1
2
gradu0c þ gradT u0c
� �

: ð11Þ
This equation indicates that the strain variation has the same linear relationship to the displacement var-
iation. Similarly, the variation of (2) yields
r0
c ¼ S0

c : �c þ Sc : �
0
c: ð12Þ
This equation indicates that if the constitutive equations depend on the design variables, the derivative

equation will have an additional ‘‘initial-strain-like’’ loading. This case covers not only design variables that

control material properties, but also sizing design variables for one- and two-dimensional structural com-
ponents, such as the thickness of plates. For such components, (2) is replaced by an equation relating stress

resultants to generalized strains, and the sizing variables are included in Sc.

Using (10)–(12), the equations of equilibrium, (3), can be differentiated to obtain the following contin-

uum sensitivity equation:
Z
V
d�c : Sc : �

0
c dV ¼

Z
V
qb0c � duc dV þ

Z
A
h0c � duc dA�

Z
V
d�c : S

0
c : �c dV ð13Þ
for all duc that belong to the space of kinematically admissible displacements. The left-hand side of (13) is
the same as that of (3) if uc is replaced by u0c. The right-hand side of (13) defines a pseudo-load (or fictitious-

load), which explicitly depends on the design. Thus, solving the sensitivity equation, (13), is the same as

solving the original structural equilibrium equation, (3), with different load terms. The major advantage

of the continuum approach is that the sensitivity formulation is independent of discrete model and numer-

ical schemes. The sensitivity equation is well defined as long as the functions on the right-hand side are inte-

grable in the domain or on the boundary. Once the continuum sensitivity equation is obtained, it can be

discretized in the same manner as the original analysis equations in order to obtain a system of matrix equa-

tions similar to (8). It is repeated that u0c depends on the direction of the design change as contained in g.
When the design variables affect the shape of the domain, the differentiation of the equations of equilib-

rium is much more complicated because the integral domain depends on the design. Interested readers are

referred to Refs. [6,7] for the material derivative approach, Refs. [45] or [46] for the control volume ap-

proach, and Ref. [47] for the Eulerian approach.
2.4. Discrete derivatives

In the previous section we have seen that the continuum sensitivity equations are derived by differenti-
ating the governing continuum equations with respect to the design variables. Subsequently, a discretization

takes place. For discrete derivatives this order is reversed, that is the discrete equation (8) is differentiated

with respect to the design variables, giving
Ku0 ¼ p: ð14Þ
The pseudo-load vector p is defined by
p ¼ f 0 � K0u: ð15Þ
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It is clear from (14) that the design sensitivities require the solution of the same set of equations as solved

for the response functions, but for another right-hand side (compare with (8)). The latter being the pseudo-

load vector, see (15).

In calculating the pseudo-load vector, it is not necessary to differentiate the global load vector and stiff-

ness matrix, but to differentiate only those elements that are affected by the design variable. The evaluation
of the pseudo-load vector is then carried out by an assembly of all individual nodal points and finite ele-

ment contributions. These contributions are obtained by differentiating the finite element stiffness matrices

Ke with respect to the design variables and following a similar procedure for all load contributions.

The fact that the pseudo-load vector only depends on affected elements may be exploited to make the

computation of the pseudo-load vector more efficient. For shape design variables this requires some addi-

tional attention. For that purpose one often tries to link the design variables only to boundary elements,

which implies that only a boundary layer of elements is affected by the shape design variables.

The analytical differentiation process may become tedious. This especially holds true for shape design
variables, although, symbolic computing software can help [48]. That is, symbolic computing software

often features the automatic generation of the source code. Of course, this code must be integrated in

the existing software. In any case, additional procedures must be implemented for each element used with-

in the sensitivity analysis. The procedure must account for all possible design variables, and particularly

for shape design variables as they are usually more complex than the original finite element routines. This

type of discrete design sensitivities will be referred to as ‘‘analytical’’ discrete design sensitivities

[49–51].

Because the pseudo-load vector generally requires significant implementation effort, approximations are
frequently accepted for the pseudo-load vector that reduce this effort. These approximations particularly

involve finite difference schemes for evaluation of the pseudo-load vector. Forward and central finite dif-

ference schemes are most popular. This type of design sensitivities is commonly denoted ‘‘semi-analytical’’

discrete design sensitivities.

Besides the options of symbolic computing and (semi-)analytical differentiation, there is also the option

of applying computational or automated differentiation to a part of the analysis code. In this manner an

elegant combination of analytical differentiation and automated differentiation can be achieved. The ana-

lytical steps, typically carried out at system level, ensure efficient use of computer resources, whereas the
automated differentiation steps avoid expensive and tedious implementation. Automatic differentiation is

typically applied to the element level [52]. A more extensive discussion on computational differentiation,

focused on the differentiation of the entire analysis code, is provided in Section 2.5.

The discrete derivatives are the most commonly implemented, and they are available in several commer-

cial finite element codes, for example, NASTRAN, GENESIS and MARC [53]. These implementations are

typically based on analytical or semi-analytical formulations.

For shape design variables and analytical derivatives, we need to differentiate nodal locations with re-

spect to design variables to obtain so called ‘‘design velocities’’. If available, these can also be exploited
in a semi-analytical setting. However, for a semi-analytical formulation, the explicit construction of a de-

sign velocity field may be avoided by the introduction of design perturbations. Design perturbations also

play a crucial role in the finite difference method. However, as discussed later, the design perturbations used

have a pronounced effect on both consistency and efficiency.

For shape design variables, design perturbation involves both the size of the perturbation and its distri-

bution over the domain. For the choice of perturbation size, considerations similar to those discussed for

global finite differences are involved, see Section 3.2. Unfortunately, the semi-analytical formulation may be

extremely sensitive with respect to this choice. We shall come back to this aspect extensively, and we only
note here that this drawback may negate all advantages of a semi-analytical formulation and motivates

modifications to the semi-analytical method. As demonstrated by Ref. [54], the size of the optimal design

perturbation will be affected by the perturbation scheme applied.
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2.5. Computational derivatives

Finally, computational, algorithmic or automatic differentiation refers to a differentiation of the com-

puter code itself. Even if the finite element programs are composed of many complicated subroutines

and functions, they are basically a collection of elementary functions. The computational (or automatic)
differentiation method defines the partial derivatives of these elementary functions, and then the derivatives

of complicated subroutines and functions are computed using propagation and the chain rule of differen-

tiation. Thus, no approximations are introduced.

Without loss of generality, let us assume that an elementary function has two arguments, defined as
a ¼ felemðzi; zjÞ; ð16Þ
where felem(Æ, Æ) represents (++, sin(Æ), . . .) operators for the single argument and (+,�, *, /, . . .) operators for
the double arguments.

In the direct mode, the derivative of (16) can be defined as
oa
os

¼ ofelem
ozi

ozi
os

þ ofelem
ozj

ozj
os

: ð17Þ
This derivative can propagate through complicated functions and subroutines using the chain rule of dif-

ferentiation, which eventually produces the derivative of the structural response.

In the reverse mode, which corresponds to the adjoint mode in the previous sections, the derivatives are

computed backwards through the computation. Due to the reverse procedure, this approach requires sav-
ing the entire function evaluation history, which, consequently, may require a significant amount of

memory.

Computer programs that calculate the derivatives of output of other computer programs are now avail-

able and are applicable to ever-growing programs. The largest program that we found had about 800,000

lines [55]. Both first- and higher-order derivatives can be obtained [56,57]. Application of automatic differ-

entiation to coupled systems is discussed by Ref. [58]. This approach was initially called automatic differ-

entiation, but after a while it was realized that human intervention in the process is required in many cases

in order to obtain a reasonably efficient code. So the name was generalized to computational differentiation.
As mentioned in the previous section, in order to achieve better performance automatic differentiation

may only be used to parts of the source, this consequently leads to higher labor investment as compared to

automatic differentiation of the entire source [56].

There are several automatic differentiation tools widely available today, notably ADIFOR (Automatic

Differentiation of Fortran [59]) and ADOL-C for C/C++ programs [60]. In terms of implementation, there

are two basic approaches to automatic differentiation—source code transformation, and operator overload-

ing. Source code transformation can be viewed as a pre-compiler that adds code for computing the deriv-

atives. Operator overloading is available in modern computer languages, such as C++ and Fortran 90, that
provide the ability to redefine the meaning of elementary operators (such as multiplication) for various clas-

ses of variables. By defining new variable types that have gradient objects associated with them, and over-

loading the elementary operators to also produce gradients, the code can be transformed without increasing

its size substantially. ADOL-C and ADOL-F [61] are examples of operator-overloading tools for automatic

differentiation.

As pointed out by Ref. [62], the complex variable approach can also be viewed as a special case of com-

putational differentiation. This approach was originally suggested by Refs. [63,64], and recently revived by

Ref. [65]. It is based on the equation
f ðsþ g iÞ ¼ f ðsÞ þ g if 0ðsÞ � g2f 00ðsÞ
2

� g3 if 000ðsÞ
6

þ � � � ; ð18Þ
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which leads to the approximation
f 0ðsÞ � Im
f ðsþ igÞ

g

� �
: ð19Þ
That is, if we perform all the operations in complex arithmetic and replace a design variable s by s + ig, with
g being a small step size, we can estimate the derivative from (18). Improvement is achieved by the fact that

subtraction of nearly equal numbers is omitted so that extremely small values of g can be used. Thus, the

complex arithmetic provides the operator overloading needed for the differentiation, so that a standard
compiler can do the work instead of specialized software.

The complex variable method has been applied in aerodynamic optimization and is found to be much

less sensitive to step size than the standard implementation of forward differences [66,67]. However, appli-

cation of the method might be hindered because complex arithmetic is not always available for all the func-

tions and language constructs in the structural analysis software. In addition, the complex arithmetic may

be more costly, with CPU time penalties ranging from a few percent to a factor of three [67]. In contrast to

regular computational derivative approaches, the complex variable method does not feature an adjoint for-

mulation or reverse mode.
3. Comparison for linear static problems

In the previous sections, an overview of different techniques for design sensitivity analysis has been given.

A schematic overview of the techniques is provided in Fig. 2, where a rounded white box reflects an action,

and a white rectangular box depicts an entity.

As mentioned earlier, the different options for sensitivity analysis may be subdivided into four classes:
continuum or variational derivatives, global finite differences, discrete (semi-)analytical derivatives and

computational or automated derivatives. In Fig. 2, these classes have been depicted using gray rounded

boxes. This classification becomes somewhat blurred for the discrete derivatives as soon as either finite dif-

ference approximations or computational differentiation is blended in. Still we classify these hybrids as dis-

crete (semi-/computational-)analytical derivatives because finite difference or computational differentiation

for pseudo-loads still leads to the same adjoint calculations. In contrast, global finite differences do not have

an adjoint option, while global computational differentiation has an adjoint method (reverse mode) that is

substantially different from the discrete adjoint. The methods that rely on both analytical and computa-
tional differentiation still require manual implementation efforts.

Finally there is the question of name. Normally the discrete derivatives which rely on analytical deriv-

atives and some finite difference approximations are denoted as ‘‘semi-analytical’’. The derivatives which

combine analytical and computational differentiation could be referred to as ‘‘computational-analytical’’.

In the subsequent subsections, the aspects of accuracy and consistency, computational costs and imple-

mentation options and efforts will be highlighted (see Fig. 2).

3.1. Accuracy and consistency

When an exact method is used to find the perturbed solution, finite difference derivatives can be made to

be accurate or consistent as is needed. For example, consider the problem of obtaining derivatives from a

finite element model, created by a mesh generator with periodic adaptive meshing and error control. That

is, for small design changes the mesh is perturbed by deforming it without changing the topology of the

spatial discretization, while for larger changes the mesh may change by adding or removing elements.

The numerical model is noisy, because as structural parameters vary, the finite element mesh will change

in discrete steps to satisfy the error criterion [68]. Consistent derivatives of the numerical model can be
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obtained by finite differences using steps that are small enough to avoid remeshing, or by not allowing reme-

shing with larger steps. If the error in the response itself is well conditioned, accurate derivatives of the exact

response may be obtained by taking large finite difference steps and using high-order difference formulae in

order to suppress the nonlinear effects associated with these large steps. The large steps clearly negate the

effects of noise. However, when the discretization error changes with the design variables, then its deriva-
tives determine the minimum achievable difference between computed and exact derivatives. Thus, to reach

good accuracy discretization errors need to be kept constant (including their sign!), or, more realistically,

sufficiently small by remeshing.

As noted in Section 2.4, the use of complex variables in a finite difference scheme can allow the use of

extremely small step sizes without leading to condition noise errors [64,63,65]. The method resembles to a

large extent a computational derivative scheme. Unlike regular computational derivatives, its use leads to

approximations as compared to fully consistent derivatives. By taking a very small design perturbation, we

see that truncation errors decrease quadratically. Consequently, the method will quickly converge to con-
sistent derivatives. Similar to ordinary global finite difference schemes, the method will be sensitive to

non-constant trends in the discretization errors. This implies that accurate derivatives can only be obtained

provided the discretization error is well controlled. In the complex variable approach the need for higher-

order schemes will be small as the effects of noise and truncation errors are minor.

In the context of accuracy and consistency there will be no principal difference between analytical, com-

putational-analytical and computational derivatives. Therefore we shall refer to this group as discrete deriv-

atives throughout the discussion on accuracy and consistency. Clearly this is not the case for the

semi-analytical derivatives, which involve approximate steps within the differentiation process.
In terms of consistency, discrete derivatives can maintain a higher level of consistency than the contin-

uum derivatives, even if the latter uses the same discretization with the original response. It has been dem-

onstrated, that, in general, for the same discretization continuum and discrete methods may still be different

[69,70]. The reason is because the former differentiates the continuum equations and then approximates

using numerical techniques, while the latter differentiates the approximated discrete equations, see Fig.

2. Only when all steps involved are fully consistent with each other, can one expect identical results.

In the context of shape design variables it is important to realize that the mesh perturbation or the design

velocity field should be consistent with the mesh updating scheme used for design updates. Reasons for hav-
ing the mesh perturbation or the design velocity field inconsistent with the design updating are: (i) reduction

of the error in semi-analytical sensitivities and (ii) efficiency considerations related to the evaluation of the

pseudo-load vector. If such an inconsistency is introduced, then one must be aware that inconsistent deriv-

atives may result. It must be stated however that standard semi-analytical design sensitivities may become

less sensitive to the magnitude of the design perturbation by accepting such inconsistencies in the mesh per-

turbations. The consideration provided in the present paragraph is restricted to constant mesh topology. It

becomes blurred as soon as design updates trigger modification of the mesh topology, e.g. to maintain mod-

elling accuracy.
The accuracy of discrete and continuum derivatives is comparable. Like the global finite difference deriv-

atives, the accuracy is to a large extent determined by the discretization error. This is, for example shown by

Ref. [71], which provides a comparison of the accuracy of continuum, finite difference, and automatic dif-

ferentiation for fluid flow with discontinuities due to shocks. This comparison shows that all three methods

have similar accuracy properties.

The accuracy of discrete and continuum derivatives may be improved by using different spatial discret-

izations for the sensitivity and the response analyses. We need to set up mapping procedures and the fac-

torization of the stiffness matrix may not be reused. The latter may be a severe penalty in terms of
computational costs. Although the method may lead to better accuracy, inconsistencies will increase.

The accuracy of the semi-analytical results may be extremely sensitive to the choice of design perturba-

tions, and may exhibit severe inaccuracies [72,73]. This is especially so for slender structures where the
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elements are subject to relatively large rotations. These accuracy problems have led to a series of studies

that attempted to improve the accuracy of the semi-analytical shape design sensitivities. The proposed tech-

niques can be subdivided into two groups. The first is related to improvements using higher-order or alter-

native finite difference schemes. The second group attempts improvements by more fundamental

modifications at the level of single elements. Exponents of this group are Mlejnek�s method [74], the ‘‘exact’’
formulation [75] and exact differentiation of rigid body modes [76,77]. Especially the latter two lead to rig-

orous accuracy improvement. The interested reader is referred to Appendix A for a more detailed discus-

sion on recent progress in semi-analytical shape design sensitivities.

Recent work has demonstrated that the type of mesh perturbation may influence the accuracy of a semi-

analytical formulation [78]. Different types of mesh perturbation were also studied by Ref. [54], who sug-

gested the use of different values for boundary perturbations and interior perturbation.

Automatic differentiation is probably the most consistent means for obtaining derivatives because it

actually follows computational operations step-by-step. When accuracy rather than consistency is desired,
there are formulations that permit the use of automatic differentiation without corrupting the derivatives

due to the effects of changing mesh. These formulations are based on application of the discretization to

a reference domain of fixed shape instead of to the actual domain [79].

Finally, the chance of human errors either in the analytical derivation or computer implementation is

important. Sandu et al. [80] make the point that automatic differentiation is the most error free-procedure

for obtaining derivatives. However, this assumes that the automatic differentiation compiler is error free,

which may not yet be true for presently available software. In addition, manual intervention is often desir-

able or needed in automatic differentiation, leading to the more general name ‘‘computational differentia-
tion’’ [81].

3.2. Computational cost

The most commonly used global finite difference method employs forward or backward differences with-

out any attempt to accelerate the re-analysis of the perturbed structure. This approach requires the cost of

one analysis for each derivative. This cost is the reason for some of the other sensitivity calculation meth-

ods, but for a small to moderate number of design variables it is often quite affordable.
Methods that try to improve the accuracy of the finite difference approach, such as the use of higher

order difference formulae and the complex variable approach increase the computational cost. On the other

hand, methods that employ fast exact re-analysis, such as the Sherman–Morrison–Woodbury formulae

[30], the iterative approach [31] and Kirsch�s method [35], reduce that cost, but usually come at substantial

implementation effort penalty. In the best case, these methods result in tools for design sensitivity analysis

that are as efficient as discrete approaches.

In general, continuum derivatives and discrete derivatives are considered less expensive for the same level

of accuracy than finite difference derivatives. The improvement in efficiency may be due to several factors:
first, when the number of functions to be differentiated is much smaller than the number of design variables,

an adjoint formulation can lead to substantial efficiencies. This advantage is also realized for automatic dif-

ferentiation in which it is often called the reverse method [48]. Second, the sensitivity calculation does not

require re-factoring of the stiffness matrix, and this benefits both a direct and an adjoint formulation.

The issue of computational cost between continuum and discrete methods appears to be problem- and

implementation-dependent. Burczynski et al. [82] provide a comparison of cost and implementation issues

for the continuum and discrete methods for boundary element formulations. Unfortunately, their compar-

ison assumes that the continuum method is implemented with an adjoint approach while the discrete for-
mulation with the direct approach. So the comparison reflects the advantages of the adjoint over direct

approaches as much as those of the continuum over discrete methods. In general, if the continuum and dis-

crete methods are implemented within the finite element source programs, the difference in computational
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cost between the two methods would be negligible. If the continuum method is implemented out of the

finite element programs, then its efficiency may be less than that of the discrete method.

For shape sensitivity problems, boundary methods are available which reduce the computational effort

associated with the calculation of the pseudo loads. This holds true for continuum sensitivities [83,84] as

well as for discrete derivatives.
The computational cost of finite element based discrete design sensitivities can be reduced by introducing

mesh perturbations that affect only boundary elements. Then the calculation of the pseudo-load vector only

involves a limited number of elements [85]. However, in the optimization procedure, this method can yield

undesirable mesh geometry. Moreover, if the mesh perturbations and the design updates are inconsistent,

then we must expect a penalty in terms of inconsistency of the design sensitivities.

In boundary element approaches, Erman and Fenner [86] proposed a method that allows design points

to move in one direction, which is normal to the boundary surface. They report a factor of three savings in

computer time.
So far we have assumed that a direct type solver has been applied. When an iterative matrix solver is

employed, the cost of sensitivity calculation can be higher than the global finite difference derivatives be-

cause the former needs to construct pseudo-load vector in addition to solving the sensitivity matrix equa-

tion. If the iterative solver is augmented using preconditioning techniques, then computer time savings may

result from the fact that investments made for preconditioning can be reused.

The efficiency of computational differentiation appears to be poor for the direct method, and it appears

to vary widely depending on the computer used. Most of the results come from CFD applications. For

example, Carle et al. [87] compare the calculation of derivatives of the lift to drag ratio of a wing with re-
spect to 88 geometry design variables. The direct (forward) approach required computation times of 300–

700 (depending on the computer used) times the cost of function evaluations, compared to 89 for finite dif-

ferences. The adjoint (iterated reverse) method required computation times of only 7–21 times the cost of

function evaluation. For helicopter structural vibration problems, Walsh et al. [88] cite a ratio of about 1.75

between automatic differentiation and finite differences. Hu [89] similarly finds a ratio of 1.9 for CFD rotor

calculations. In addition to the increased CPU requirements, automatic differentiation typically requires

large increases in memory, especially the adjoint version.

3.3. Implementation options and effort

The global finite differences method is usually the easiest to implement, and it is probably the most

widely used method for obtaining derivatives. Obviously, it can be used entirely without access to the

source code. When it is used on the basis of a perturbation from a specific configuration, i.e. when the ana-

lysis of a perturbed design is not started from scratch but is initiated with the solution corresponding to the

nominal design, then limited access to the source code may be required.

On the other hand, as noted in Section 3.2, attempts to reduce the cost of the method can come at a
substantial implementation effort. The Sherman–Morrison–Woodbury formulae [30], for example, can

be implemented in many structural analysis programs without access to the source code, but with substan-

tial effort to create the right-hand sides from the perturbation in K.

Most structural analysis programs that offer structural sensitivity calculations use the discrete method

implemented with the semi-analytical approximation. This has the advantage that it requires very little pro-

gramming effort and almost no element-dependent sensitivity routines. The analytical discrete derivatives

have the advantage of introducing no approximations, but the associated implementation efforts can be tre-

mendous. An alternative is to carry out the differentiation with either symbolic computing software and to
generate the associate source code automatically or to use computational differentiation on a part of the

code. In this case, computational differentiation or symbolic computing is typically applied to the element

routines only. Some manual implementation is still needed, although substantial savings can be achieved.
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For a user with a ‘‘black box’’ program, without access to the source code, implementation the discrete

or continuum derivatives depends on the availability of access to the program data base, and on the pos-

sibility of adding user-defined subroutines. Poldneff et al. [53] provide a discussion on the pros and cons for

implementing design sensitivities either inside or outside a finite element program. Finite element software

often provides users with a programming language (e.g. DMAP in NASTRAN) that allows manipulation
of stiffness matrices, stresses and displacements without access to the source code. These can facilitate

implementation of the discrete or continuum sensitivities. Akgün et al. [90] describe the use of such a lan-

guage with the EAL software for implementing continuum derivatives.

Choi and Duan [41] contend that implementing the continuum approach may be less dependent on the

availability of the source code than the discrete approach. They implemented their continuum derivatives

outside the finite element program ABAQUS. Using the displacement data from the structural response,

the pseudo-load vector is constructed out of the finite element program. After that, the displacement sen-

sitivity was calculated using the restart capability of ABAQUS with the pseudo-load vector. A similar ap-
proach was used by Ref. [91] with the EAL program. The separation of the sensitivity program from the

finite element program may also provide more flexibility in implementing options. For example, Chang

et al. [92] implemented the sensitivity calculation module that can connect with such finite element pro-

grams as ANSYS, ABAQUS, and NASTRAN.

Computational differentiation holds the promise of producing high accuracy with little implementation

effort. However, the associated compilers have not matured yet to the point where this is generally true.

Therefore, depending on the details of the original code, the use of software such as ADIFOR or

ADOL-C can require almost no effort or a great deal of effort. In general the longer the program to be dif-
ferentiated, the higher the chance of implementation problems.
4. Transient analyses

4.1. Introduction

In the present section, design sensitivity analysis for linear transient response will be reviewed. In con-
trast to the preceding sections, this discussion will be mainly focused on global finite differences and discrete

derivatives. The reason is that the focus is on temporal discretization and not on spatial discretization. For

the latter the reader is referred back to the previous sections. In the temporal domain, the majority of the

papers starts from a time discretization, rather than a continuous time description, or addresses the use of

global finite differences.

When a time dependent load and/or boundary condition is applied to a structure, the transient response

of the structure is important. The transient dynamic problem of a structure is often called the initial-bound-

ary-value problem (IBVP). In such a case, Lagrange�s equation of motion becomes a second-order differen-
tial equation, as
MaðtÞ þ CvðtÞ þ KuðtÞ ¼ pðtÞ; ð20Þ
with the following initial conditions:
uð0Þ ¼ u0;

vð0Þ ¼ v0;

�
ð21Þ
where a(t) and v(t) are the acceleration and velocity vectors, respectively.

The IBVP in (20) and (21) must be satisfied for all time period t 2 [0,T]. In practice, however, (20) is

imposed in discrete time intervals, called temporal discretization. Using response results at the previous
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time, the response at the current time is calculated using the time integration method. Methods of integra-

tion for the equation of motion in a dynamic response analysis can be implicit and explicit.

Among many methods, the Newmark family of time integration methods will be discussed, in which a

predictor–corrector scheme is often employed. Let subscripts n and n + 1 represent the time steps tn and

tn+1, respectively. When dynamic responses at time tn are available, the velocity and displacement at time
tn+1 can be integrated by
vnþ1 ¼ vpr þ cDtanþ1;

unþ1 ¼ upr þ bDt2anþ1;

�
ð22Þ
where vpr = vn + (1 � c)Dtan is the velocity predictor and upr ¼ un þ Dtvn þ 1
2
� b

� �
Dt2an is the displacement

predictor. In (22), b and c are Newmark integration parameters.

Using (22), (20) at time tn+1 can be expressed in terms of the acceleration vector, as
Mþ cDtCþ bDt2K
� 	

anþ1 ¼ pnþ1 � Kupr � Cvpr; ð23Þ
which solves for an+1. After that, the velocity and acceleration vectors are corrected using (22).

The stability and accuracy of the time integration method for a linear system is thoroughly examined by

Ref. [93]. The unconditionally stable condition for the Newmark family integration method is given by

2b P c P 1
2
, and second-order accuracy is preserved only when c ¼ 1

2
, which does not show any numerical

damping effects. Choosing a different value for c (>1
2
Þ shows first-order accuracy with numerical damping

effects. When b 5 0, (22) is implicit because the displacement and velocity at tn+1 are functions of the accel-

eration at tn+1.

The explicit integration method corresponds to the case in which b = 0 and c ¼ 1
2
with diagonal matrices

of K and C. In conjunction with the lumped mass matrix, solution of (23) becomes very efficient because

(20) becomes a set of linear algebraic equations. However, this scheme is only conditionally stable so that

very small time-step sizes are required to achieve numerical stability. The time step size is governed by the

length of the smallest element and by the material properties. Mathematically, the time step size is deter-
mined so that the next time step can be within the domain of influence in the hyperbolic system. Another

explicit time integration method that is popular in applications is to use an intermediate time-step to inte-

grate the velocity vector, i.e., at tn+1/2.

For design sensitivity purposes, the following two approaches yield the same results: (i) differentiating

(20) and introducing temporal discretization, or (ii) differentiating (23). By assuming the time interval is

independent of design s, differentiation of (23) yields the following sensitivity equation:
Mþ cDtCþ bDt2K
� 	

a0nþ1 ¼ p0nþ1 � Ku0pr � K0unþ1 � Cv0pr � C0vnþ1 �M0anþ1: ð24Þ
Clearly, this set of equations must be accompanied with a proper set of starting conditions. After solving

for the acceleration derivative, the derivatives of displacement and velocity are updated in a manner similar

to (22). In addition to the derivatives of stiffness and mass matrices, (24) requires the derivative of displace-

ment at the previous time step, which makes the sensitivity equation history dependent. In the implicit

method, the factored coefficient matrix from the response analysis can be reused in solving the sensitivity

equation efficiently. In the explicit method, the sensitivity analysis becomes more expensive than the re-

sponse analysis because calculating the right-hand side of (24) is more computationally expensive than that

of (23) and the sensitivity analysis cannot take advantage of the factored coefficient matrix from the re-
sponse analysis.

It is well-known that the adjoint variable method for transient dynamic problems with an initial condi-

tion becomes a terminal value problem for which a terminal condition is given for an adjoint equation [94].

Thus, the adjoint equation cannot be solved simultaneously with the response analysis. This fact signifi-

cantly complicates calculations associated with transient dynamic design sensitivity analysis using the ad-

joint variable method.
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Linear structural dynamics is commonly solved using a reduced basis approach, with the reduced basis

consisting of vibration modes and additional base vectors, often called Ritz vectors. That is, we write the

displacement as
u ¼ Uq; ð25Þ
where U is a matrix composed of the base vectors. The equations of motion are then reduced to
MRaqðtÞ þ CRvqðtÞ þ KRq ¼ pR; ð26Þ
where
MR ¼ UTMU; CR ¼ UTCU; KR ¼ UTKU; pR ¼ UTp: ð27Þ

For most problems, sufficient accuracy can be obtained with a number of basis vectors in U, which is a

small fraction of the number of degrees of freedom in u. Thus, the modal reduction can greatly lower

the computational cost of the transient analysis. When the natural vibration modes are used as basis vectors

the reduced mass and stiffness matrices are diagonal, and the reduced damping matrix can also be diagonal

for proportional damping. This allows uncoupled solution of the reduced equations of motion. For this
case, there is also a correction to account for the neglected modes, called the mode acceleration method.

The differentiation of (26) can proceed as for the original equations, (20). However, there is the issue of

whether to differentiate the basis vectors or treat them as constant. Greene and Haftka [95] provide some

discussion on the accuracy and cost tradeoffs associated with this choice. They also provide a derivation

and results of numerical experiments with the mode acceleration method.

With the modal approach, it is possible that the order of the reduced system is smaller than both the

number of design variables and the number of desired response quantities. In that case, the Green Function

method [96,97] may be superior to both the direct and adjoint methods.

4.2. Accuracy and consistency

For transient analyses, using explicit integration, it may be necessary to apply relatively tight error tol-

erances in order to achieve sufficiently accurate design sensitivities [98].

When the time step is automatically determined based on the analysis response at the current time, the

time step also depends on the design variable [99]. The accuracy of the sensitivity results drops dramatically

when such a variable time step effect is not considered in sensitivity calculation. Cho and Choi [99] use a
fixed time step claiming that the accuracy of response analysis is assured when the time step is small enough.

In the implicit method, such a problem does not occur since the sensitivity equation is solved after the re-

sponse analysis is converged [100]. These problems for explicit integration improve the attractiveness of fi-

nite difference derivatives for explicit integration. Haftka and Malkus [101] provide estimates of the optimal

time step.

4.3. Computational cost

Special attention must be paid to transient analysis. For this type of analysis the cost for the derivative

calculation will greatly depend on how many of the (intermediate) results of the response evaluation can be

reused for economizing the sensitivity calculation. This turns out to be mainly determined by the choice of

the integration scheme used, i.e. whether an explicit or an implicit integration scheme will be used. Work

using explicit integration and direct differentiation is, e.g., reported in Refs. [53,102,103], whereas the ad-

joint method is described in Ref. [103]. Stillman [50] gives some estimates on this aspect in the context

of an explicit time integration scheme applied to problems including plasticity and contact. Stillman [50]

observes a factor two computer time savings for an analytical implementation as compared to global finite
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differences. These savings are mainly due to contact becoming easier for sensitivity analysis. Karaoglan and

Noor [104] show similar findings using implicit integration schemes. Moreover it is noted that the design

sensitivity analysis for this type of transient problems is more suited for parallel computing than the re-

sponse evaluation itself. This is due to the fact that the sensitivity analysis is more apt for scaling. The

observations of Ref. [50] are consistent with other observations. Cho and Choi [99] sketch an even more
pessimistic picture, namely for explicit time integration the computing time for the sensitivity analysis

may be even longer than the time required for the response analysis. This would basically imply that under

such circumstances there is no need to implement sensitivity analysis other than on the basis of global finite

differences. A similar conclusion was reached by Ref. [105] for sensitivities of transient thermal response. It

is also possible to parallelize the calculation of the nominal and perturbed solutions needed for the global

finite difference approach [101].

For implicit transient analyses using a direct method the picture is entirely different. For implicit anal-

yses a factorized tangent matrix can be reused for the sensitivity analysis. Moreover, whereas the response
function may need an incremental-iterative type of calculation, the sensitivities only call for an incremental

update. Typical examples can be found in Refs. [106,104,98,39,107]. For a car bumper design problem [39]

show that the sensitivity analysis for a single design variable requires only a few percent of the response

evaluation. The calculation of the required pseudo loads can be either carried out analytically [39] or by

means of semi-analytical approximations [107]. In many cases an adjoint formulation is more effective in

terms of computer time than a direct one. Recent progress in adjoint sensitivities for implicit time integra-

tion schemes can be found in Refs. [43,106]. A disadvantage of transient analyses is the required backward

integration [94]. As a consequence, significantly more memory storage is required, which may influence the
effectiveness of the adjoint method for transient analyses [43,106]. Note that for a direct method the sensi-

tivities are obtained simultaneously with the response evaluation, i.e. using a forward integration.

Besides the difficulty associated with the need to integrate from the final time to the initial time, the ad-

joint method suffers from another computational cost advantage for transient problems: we tend to have

more response quantities of interest than in static problems. For example, a displacement constraint for

static analysis can often be localized to a single point in the body where the displacement is maximal (like

the tip of a cantilever beam). However, in transient response we need to enforce the constraint over the

entire time span, and it may not be possible to predict ahead of time when the displacement is maximal.
Therefore, it is common to check the constraint at a grid of time points, which converts it to a large number

of constraints, thus handicapping the adjoint method. To alleviate this problem, it is possible to follow only

the peaks of the response, since the first derivative of a smooth maximum can be calculated by assuming

that the maximum is stationary [97].

4.4. Implementation options and effort

The implementation effort of transient dynamic problems may not be increased significantly compared
to static problems. When damping contribution is ignored, the only additional term is the inertia, which is

simpler than the stiffness. In fact, many finite element programs use a single code to handle static and dy-

namic problems together. The implementation effort related to the derivative of the stiffness matrix will be

the same as for static problems.

An implementation of a direct method for transient analysis largely depends on the approach followed.

As indicated by Ref. [50] an analytical implementation of the pseudo loads may be tedious in the sense that

most of the component source code needs modification. However, application of finite difference approx-

imations for the calculation of the pseudo-loads may alleviate the implementation efforts considerably
[98,107]. Implementation of an adjoint approach is significantly complicated due to the fact that the adjoint

equations cannot be solved simultaneously with the response evaluation but require a backward integration

[98]. Nguyen et al. [108] state that because a direct method is always carried out simultaneously with the
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response evaluation it is less flexible. Since a backward integration is required for an adjoint sensitivity

analysis, it is carried out after the response evaluation, which may give additional flexibility to the user.

Implementing a design sensitivity program (other than finite differences) outside of the response evalu-

ation program is impractical due to the significant amount of data required to be stored. In the implicit

method, the factorized coefficient matrices as well as response results (displacements, velocities, and accel-
erations) must be stored at each discrete time step. Thus, the availability of the source code can be a critical

factor in sensitivity analysis of transient problems.
5. Conclusions and discussion

Four different options for calculating sensitivity information in the context of accuracy and consistency,

computational cost, and implementation options and effort are summarized. The global finite difference
method is the most convenient in implementation, but high cost and difficulty in finding appropriate per-

turbation size are disadvantages. The continuum method has advantages in theoretical soundness, low cost,

consistency, and possible different meshes for response and sensitivity. However, it requires more mathe-

matical understanding. The discrete method has advantages in low cost and consistency, but has disadvan-

tages in the requirement of the source code and dependence on perturbation size for the semi-analytical

method. The latter complication may become extremely pronounced for a ‘‘standard’’ semi-analytical

implementation when applied to shape design sensitivities. However, this complication can be tackled by

using the ‘‘refined’’ or ‘‘exact’’ semi-analytical methods. The computational derivative is the most consis-
tent among four methods. However, computational cost is usually higher than other methods and practical

for small sized programs. Application of computational differentiation to parts of the source code seems a

very promising route. It may be a very good compromise between computational efficiency and implemen-

tation effort, since it benefits from a partial analytical formulation, whereas the tedious implementation is

left for the automated differentiation process. Moreover, the differentiation process does not involve any

approximation, as is the case for the semi-analytical variant.

When human time is of the essence and there is little information about the analysis code, then global

finite difference is the method of choice. When the analysis code is small, the sensitivity analysis is going
to be used for a long time in the future, but computational costs are not overwhelming, then automatic

differentiation may be the way to go. When there is a black box code, with no access to stiffness matrices,

global finite differences appear to suffer from accuracy, there are many design variables, continuum deriv-

atives may be called for. Finally, for general software developers, the discrete method with semi-analyt-

ical method appears to be the method of choice. If accuracy is problematic, then the use of improved

semi-analytical methods can be considered or analytical methods. The latter may be labor intensive

and the use of symbolic differentiation or automatic differentiation of parts of the software is highly

recommended.
In transient problems, an elaborate sensitivity calculation only benefits from the implicit time integration

method. In the case of the explicit method, the global finite difference method is generally the most efficient

option. In some situations, however, it is almost impossible to find an appropriate perturbation size for the

finite difference method. In such a case, the usage of other sensitivity calculation methods is justified.
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Appendix A. Semi-analytical method

A.1. Introduction

The term ‘‘semi-analytical’’ has been used to describe different procedures in different disciplines. In the
area of structural sensitivity calculation, the term semi-analytical design sensitivities is generally connected

to analytical differentiation of the discrete governing equations, whereas the derivatives of their coefficients

are calculated on the basis of finite differences. Often this implies that finite differences are applied at the

element level, whereas the analytical differentiation applies to system level, see, e.g., Ref. [1] and the refer-

ences therein. A description for transient analyses is provided by Ref. [107]. For limit points the reader is

referred to Refs. [109,110,36]. Linear eigenvalue problems are addressed in Refs. [97,111]. For multidisci-

plinary examples the reader is referred to Ref. [112].

Analytical calculation of the pseudo-load vector p in (15) is fairly simple for certain design variables. A
typical example is the thickness of a homogeneous plate or shell. Here the calculation of the pseudo-load

vector can easily be realized analytically, e.g., using commercial finite element software and user-defined

subroutines, see Ref. [113]. Treatment of more complex design variables, for example, shape design vari-

ables, becomes more involved. In a semi-analytical formulation the enormous effort required to implement

analytical derivatives of f and K is circumvented by using finite differences approximations. At this stage,

the differences between analytical and semi-analytical discrete derivatives become evident. The perturbed

system stiffness matrix can be created and the derivatives approximated by subtracting the perturbed

and original matrix and dividing by the perturbation step size. However, often it is more efficient to assem-
ble the pseudo-load vector (p) from individual elements and nodal point contributions. This is the case

when the design variable affects only a small portion of the stiffness matrix, or when a stiffness matrix re-

quires significant memory allocation. Normally, no new routines are required for this assembly process as

such procedures would be available in an existing finite element code.

A.2. Accuracy and consistency

Provided sufficiently small perturbations are used and round-off errors remain sufficiently small, semi-
analytical derivatives are consistent. Although good results may be found using semi-analytical derivatives

[114,43], severe accuracy problems, i.e. in the sense of inconsistencies, have been observed for shape design

variables as well as for stiffness design variables in nearly incompressible materials [72]. These accuracy

problems may negate all advantages of a semi-analytical formulation. To be more precise, the resulting

accuracy may become extremely sensitive to the selection of the perturbation parameter used in finite dif-

ference approximations at element level. In those cases, the range of applicable design perturbations may

become very small or non-existent. These accuracy problems have been observed by Ref. [73], and studied

in Refs. [72,115–118], among others. It has been found that complications are related to rigid body rota-
tions of individual finite elements [73,119,120].

To enlarge the range of applicable design perturbations, the use of higher-order finite difference schemes

has been proposed [72,115,118]. Somewhat similar is the simultaneous use of both forward and backward

finite difference schemes [115] or the use of a second-order correction [121]. Typical examples of higher-

order finite differences can be found in Refs. [53,98]. Higher-order finite difference schemes are easy to

implement in an existing semi-analytical code and alleviate the accuracy problem. However, there are

two drawbacks. Firstly, more design perturbations are called for, which implies degradation of computa-

tional efficiency. This is caused by additional effort for both mesh regeneration and calculation of the
corresponding contribution to the pseudo-load vector. Secondly, using a simple beam example

[73,72,116,118,122], it can be shown that the accuracy problem is not solved rigorously by means of a high-

er-order finite difference scheme. It does improve the accuracy substantially.
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Inspired by the fact that in shape sensitivity severe inaccuracies are related to rigid body modes, Mlejnek

[74] proposed a modified finite difference scheme that conserves the consistency conditions for rigid body

modes and their design sensitivities. Implementation of the method is easy, provided that the finite element

code at hand is based on the so-called ‘‘natural approach’’ [123]. Its implementation in a more general finite

element code becomes more involved. Computational efficiency of the method is nearly as good as a stan-
dard formulation, as only relatively simple additional operations at element level are to be carried out. The

method has only been described for linear static analysis.

Based on specific features of the finite element matrices, Olhoff et al. [75] constructed the so-called ‘‘ex-

act’’ semi-analytical formulation. The method leads to exact derivatives. Application to linear static anal-

ysis has been addressed by Refs. [75,124]. Eigenvalue sensitivities have been addressed by Ref. [111]. Like

Mlejnek�s formulation, the ‘‘exact’’ formulation also affects element level only. However, information on

the structure of the elements has to be retrieved, which might be a disadvantage and causes the ‘‘exact’’

formulation to become somewhat more element-dependent. The big advantage of the ‘‘exact’’ formulation
is that it eliminates the accuracy problem rigorously. To the best of the authors� knowledge, it has only been
demonstrated for linear static analysis and eigenvalue problems. A disadvantage seems to be that it may be

somewhat difficult to implement for complex elements. For this reason Hinton et al. [124] have used a sim-

plification of the ‘‘exact’’ method for the Huang-Hinton shell element.

A refined semi-analytical formulation based on exact derivatives of rigid body modes corresponding to

individual elements has been. For linear static analysis a description is given in Ref. [76], whereas linearized

buckling is addressed in Ref. [125] and geometrically nonlinear and limit points are dealt with in Ref. [77].

There seems to be no principal reason that would prevent application of the same idea to fully nonlinear
problems. Two key concepts are explored. First, in the case of linear static analysis and eigenvalue prob-

lems, the nodal degrees of freedom are decomposed at element level into a deformational component and

rigid body modes. Second, the pseudo-load vectors are decomposed at element level into self-equilibrating

components and non-self-equilibrating ones. Implementation of this refined semi-analytical formulation re-

quires specification of the rigid body modes and their design sensitivities for the individual elements. These

rigid body modes can be specified as soon as knowledge on the nodal degrees of freedom is available, i.e. no

details on the element formulation are required. As a consequence, the elements can be entirely looked upon

as black boxes. The investment for implementation is limited and can be carried out to a large extent gener-
ically. The only element-dependent component is the definition of the rigid body modes, which relate to the

nodal degrees of freedom used. The refined semi-analytical formulation conserves the computational effi-

ciency of a semi-analytical formulation and eliminates accuracy problems rigorously. Like Mlejnek�s
method and the ‘‘exact’’ formulation, calculation of the pseudo-load vector becomes a little more expensive.

In all cases it still scales linearly with the number of elements subject to perturbation. The additional com-

putational effort is comparable with Mlejnek�s formulation and the ‘‘exact’’ formulation. Finally it is noted

that the refined formulation can be combined with any (higher-order) finite difference scheme. Although not

supported yet by rigorous testing, it seems that the differentiation of the rigid body modes may be carried
out by finite differences.

The refined semi-analytical concept has also been studied in the context of second-order semi-analytical

design sensitivities in Ref. [126].

Parente and Vaz [127] proposed a refined semi-analytical method that can accurately evaluate the con-

tributions from the rigid-body motions. The derivative of the internal force term is decomposed into com-

ponents that belong to the space that is spanned by rigid-body modes and those that belong to its

orthogonal subspace. While the latter can be accurately evaluated using finite difference method, the former

causes problems when rigid-body rotations are present. From a free-body equilibrium condition, the former
is represented by the derivatives of the rigid-body modes, which can be accurately evaluated.

In the context of higher-order semi-analytical derivatives, the work of Bernard et al. [128] is relevant.

They calculate higher-order derivatives, i.e. third order and higher, for mass- and stiffness matrices using
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interpolations. There seems, however, no argument to support that this interpolation based approach does

not lead to inaccuracy problems similar to those observed for standard semi-analytical approaches.

Semi-analytical derivatives for hybrid finite elements have been discussed by Ref. [129]. They observe

that the semi-analytical derivatives perform better for mixed elements as compared to standard displace-

ment based elements. In our opinion this observation should be attributed to the fact that element defects
have been removed by the hybrid formulation, rather than a rigorous fundamental improvement of the

semi-analytical formulation. As a matter of fact, the simple beam example which has been used in many

publications to demonstrate and study the defects in semi-analytical derivatives could be formulated using

a hybrid formulation.

A.3. Computational cost

Assuming that mesh perturbations are generated efficiently, the semi-analytical formulation is efficient in
terms of computing costs. The effort for calculating the pseudo-load vector is proportional to the number of

elements subject to perturbation and is therefore in the worst case comparable with the assembly of the K-

matrix. The higher-order finite difference schemes used to improve accuracy affect the computational cost.

Additional costs for the ‘‘exact’’ or the ‘‘refined’’ formulations are minor and scale linearly with the number

of elements.

There have also been attempts to improve mesh perturbations such that the severe inaccuracies become

milder. Unfortunately, these methods may have a large influence on the computational efficiency of the

mesh adaptation algorithms, moreover their effect on accuracy is not rigorous [120,130].
Considerations on how the resulting sets of equations are to be solved do not differ from those discussed

previously for discrete sensitivities in general.

A.4. Implementation options and effort

Implementation of the semi-analytical method is generally simple and straightforward. First of all, a

method for the generation of a perturbed discretized model must be implemented. A point of attention

might be that local perturbations may become too large or too small in shape optimization. This particu-
larly happens when a model includes local mesh refinements. This complication can be avoided if the per-

turbations are selected for individual elements or groups of elements. Unfortunately, implementation of

such a more advanced perturbation scheme becomes involved. Perturbed meshes should be generated in

a cost effective way. Remeshing from scratch is attractive from the point of implementation, however, it

is generally too expensive computationally. Another complication is that mesh topology might be affected,

which would obstruct use of the finite difference scheme. As a consequence, modifications in the mesh gen-

erator, especially if curved surfaces are being used, will be generally unavoidable.

The next step is implementation of the finite difference scheme to calculate the pseudo-load vector within
the finite element code at hand. Here no knowledge on the specific structure of f and K is required, i.e. there

is no need for details on the specific element formulation used. Hence, available routines for elements and

nodes can be dealt with as black boxes. Provided that routines for calculating element and nodal contribu-

tions to K and f are available, calculation of the pseudo-load vector can be set up generically. To determine

the design sensitivities of u, a set of equations similar to the one solved for calculation of u must be solved.

Thus, the same solvers as used for a finite element analysis can be used for calculating design sensitivities.

Coding of derivatives of generalized stress and deformations, can again be done generically. The coding of

the derivatives of stress and strain components at the integration points is generally more involved and calls
for information on the specific finite element definition. The same holds true for stress and strain criteria.

Note, that these observations also apply to a certain extent for analytical formulations. In conclusion, lim-

ited access to the source code is required and even preferred, see Ref. [53]. Generally, it will be relatively
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easy to implement semi-analytical design sensitivities, using, for example, user-defined subroutines. The re-

quired modifications in the mesh generator at hand will be more tedious.

Particularly within a linear setting, different options are available for implementing semi-analytical deriv-

atives. To be more precise, the way the pseudo-load vector is calculated offers mainly two alternatives (see

Ref. [131]). Which of these alternatives is most efficient depends on the nature of the design velocity field.
Appendix B. Indices to references included

B.1. Entries based on type of derivatives

Global finite differences: [33,34,132–134].

Iterative global finite differences: [31,135].
Analytical discrete derivatives: [10,11,49–51,69,102,104,107,108,114,132,133,136].

Semi-analytical discrete derivatives: [33,34,54,72–76,98,106,111,112,115–119,121,122,124–127,129,131,

135,137–142].

Computational derivatives: [48,57,58,79,81,143–147].

Continuum derivatives: [12–14,17,37,38,40,41,44,45,69,82,83,86,148–156].

Higher-order derivatives: [13,40,57,98,126,128,136,148,150,157–159].

B.2. Entries based on type of modeling and analysis

Adaptive modeling: [160–162].

Aerodynamics: [4,56,83,146].

Aeroelastic: [9,11,19,112].

Boundary elements: [37,38,40,42,82,86,133,135].

Contact: [39,50,102,104,163–167].

Convection: [141,153,154,162].

Coupled: [9,58,138,140].
Dynamics: [39,43,50,99,100,104,106,107,168–172].

Eigenvalue: [31,77,111,125,128,158,159,173–201].

Fluids: [21,66,68,71,87,89,141,145,153,154,156,160,161].

Fluid-structure interaction: [17,140].

Fracture: [12–14].

Hyperelasticity: [41,149,163,166,201].

Kinematics: [152].

Limit points: [36,51,203–208].
Linear statics: [31,33,34,37,38,42,44,45,49,54,57,69,72–76,86,114–117,119,121,122,124,126,129,131,133,

135,143,148,150].

Meshfree methods: [39,100,163–167,202,209–213].

Multi-body systems: [81,107].

Path-independent statics: [36,51,77,127,137,203,214].

Plasticity: [39,50,99,100,106,139,151,155,164,167,209,211,215,216].

Post-buckling: [136,217,218].

Softening: [214].
Vibration: [17,219].

Viscoelasticity: [98].
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B.3. Methods for design velocity field calculation

Finite difference method: [85,220–222].

Iso-parametric mapping method: [223–230].

Boundary displacement method: [227–229,231–234].
Hybrid method: [235,236].

Physical approach: [91,237].

B.4. Related review papers

Refs. [1–5,238,239].
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[97] R.T. Haftka, Z. Gürdal, Elements of Structural Optimization, second revised edition., Kluwer Academic Publishers, 1990.

[98] M.J. Poldneff, J.S. Arora, Design sensitivity analysis in dynamic thermoviscoelasticity with implicit integration, Int. J. Solid

Struct. 33 (4) (1996) 577–594.

[99] S. Cho, K.K. Choi, Design sensitivity analysis and optimization of non-linear transient dynamics. Part I—Sizing design, Int. J.

Numer. Methods Engrg. 48 (2000) 351–373.

[100] N.H. Kim, K.K. Choi, Design sensitivity analysis and optimization of nonlinear transient dynamics, Mech. Struct. Mach. 29 (3)

(2001) 351–371.

[101] R.T. Haftka, D.S. Malkus, Calculation of sensitivity derivatives in thermal problems by finite differences, Int. J. Numer.

Methods Engrg. 17 (1981) 1811–1821.

[102] G.D. Pollock, A.K. Noor, Sensitivity analysis of the contact/impact response of composite structures, Comput. Struct. 61 (2)

(1996) 251–269.

[103] E.J. Haug, N.K. Mani, P. Krishnaswami, in: E.J. Haug (Ed.), Design Sensitivity Analysis and Optimization of Dynamically

Driven Systems, Springer, Berlin, 1984, pp. 555–636.

[104] L. Karaoǧlan, A.K. Noor, Dynamic sensitivity analysis of frictional contact/impact response of axisymmetric composite

structures, Comput. Methods Appl. Mech. Engrg. 128 (1995) 169–190.

[105] R.T. Haftka, Techniques for thermal sensitivity analysis, Int. J. Numer. Methods Engrg. 17 (1981) 71–80.

[106] P. Michaleris, D.A. Tortorelli, C.A. Vidal, Tangent operators and design sensitivity formulations for transient non-linear

coupled problems with applications to elastoplasticity, Int. J. Numer. Methods Engrg. 37 (1994) 2471–2499.

[107] S. Chen, J.M. Hansen, D.A. Tortorelli, Unconditionally energy stable implicit time integration: application to multibody system

analysis and design, Int. J. Numer. Methods Engrg. 48 (2000) 791–822.

[108] T.V. Nguyen, A. Devgan, O.J. Nastov, D.W. Winston, Transient sensitivity computation in controlled explicit piecewise linear

simulation, IEEE Trans. Comp.-Aided Des. Integr. Circ. Syst. 19 (1) (2000) 98–110.

[109] C.C. Wu, J.S. Arora, Design sensitivity analysis and optimization of nonlinear structural response using incremental procedure,

AIAA J. 25 (1987) 1118–1125.

[110] C.C. Wu, J.S. Arora, Design sensitivity analysis of non-linear buckling load, Comput. Mech. 3 (1988) 129–140.



F. van Keulen et al. / Comput. Methods Appl. Mech. Engrg. 194 (2005) 3213–3243 3239
[111] E. Lund, N. Olhoff, Shape design sensitivity analysis of eigenvalues using ‘‘exact’’ numerical differentiation of finite element

matrices, Struct. Optim. 8 (1994) 52–59.

[112] A.M. Spence, R. Celi, Efficient sensitivity analysis for rotary-wing aeromechanical problems, AIAA J. 32 (12) (1994) 2337–2344.

[113] W.H. Zhang, M. Domaszewski, Efficient sensitivity analysis and optimization of shell structures by the ABAQUS code, Struct.

Optim. 18 (1999) 173–182.

[114] J.W. Langelaan, E. Livne, Analytic sensitivities and design oriented structural analysis for airplane fuselage shape synthesis,

Comput. Struct. 62 (3) (1997) 505–519.

[115] G. Cheng, Y. Gu, Y. Zhou, Accuracy of semi-analytic sensitivity analysis, Finite Element Anal. Des. 6 (1989) 113–128.

[116] P. Pedersen, G. Cheng, J. Rasmussen, On accuracy problems for semi-analytical sensitivity analyses, Mech. Struct. Mach. 17

(1989) 373–384.

[117] P. Fenyes, R.V. Lust, Error analysis of semianalytic displacement derivatives for shape and sizing variables, AIAA J. 29 (1991)

271–279.

[118] N. Olhoff, J. Rasmussen, Study of inaccuracy in semi-analytical sensitivity analysis—a model problem, Struct. Optim. 3 (1991)

203–213.

[119] G. Cheng, N. Olhoff, Rigid body motion test against error in semi-analytical sensitivity analysis, Comput. Struct. 46 (1993) 515–

527.

[120] F. van Keulen, K. Vervenne, H. de Boer, Accuracy improvement of semi-analytical design sensitivities—an overview of recent

developments, in: O.M. Querin (Ed.), Proceedings of 3rd ASMO-UK/ISSMO Conference Harrogate, North Yorkshire, 9–10

July 2001, Engineering Design Optimization, Product and Process Improvement, University Press Leeds, 2001, pp. 227–

236.

[121] G. Cheng, Y. Gu, X. Wang, Improvement of semi-analytical analysis and mcads, in: H.A. Eschenhauer, C. Mattheck, N. Olhoff

(Eds.), Engineering Optimization in Design Processes, Springer, Berlin, Heidelberg, New York, 1991, pp. 211–223.

[122] H. de Boer, F. van Keulen, Error analysis of refined semi-analytical design sensitivities, Struct. Optim. 14 (1997) 242–247.

[123] J. Argyris, H.P. Mlejnek, Die Methode der Finiten Elemente, vol. I: Verschiebungsmethode in der Statik, Braunschweig, Vieweg,

1986 (in German).

[124] E. Hinton, J. Sienz, S.M.B. Afonso, Experiences with Olhoff�s ‘‘exact’’ semi-analytical sensitivity algorithm, in: N. Olhoff,

G.I.N. Rozvany (Eds.), WCSMO-1, First World Congress of Structural and Multidisciplinary Optimization, Pergamon, 1995,

pp. 41–46.

[125] F. van Keulen, H. de Boer, Refined semi-analytical design sensitivities for buckling, in: 7th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis and Optimization, volume Part 1, AIAA 98-4761, 2–4 September 1998, pp 420–429.

[126] H. de Boer, F. van Keulen, Refined second order semi-analytical design sensitivities, in: Proceedings of the Third World Congress

of Structural and Multidisciplinary Optimization, 17–21 May 1999, Buffalo, New York, CD-ROM (Paper 12-SAM-4).

[127] E. Parente, L.E. Vaz, Improvement of semi-analytical design sensitivities of nonlinear structures using equilibrium relations, Int.

J. Numer. Methods Engrg. 50 (9) (2001) 2127–2142.

[128] J.E. Bernard, S.K. Kwon, J.A. Wilson, Differentiation of mass and stiffness matrices for high order sensitivity calculations in

finite element-based equilibrium problems, Trans. ASME 115 (1993) 829–832.

[129] P. Bakshi, P.C. Pandey, Semi-analytic sensitivities using hybrid finite elements, Comput. Struct. 77 (2000) 201–213.

[130] K. Vervenne, F. van Keulen, Accuracy improvement of semi-analytical design sensitivities by Laplacian smoothing, in: 42nd

Structures, Structural Dynamics and Materials Conference and Exhibit, AIAA 2001-1497, A01-25415, Seattle, WA, 16–19 April

2001, AIAA.

[131] W.-H. Zhang, P. Beckers, C. Fleury, A unified parametric design approach to structural shape optimization, Int. J. Numer.

Methods Engrg. 38 (1995) 2283–2292.

[132] C.H. Tseng, J.S. Arora, Numerical verification of design sensitivity analysis, AIAA J. 27 (1) (1989) 117–119.

[133] K. Tai, R.T. Fenner, Numerical study of some approaches to shape design sensitivity analysis using boundary elements, J. Strain

Anal. 31 (5) (1996) 361–369.

[134] J. Borggaard, J. Burns, Asymptotically consistent gradients in optimal design, in: Multidisciplinary Design Optimization, State

of the Art, Proceedings of the ICASE/NASA Langley Workshop on Multidisciplinary Design Optimization, Hampton, Virginia,

13–16 March 1995, pp. 303–314.

[135] J.H. Kane, K.G. Prasad, Boundary formulations for sensitivity analysis without matrix derivatives, AIAA J. 31 (9) (1993) 1731–

1734.

[136] L.A. Godoy, E.O. Taroco, Design sensitivity of post-buckling states including material constraints, Comput. Methods Appl.

Mech. Engrg. 188 (2000) 665–679.

[137] H. de Boer, F. van Keulen, Improved semi-analytic design sensitivities for a linear and finite rotation shell element, in: W.
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[153] É. Turgeon, D. Pelletier, J. Borggaard, A general continuous sensitivity equation formulation for complex flows, in: 8th AIAA/

USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2000-4732, 6–8 September 2000,

Long Beach, CA.
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