
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Prognostics 101: A tutorial for particle filter-based prognostics
algorithm using Matlab

Dawn An a,b,1, Joo-Ho Choi a,2, Nam Ho Kim b,n

a Department of Aerospace & Mechanical Engineering, Korea Aerospace University, 100 Hanggongdae-gil, Hwajeon-dong, Deokyang-gu, Goyang-si,

Gyeonggi-do 412-791, Republic of Korea
b Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA

a r t i c l e i n f o

Article history:

Received 19 September 2012

Received in revised form

17 January 2013

Accepted 24 February 2013
Available online 14 March 2013

Keywords:

Battery degradation

Crack growth

Matlab code

Model-based prognostics

Particle filter

Remaining useful life

a b s t r a c t

This paper presents a Matlab-based tutorial for model-based prognostics, which combines a physical model

with observed data to identify model parameters, from which the remaining useful life (RUL) can be

predicted. Among many model-based prognostics algorithms, the particle filter is used in this tutorial for

parameter estimation of damage or a degradation model. The tutorial is presented using a Matlab script with

62 lines, including detailed explanations. As examples, a battery degradation model and a crack growth

model are used to explain the updating process of model parameters, damage progression, and RUL

prediction. In order to illustrate the results, the RUL at an arbitrary cycle are predicted in the form of

distribution along with the median and 90% prediction interval. This tutorial will be helpful for the beginners

in prognostics to understand and use the prognostics method, and we hope it provides a standard of particle

filter based prognostics.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Although many prognostics methods have been presented in
literature [1–6], it is still difficult for engineers to use them for their
applications. The objective of this paper is to demonstrate how to use
a prognostics method using a simple Matlab code as short as 62 lines.

In general, prognostics methods can be categorized into data-
driven, model-based, and hybrid approaches [7]. The data-driven
method does not use any particular physical model and largely
depends on measured data. On the other hand, the model-based
approach assumes that a physical model describing the behavior of
damage or degradation is available and combines the model with
measured data to identify model parameters. Hybrid approaches
combine the above-mentioned two methods to improve the predic-
tion performance.

Among the abovementioned prognostics methods, the model-
based approach is considered since if there exist physical model,
it is easy to establish standard algorithm logically compared to
other approaches. In this approach, the model parameters which
have an effect on model behavior are often unknown and need to
be identified as a part of the prognostic process. There are several
methods to estimate model parameters, such as the Kalman filter
(KF) that gives an exact PDF in analytical form in the case of a

linear model with a Gaussian noise [8]; Particle filter (PF), in
which the posterior distribution of model parameters is expressed
as a number of particles and their weights [9–11]; and Bayesian
method (BM) that is to estimate the model parameters using
measurement data, which are incorporated into a single posterior
distribution [12–14]. In this paper, PF is employed because it can
be used for a nonlinear model with non-Gaussian noise and is the
most widely used in the field of prognostics.

The Matlab code is composed of 62 lines including detailed
explanations, which is further divided into three parts: (1) pro-
blem definition; (2) prognostics using PF; and (3) post-processing.
Users are required to modify the first part according to their
application. For demonstration purposes, examples of battery
degradation and crack growth are presented.

The rest sections are organized as follows: in Section 2, the
overall process of model-based prognostics is explained with the
Matlab code; in Section 3, the usage is explained with a battery
degradation example; and in Section 4, various cases are described
with a crack growth example, followed by conclusions in Section 5.

2. Model-based prognostics

The process of model-based prognostics is illustrated in Fig. 1,
in which the degradation model is expressed as a function of usage
conditions U, elapsed cycle or time t, and model parameters h. The
usage conditions and time are given, while the model parameters
characterizing the damage behavior should be identified. Then, the
remaining useful life (RUL) which represents the remaining time to
failure is calculated based on the estimated model parameters.
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The model parameters are estimated using an algorithm such as
PF by integrating the damage model with the damage data that
represent the system’s health state at the time the data are
obtained. Since damage cannot be directly measured in most cases,
a damage quantification process is required from sensor measure-
ment data, which is called structural health monitoring (SHM). This
tutorial assumes that data are available in terms of the level of
damage at various times.

2.1. Model definition: battery degradation

In the following explanation, ‘line’ or ‘lines’ in a parenthesis
indicates the line number of the code in Appendix. In the degradation
of a battery (line 2), it is well known that the capacity of a secondary
cell such as a Lithium-ion battery degrades over cycles in use, and the
failure threshold is defined when the capacity fades by 30% of the
rated value (line 7). A simple form of the empirical degradation model
is expressed by an exponential growth model as follows [15]:

l¼ aexpð�btÞ ð1Þ

where a and b are model parameters, t is time or cycles, and l is the
internal battery performance which is stated as either the electrolyte
resistance RE or the transfer resistance RCT. There is a relation that C/1
capacity, i.e., capacity at nominally rated current of 1 A is inversely
proportional to the sum of the two resistances REþRCT [15]. There-
fore, even though the internal battery performance is normally
observed instead of capacity, C/1 capacity is considered as l, and
observed data are assumed to be given as a form of C/1 capacity for
the purpose of demonstrating the prognostics algorithm.

The C/1 capacity data (lines 5–6) measured at every 5 weeks
(lines 3–4) are given in Table 1. The data are generated by:
(a) assuming that the true model parameters atrue ¼ 1 and
btrue ¼ 0:012; (b) calculating the true C/1 capacity according to Eq.
(1) for the given time steps; and (c) adding Gaussian noise
e�Nð0,0:052

Þ to the true C/1 capacity data. The true values of
parameters are only used to generate observed data. Then, the goal of
prognosis is to estimate b using the data (lines 16–39).3

2.2. Estimation algorithm: particle filter (PF)

PF uses a statistical method called Bayesian inference, in which
observations are used to estimate and update unknown para-
meters as a form of the probability density function (PDF).
Bayesian inference is based on the following Bayes0 theorem [16]:

pðH9zÞpLðz9HÞpðHÞ ð2Þ

where H is a vector of unknown parameters, z is a vector of
observed data, Lðz9HÞ is the likelihood or the PDF value of z

conditional on the given H, pðHÞ is the prior PDF of H, and pðH9zÞ
is the posterior PDF of H conditional on z.

In PF, the Bayesian update is processed in a sequential way with
particles (or samples) having probability information of unknown
parameters; When a new measurement is available, the posterior at
the previous step is used as the prior information at the current step,
and the parameters are updated by multiplying it with the like-
lihood. Therefore, PF is also known as the sequential Monte Carlo
method [9,10]. The general process of PF is based on the state
transition function f and the measurement function h [10,11]:

xk ¼ f ðxk�1,hk,nkÞ ð3Þ

zk ¼ hðxk,okÞ ð4Þ

where k is the time step index, xk is the damage state, hk is a vector
of model parameters, zk is measurement data. nk and ok are,
respectively, process and measurement noise. In the prognostics
area, the state transition function f is referred to as a damage model.

According to the damage model in Eq. (3), the battery degra-
dation model in Eq. (1) can be rewritten in the following form
(line 29):

xk ¼ expð�bkDtÞxk�1 ð5Þ

with tk ¼ tk�1þDt. In this case, process noise nk is ignored because it
can be handled through the uncertainty in model parameters. For the
measurement function, it is assumed that zk is the same as C/1
capacity including measurement noise ok. Gaussian noise,
ok �Nð0,sÞ, is used with unknown standard deviation s. Therefore,
the unknown parameters become H¼ ½x,hð ¼ ½b�Þ,s�T , including the
damage state xk which is obtained based on the model parameter bk

(see Eq. (5)) (line 8).
The process of PF is based on the Bayes’ theorem illustrated in

Fig. 2 with one parameter estimation. At the first time step, i.e., k¼ 1,
n samples of the parameters are drawn from the initial (prior)
distribution (lines 9, 16–21). Then, the following three steps are
employed. In the first prediction step (lines 25–30), the posterior
distributions of the model parameters at the previous (k�1th) step
are used for the prior at the current (kth) step in the form of samples
(lines 26–27). Also, the damage state at the current time is
transmitted from the samples of the damage model at the previous
step based on the model parameters (lines 28–29). The samples in
this step correspond to pðHkÞ in Fig. 2. Next is the updating step
(lines 31–33), which is related to the likelihood of measurement data
Lðzk9HkÞ in Fig. 2. Assuming ok is normally distributed, the likelihood
of the measurement can be expressed as (line 33):

Lðzk9x
i
k,bi

k,si
kÞ ¼

1ffiffiffiffiffiffi
2p
p

si
k

exp �
1

2

zk�xi
kðb

i
kÞ

si
k

 !2
2
4

3
5, i¼ 1,. . .,n ð6Þ

Fig. 1. Illustration of the model-based prognostics process.

3 For simplicity, it is assumed that a¼1 is given.
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In Eq. (6), the PDF value of zk at the given ith samples of the unknown
parameters H¼ x,b,s corresponds to the weight of the ith samples;
the weight is proportional to the magnitude of the PDF value, which
is expressed as the length of the vertical bar in Fig. 2. Finally, the
samples with high or low weight are duplicated or eliminated,
respectively, at the resampling step (lines 34–39). Among several
methods, the inverse CDF method [10] is used, which is illustrated in
Fig. 3. Firstly, a CDF is constructed from the likelihood function in Eq.
(6) (line 35), which is illustrated as solid curve in Fig. 3. Next, a
random value is generated from Uð0,1Þ (line 37), which becomes a
CDF value (e.g., 0.45 in Fig. 3). Finally, a sample of the parameter
having the CDF value is found (line 38), which is marked by a
rectangle in Fig. 3. By repeating this process n times, n samples are
obtained (line 36). Note that since samples exist in a discrete form,
the sample having the closest value to the CDF value is selected.
Consequently, the resampled results become the posterior distribu-
tion pðHk9z1:kÞ in Fig. 2, which corresponds to the posterior distribu-
tion at the current step (line 38), and is also used as the prior
distribution at the next (kþ1th) step (lines 25–30).

2.3. Prognosis: predicting the damage state and RUL

Once the estimated parameter is obtained (lines 25–39, line 43),
the future damage state and RUL can be predicted by progressing the
damage state until it reaches the threshold as shown in Fig. 4 (lines

24–30, 40–47). In Fig. 4, the two dashed curves and the PDF shape,
respectively, represent the prediction interval of the damage state and
the distribution of time when the damage state reaches the threshold.
The distribution of RUL can be obtained by subtracting this PDF from
the threshold. In the prognosis step, only the damage state is
transmitted (lines 25–30) without updating model parameters (lines
40–41). At this time, the measurement error with the updated
standard deviation is added to the damage state (lines 44–46).

3. Matlab implementation

In this section, the usage of the 62-line Matlab code is explained.
The code is divided into three parts: (1) problem definition for user-
specific applications, (2) prognostics using PF, and (3) post-
processing for displaying results. The block diagram of the code is
illustrated in Fig. 5. Only the problem definition part needs to be
modified for different applications, which are further divided into
two sections: parameter definition and model definition. In the
parameter definition, all known parameters as well as the initial
estimate of unknown parameters are defined, such as the name of
parameters to be estimated, the probability parameters of initial
distributions of the unknown parameters and measured data, etc.
(lines 1–14). Next, the damage equation or state transition function
is defined in model definition (line 29). Once these two are
completed, users can obtain the RUL distribution at the current time
and its percentiles, median and 90% prediction interval. Detailed
explanations are given in the following subsections with an example
of battery degradation, in which italicized bold letters represent the
Matlab code in the Appendix.

3.1. Problem definition (lines 1–14, 29)

3.1.1. Parameter definition (lines 1–14)

For the battery degradation example, ‘Battery’ is used for
WorkName, which is the name of the result file. The capacity is
measured at every 5 weeks, so ‘weeks’ and the number 5 are,
respectively, typed in TimeUnit and dt. The C/1 capacity data in
Table 1 are stored in measuData, which is a k1� 1 vector.
According to the definition of failure threshold in Sections 2.1,
0.3 (30% of C/1 capacity) is used for thres. ParamName is the
name of the unknown parameters to be estimated; damage state
‘x’, model parameter ‘b’ and the standard deviation of

Table 1
Measurement data for battery degradation problem.

Time step, k Initial, 0 1 2 3 4 5 6 7 8 9

Weeks 0 5 10 15 20 25 30 35 40 45

C/1 (Ahr) 1.0000 0.9351 0.8512 0.9028 0.7754 0.7114 0.6830 0.6147 0.5628 0.7090

Fig. 2. Illustration of the PF process.

Fig. 3. Illustration of resampling method.

Fig. 4. Illustration of RUL prediction.
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measurement error ‘s’ are included. When determining the para-
meters’ name, there are four cautions: (1) the user can define
anything for the parameter’s name, but the length of parameters’
name should be the same as each other; (2) when assigning a one
letter name, be careful not to use i, j, k, n, p, u because they are
already used in the code; (3) the parameter’s name representing
the damage state and model parameters should be used as the
model equation on line 29; and (4) the parameter’s name of the
damage state and standard deviation, respectively, should be
placed on the first and the last row. initDisPar is a p� q matrix
of probability parameters of initial distributions, where p and q

are the number of unknown parameters and probability para-
meters, respectively. Since there are no available prior informa-
tion, it is assumed that the initial distributions of the three (¼p)
unknown parameters are uniform whose probability parameters
are two (¼q), lower and upper bounds:

xo �Uð0:9,1:1Þ, b0 �Uð0,0:05Þ, s0 �Uð0:01,0:1Þ ð7Þ

Eq. (7) can be typed as [0.9 1.1; 0 0.05; 0.01 0.1]; in initDisPar.
The rest of the required parameters are the number of particles
(or samples) n and significance level signiLevel for calculating the
confidence interval (C.I.) and prediction interval (P.I.). Usually,
1000–5000 particles and a 5, 2.5 or 0.5 significance level for 90%,
95% or 99% intervals are used. In this example, 5000 and 5 are set
for n and signiLevel, respectively. To consider the effect according
to the number of samples, users can refer to Ref. [17].

3.1.2. Model definition (line 29)

The damage model equation in Eq. (5) is used in line 29. In the
equation, the time interval Dt is expressed as dt in the script,
which was defined in line 4. Also, the model parameter bk and the
damage state at the previous step xk�1, respectively, are expressed
as b and x, which were defined in line 8. The algebraic expressions
should use component-wise operations (i.e., using ‘.’ ) since
damage state is a vector with n samples.

3.2. Prognostics using PF (lines 15–47)

The prognostics process is composed of three steps: (1) the initial
distributions of the parameters (lines 16–21), (2) estimation process
(lines 25–39, 43), and (2) prognosis (lines 24–30, 40–47). In terms of
the code usage, there are two issues that can be considered according
to users’ intention: the initial distribution (line 18) and the likelihood

function (line 33). In the code, the default options for the initial
distribution and the likelihood function, respectively, are uniform
and normal distribution. The other probability distributions can also
be employed, and this will be introduced in Section 4.

3.3. Post-processing (lines 48–62)

Once problem definition is completed and the code is imple-
mented, distribution and its percentiles of RUL at the current time
can be displayed. Fig. 6 shows RUL results at 45 weeks after the
updating process is progressed up to k¼ 9 (see Table 1; k¼ 9
corresponds to k1¼10 in the script since the initial, k¼ 0 is stored

Fig. 5. Block diagram of the code.

Fig. 6. Visual results obtained from the code: battery degradation example:

(a) RUL distribution and (b) percentiles of RUL distribution.
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in k1¼1). Fig. 6(b) shows 5, 50 (median), and 95 percentiles,
which are caused by signiLevel¼5 (line 13). The result of median
can be compared with the true RUL, which is obtained by
subtracting the current time (45 weeks) from the threshold time.
Also, the threshold time is when the C/1 capacity reaches 0.3 and
results in 100.33 weeks, which is calculated using Eq. (1) and true
model parameters given in Section 2.1. Therefore, the median of
RUL prediction, 50 weeks is fairly accurate compared with the true
RUL, 55 weeks. In addition, RUL prediction can be more accurate
by reducing the time interval after the current time. All results are
saved as a name of ‘WorkName (line 2) at current time.mat’.

The other results, such as the trace of parameters and prediction
of the damage state, can be displayed by using sampling results
during the updating process. Users can display the sampling results
of any variable at each step by entering ParamResul into the
Matlab command window; xResul, bResul and sResul are forms of
adding ParamName (line 8) to Resul. Therefore, users can draw the
percentiles of the damage state prediction by coding plot(repmat
(time,1,3), prctile(xResul’,perceValue)’), and for the other cases,
xResul is replaced with bResul or sResul. If the true values of the
model parameters are known, the results can be compared with
the true values. In this problem, the true values of b¼0.012 and
s¼0.05, and the true damage state are calculated using Eqs. (1) or
(5). The additional visual results are shown in Fig. 7.

4. Practical use

The code can be easily adapted by users for more practical use.
As an example, the usage algorithm with a crack growth example
is considered in the following subsections.

4.1. Model definition: crack growth

It is assumed that a through-the-thickness center crack exists
in an infinite plate under the mode I loading condition. The rate of
damage growth can be expressed using the Paris model [18] as

da

dN
¼ CðDKÞm, DK ¼Ds

ffiffiffiffiffiffi
pa
p

ð8Þ

where a is the crack size, N is the number of cycles, m and C are
damage model parameters, DK is the range of the stress intensity
factor, and Ds is the stress range. The model can be rewritten in
the form of the state transition function:

ak ¼ CkðDs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pak�1
p

Þ
mk dNþak�1 ð9Þ

The model parameters mk and Ck as well as the damage state ak are
estimated using the measured crack size zk at every 50 cycles under
loading condition Ds¼78 MPa, which is listed in Table 2. First the
true crack size data are generated using Eq. (9) with mtrue ¼ 3:8 and
Ctrue ¼ 1:5� 10�10. The measured crack size data are then generated
by multiplying noise, which is lognormally distributed with standard
deviation of 0:001=ak(m). Actually, it has been shown that the
distribution of crack size follows a lognormal distribution [19]. For
the RUL calculation, the critical crack size is determined as 0.0463 m.
More specific information for crack growth problem is in Ref. [13].

It is assumed that the standard deviation of measurement, s, is
known as 0.001 m. Also, the initial distribution of the parameters
and the likelihood function are, respectively, normal and lognor-
mal distributions, which are as follows:

– initial distribution:

a0 �Nð0:01,ð5� 10�4
Þ
2
Þ, m0 �Nð4,0:22

Þ,

logC0 �Nð�22:33,1:122
Þ ð10Þ

– likelihood function:

Lðzk9a
i
k,mi

k,Ci
kÞ ¼

1

zk

ffiffiffiffiffiffi
2p
p

zi
k

exp �
1

2

lnzk�l
i
k

zi
k

 !2
2
4

3
5, i¼ 1,. . .,n ð11Þ

where zi
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln½1þðs=ai

kðm
i
k,Ci

kÞÞ
2
�

q
and li

k ¼ ln½ai
kðm

i
k,Ci

kÞ��

1=2ðzi
kÞ

2.

4.2. Modifying the code for the crack growth example

4.2.1. Problem definition

Based on the above given information, the code in the Appendix
is changed as follows:

– line 2: WorkName¼ ‘Crack’;
– line 3: TimeUnit¼ ‘cycles’;
– line 4: dt¼50; (or dN¼50, but should be matched with line 29)
– lines 5–6: measuData¼[0.0119 0.0103 0.0118 0.0095 0.0085

0.0122 0.0110 0.0120 0.0113 0.0122 0.0110 0.0124 0.0117
0.0138 0.0127 0.0115 0.0135 0.0124 0.0141 0.0160 0.0157
0.0149 0.0156 0.0153 0.0155]’;

– line 7: thres¼0.0463;
– line 8: ParamName¼[‘a’;‘m’; ‘C’; ‘s’];
– line 9: initDisPar¼[0.01 5e-4; 4 0.2; �22.33 1.12; 0.001 0];

This corresponds to Eq. (10) except the last two values, 0.001 and
0 for s(¼ ‘s’). Even if s is a deterministic value, it should be
included in lines 8–9. Therefore, users should make s become a
deterministic value (0.001 m) by using 0.001 and 0, which stand
for mean and standard deviation, respectively. In other words, the
probability parameters should be set to make the n samples
become the same as a deterministic value.

– line 13: signiLevel¼2.5; 95% intervals are calculated.
– insert it next line 13: delSigma¼78;

Fig. 7. Visual results obtained from the additional code: battery degradation

example: (a) trace of parameter update and (b) C/1 capacity prediction.
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– line 29: exp(C). *(delSigma.*sqrt(pi*a)).^m.*dtþa; This corre-
sponds to Eq. (9), but note that logðCÞ is used instead of C due
to a numerical problem (C is a very small value).

4.2.2. Prognostics using PF

The initial distribution of the parameters and the likel-
ihood function are different from those of battery degradation.
Therefore, the lines 18, 33 and 45 should be modified as follows:

– line 18: param(j,:)¼normrnd(initDisPar(j,1),initDisPar(j,2),
1,n);

– line 33: sigl¼sqrt(log(1þ(paramPredi(end,:)./ paramPredi(1,
:)).^2)); mul¼ log(paramPredi (1,:))-0.5*sigl.^2; likel
¼ lognpdf(measuData(k),mul,sigl);

– line 45: sigl¼sqrt(log(1þ(param(end,:)./param(1,:)).^2));
mul¼ log(param(1,:))-0.5*sigl.^2; eval([ParamResul(1,:) ‘(k,
:)¼ lognrnd (mul,sigl,1,n);’]);

If the prior information and the distribution type of measurement
error are not given, the initial distribution and the likelihood
function should be assumed. It would be a good exercise to study
different distribution types based on the above revision.

4.2.3. Post-processing

The results obtained from the code are shown in Fig. 8. Also,
users can obtain Fig. 9 using the stored results of the parameters;
aResul, mResul, CResul which can be known by typing Para-
mResul in the command window.

Table 2
Measurement data for crack growth problem.

Time step, k Initial, 0 1 2 3 4 5 6 7 8

Time (cycles) 0 50 100 150 200 250 300 350 400

Crack size (m) 0.0119 0.0103 0.0118 0.0095 0.0085 0.0122 0.0110 0.0120 0.0113

Time step, k 9 10 11 12 13 14 15 16

Time (cycles) 450 500 550 600 650 700 750 800

Crack size (m) 0.0122 0.0110 0.0124 0.0117 0.0138 0.0127 0.0115 0.0135

Time step, k 17 18 19 20 21 22 23 24

Time (cycles) 850 900 950 1000 1050 1100 1150 1200

Crack size (m) 0.0124 0.0141 0.0160 0.0157 0.0149 0.0156 0.0153 0.0155

Fig. 8. Visual results obtained from the code: crack growth example: (a) RUL

distribution and (b) percentiles of RUL distribution.

Fig. 9. Visual results obtained from the additional code: crack growth example:

(a) trace of parameter update and (b) crack growth prediction.
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4.3. Crack growth under variable amplitude loading (VAL)

In this model, the time interval is important to obtain proper
results because it determines the size of sub-intervals of numer-
ical integration, and therefore, has an effect on the model
accuracy. In the previous two examples, the time interval is given
as the interval of data measurement and is employed for damage
propagation. For the case of variable amplitude loading, the
interval for data measurement and that of damage propagation
are different. For example, damage propagation is progressed
every cycle based on the physical model. When the damage
propagation cycle reaches data measurement cycle, the model
parameters are updated based on the particle filter algorithm.

As an example, Huang’s model [20] is employed, which is one
of several crack growth models under variable amplitude loading:

da

dN
¼ C ðDKeqÞ

m
�ðDKthÞ

m
� �

ð12Þ

DKeq ¼MRMPDK , DK ¼ FDs
ffiffiffiffiffiffi
pa
p

ð13Þ

MR ¼

ð1�RÞ�b1 ð�5rRo0Þ

ð1�RÞ�b ð0rRo0:5Þ

ð1:05�1:4Rþ0:6R2
Þ
�b
ð0:5rRo1Þ

, R¼
smax

smin

8><
>: ð14Þ

MP ¼

ry

aOLþ rOL�a�rD

� �n
ðaþryoaOLþrOL�rDÞ

1 ðaþryZaOLþrOL�rDÞ
,

8<
:

ry ¼ a
Kmax

sy

� �2

and rOL ¼ a
KOL

max

sy

 !2

ð15Þ

where DKeq and DKth, respectively, are the range of equivalent
stress intensity factor and threshold stress intensity factor; MR

and MP, respectively, are correction factors for the loading ratio
and the loading sequence interaction; F is the geometry factor; b
and b1 are shaping exponents; smax and smin, respectively, are
the maximum and minimum stress at every cycle; ry is the plastic
zone size ahead of the crack tip; rD is the increment in the plastic
zone size ahead of the crack tip caused by under loading; n is the
shaping exponent in the present model; a is the plastic zone size
factor; Kmax is maximum stress intensity factor; sy is tensile yield
stress; and OL placed on sub or superscript is the case at which
the overload occurs.

The model parameters ðm,C,DKth,b,n,syÞ and standard devia-
tion of noise as well as the damage state a are estimated
simultaneously using the measured crack sizes that are obtained

from 150�170�4 (mm) size-specimen test under smin¼3.5 MPa
and the other given loading conditions, which are listed in Table 3.
In Table 3, p cycle and q cycle represent, respectively, the condi-
tions for normal load and overload. Fig. 10 shows the result of
crack growth prediction using up to 11 data points (solid dots).
Users can also obtain similar results by modifying the code
according to the physical model in Eqs. (12)–(15). More informa-
tion can be found in the website mentioned in Section 5.

5. Conclusions

This paper presents a tutorial for model-based prognostics
with a Matlab code. The code is simply constructed with 62 lines
using an example of battery degradation, and users can easily
modify the code for their specific applications. Also, more prac-
tical cases are considered with crack growth examples. This will
be helpful for the beginners in prognostics to use the prognostics
method for their applications. Toward this aspect, the author has
established a website https://sites.google.com/site/dawnan1114/,
with the hope to facilitate continuous communication with the
people interested in this research.
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Appendix. Matlab code

Table 3
Measurement data and load conditions for VAL crack growth problem.

Time step, k Initial, 0 1 2 3 4 5 6

Time (cycles) 0 5000 10,000 15,000 18,000 20,000 26,000

Crack size (m) 0.0056 0.0099 0.0180 0.0180 0.0180 0.0180 0.0180

Load conditions

(0–10,000 cycles)

p cycle: #¼5, smax¼69 MPa

q cycle: #¼45, smax¼130 MPa

(10,001–18,000 cycles)

p cycle: #¼45, smax¼69 MPa

q cycle: #¼5, smax¼100 MPa

(18,001–38,000 cycles)

p cycle: #¼40, smax¼69 MPa

q cycle: #¼10, smax¼100 MPa

Time step, k 7 8 9 10 11 12 13 14 15

Time (cycles) 32,000 38,000 40,000 42,000 44,000 46,000 48,000 50,000 50,500

Crack size (m) 0.0180 0.0180 0.0187 0.0204 0.0216 0.0239 0.0263 0.0320 0.0351

Load conditions

(38,001–50,500 cycles)

p cycle: #¼40, smax¼69 MPa

q cycle: #¼10, smax¼130 MPa

Fig. 10. Crack growth prediction with variable amplitude loading.
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