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Abstract

The Mode I, Mode II and mixed mode fracture toughness of a cellular medium is predicted by simulating the crack
propagation using a finite element model. Displacement boundary conditions are applied such that they correspond to a
given value of stress intensity factor in a homogeneous solid that has the same elastic constants as the cellular medium.
The crack propagation is simulated by breaking the crack tip strut when the maximum stress in that strut exceeds the
strength of the strut material. Based on the finite element results a semi-empirical formula is also derived to predict
the Mode I and Mode II fracture toughness of cellular solids as a function of relative density. The results show that
the displacements and stresses in the foam near the crack tip are very similar to that in an equivalent homogeneous mate-
rial, and continuum fracture mechanics concepts can be applied to predict the fracture of a cellular medium. The forces
acting in the crack tip strut can be considered as the resultant of stresses over an effective length in the corresponding
continuum model. A relation for this effective length has been derived in terms of the relative density of the cellular
medium.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cellular materials are made up of a network of beam or plate structures leaving an open space or cell in
between. Cellular materials, e.g., carbon and polymeric foams, offer several advantages such as thermal
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resistance, durability, low density, impact damage tolerance and cost effectiveness. They have great poten-
tial as core materials in sandwich construction, which has application in heat exchangers and thermal
protection systems in military and commercial aerospace structures.
An excellent treatise on the structure and properties of cellular solids has been written by Gibson and

Ashby (1988). While analytical methods for predicting thermal and thermo-mechanical properties of cellu-
lar media are well documented, research on fracture behavior of various foams is still in its infancy. Gibson
and Ashby (1988) have presented approximate formulas for Mode I fracture toughness of cellular solids in
terms of their relative density and tensile strength of the strut or ligament material. These are limited to
cracks parallel to the principal material direction. Moreover, fracture behavior under mixed mode was
not studied. In order to estimate the fracture toughness, the stresses in the crack-tip strut (first unbroken
cell edge) is calculated in terms of the stress intensity factor. Then the maximum stress in the strut due
to the bending moment is equated to the tensile strength of the strut material. The stress intensity factor
that would produce such a bending moment is taken as the fracture toughness of the foam.
The SEM micrograph of carbon foam is shown in Fig. 1. The open-cell foam has irregularly sized and

spaced cells. For high-density carbon foam (300–800 kg/m3), the length of cell edges is found to be in the
range of 1–2 mm. For low-density carbon foam (160–300 kg/m3), the cell length is in the range of 200–600
lm. Unit cells of foams have been modeled as tetrakaidecahedra (a polyhedron containing 14 faces, 36
edges and 24 vertices). Li et al. (2003) modeled the open-cell carbon foam as a space frame and calculated
the homogeneous elastic constants analytically. They performed a parametric study to understand how the
variation in ligament properties affected the elastic constants of the foam. Sihn and Roy (2003) used three-
dimensional finite elements to model the unit-cell of the carbon foam and studied the effects of anisotropy
in the ligament material on the overall properties of the foam. In the present study the unit cell of the cel-
lular solid is assumed to be a rectangular prism (actually a cube with side c), and the edges or the struts are
assumed to have a square cross-section (h · h) as shown in Fig. 2. It should be mentioned that the purpose
of the present study is to understand the effects of cell length and strut size on the fracture toughness of a
model-foam. The fracture toughness of the carbon foam shown in Fig. 1 was studied experimentally and
analytically in Choi and Sankar (2003).
On the macroscale, the cellular solid is considered as a homogeneous orthotropic material. A crack par-

allel to one of the principal material directions is assumed to exist in the solid and a small region surround-
ing the crack tip is modeled using Euler–Bernoulli beam finite elements. The commercial finite element
software ABAQUS� was used for this purpose. The strut material is assumed to be isotropic, linearly elas-
tic and brittle, and its elastic constants and tensile strength are assumed known. The crack is modeled by
breaking several struts along the line of the intended crack. The properties of the strut material in this study
are close to that of carbon foam investigated in a previous experimental study (Choi and Sankar, 2003), and
they are given in Table 1.
Fig. 1. SEM images of low (left) and high (right) density carbon foam.



Fig. 2. Open rectangular cell model. The uni-cell is assumed to be a cube of dimension c and the struts (cell edges) are assumed to have
a square cross-section h · h.

Table 1
Material properties of the strut material

Density 1750 kg/m3

Young�s modulus 207 GPa
Poisson�s ratio 0.17
Ultimate tensile strength 3600 MPa
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2. Elastic constants of the foam

As will be seen later, the fracture models require knowledge of the orthotropic properties of the foam. In
this section, formulas based on mechanics of materials type calculations for Young�s modulus and shear
modulus are presented and the results are verified by finite element models. The cellular medium is assumed
to consist of struts of square cross-section in a rectangular array in the 1–2 plane. In the following, a super-
script * denotes the macroscopic properties of the foam, whereas a subscript s denotes the properties of the
strut material.

2.1. Analytical model for elastic constants

The Young�s modulus in the principal material direction can be easily derived by subjecting the foam to
a state of uniaxial stress r* as shown in Fig. 3. The total tensile force acting on a strut is given by F = c2r*,
where c is the length of the unit cell. The microstresses (actual stress) in the strut can be derived as
rs ¼
F

h2
¼ c2r�

h2
ð1Þ
where h is the cross-sectional dimension of the square strut (see Fig. 3). It should be noted that both the
macrostrain e* and microstrain e must be equal. The microscale strain is given by es = rs/Es and the macro-
scale strain is e� ¼ r�

E�. Equating the macro- and microstrains, and using Eq. (1) one can derive a simple
formula for the foam Young�s modulus E* as
E� ¼ h
c

� �2
Es ð2Þ



Fig. 3. The cellular medium subjected to a uniform macrostress r*. The struts are assumed to have a square cross-section h · h with a
spacing of c in between them.

1800 S. Choi, B.V. Sankar / International Journal of Solids and Structures 42 (2005) 1797–1817
To calculate the shear modulus G12 the unit-cell is subjected to a state of uniform shear as shown in
Fig. 4. The deformed shape of the struts is shown in thin lines. Due to anti-symmetry, the curvature of
the deformed beam at the center of the strut must be equal to zero and hence the bending moment at
the center of the strut must be equal to zero. This fact can be used to find a relation between the force
F and bending moment M as M = Fc/2. Then, half of the strut, either OA or OB, can be considered as
a cantilever beam subjected to a tip force F. The transverse deflection is given by
d ¼
F c

2

� �3
3EsI

ð3Þ
where I, the moment of inertia of the strut cross-section, is given by I ¼ h4

12
. The macroscopic shear stress

s* is related to the shear force F as
s� ¼ F
c2

ð4Þ
The macroscopic shear strain c* can be calculated as
c� ¼ 2d
c=2ð Þ ¼

4d
c

ð5Þ
Fig. 4. Deformed shape of struts in an open-cell foam subjected to uniform macroscale shear stresses.
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The shear modulus of the foam G�
12 is defined as the ratio of the macroscopic shear stress s* and macroshear

strain c*. Then from Eqs. (4) and (5) we obtain
G�
12 ¼

s�

c�
¼ 1
2
Es

h
c

� �4
ð6Þ
From the expressions for E�
1 and G�

12 a relationship between the shear modulus and the Young�s modulus
can be derived as
E�
1

G�
12

¼ 2 c
h

� �2
ð7Þ
Due to the symmetry of the structure it is obvious that E2 = E3 = E1 and G23 = G31 = G12. Further, all
Poisson�s ratios referred to the principal material directions, m12, m23, and m31, are also approximately equal
to zero.
The relative density q*/qs, where qs is the solid density or the density of the strut material, is a measure of

solidity of the cellular material. The density q* of the foam can be obtained from the mass m and volume V
of the material in a unit-cell. Basically, there are three struts, each of length c, within a unit-cell. Therefore,
their volume will be equal to 3ch2. In order to be accurate, we can subtract the two overlapping volume h3

each, at the intersection of the struts. Then the mass within a unit-cell will be equal to qs(3h
2c � 2h3) and the

volume of the unit-cell is c3. Then a relation between the foam density q* and the solid density qs can be
derived as:
q�

qs
¼

qs 3h
2c�2h3ð Þ
c3

qs
¼ 3 h

c

� �2
� 2 h

c

� �3
ð8Þ
If the aspect ratio of the strut h/c � 1, then the relative density can be approximated as
q�

qs
� 3 h

c

� �2
ð9Þ
2.2. Comparison of analytical models and finite element models

Although the aforementioned model for Young�s modulus is simple and straightforward, the model for
shear modulus needs to be compared with other approaches in order to make sure that the assumptions
about the periodic boundary conditions are correct. In order to accomplish this purpose a portion of
the foam was modeled using finite elements. Each strut was modeled as an Euler–Bernoulli beam with
two nodes and three degrees of freedom, u1, u2 and h, at each node. Each beam element has three integra-
tion points. Although we could have modeled one unit-cell with periodic boundary conditions, e.g., Marrey
and Sankar (1995), a larger portion of the cellular medium was modeled, as the computational cost is not
very high in the present case.
The model shown in Fig. 5 consists of 100 · 100 cells. The cell length c of the unit-cell is 200 lm and the

strut is assumed to have a square cross-section with a side equal to 20 lm. A uniform displacement
(d = 0.01 m) is applied at nodes on the top edge of the model. The total force in the 2-direction is computed
from the FE results. The average tensile stress (macrostress r22) can be obtained by
r�
22 ¼

P
F 2

Lc
ð10Þ



Fig. 5. Schematic of the FE model of the foam. A vertical displacement d is applied at nodes on the top edge of the foam to simulate
uniform tension.
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where the
P
sign denotes summation of all nodal forces acting on the boundary nodes where the displace-

ments are prescribed and L is the width of the foam considered in the FE model (see Fig. 5). The Young�s
modulus E�

2 of foam can be determined by the stress–strain definition as
E�
1 ¼

r�

e�
¼ r�

22

d=Lð Þ ð11Þ
For the case considered the FE model gave a value E�
1 ¼ 2:09 GPa and the analytical model Eq. (2) yielded

a value of 2.07 GPa. The difference of results is 1%.
To estimate the shear modulus by the FE method, a constant horizontal displacement us is applied to all

the nodes on the topside of the foam as shown in Fig. 6. The shear stress s* can be obtained by the sum of
reaction forces F divided by the area of the top surface:
s� ¼
P

F 1
Lc

ð12Þ
Fig. 6. Schematic of shear deformation in the open-cell foam.
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where L is the length of the foam considered in the FE model and c is the unit-cell dimension. The shear
strain c* can be calculated as
c� ¼ us
L

ð13Þ
Thus, shear modulus G�
12 of the foam can be estimated as the ratio of shear stress s* and shear strain c*, i.e.

G�
12 ¼ s�

c�. Substituting for the shear stress and shear strain from Eqs. (12) and (13), respectively, we obtain
G� ¼
P

F 1
usc

ð14Þ
From the finite element analysis, the shear modulus of the foam was estimated as 10.25 MPa. The ana-
lytical model (Eq. (6)) yields a value of 10.35 MPa. The difference between the two results is about 1%. The
FE model is slightly compliant because of lack of constraints on the vertical sides. Applying periodic
boundary conditions (Marrey and Sankar, 1995) would have yielded values closer to the analytical solution.
3. Finite element based micromechanics for fracture toughness

In this section, we describe a finite element based micromechanics model for estimating the fracture
toughness of the cellular solid. The crack is assumed to be parallel to one of the principal material axes,
and Mode I, Mode II and mixed mode fracture conditions are considered. To determine the fracture tough-
ness, a small region around the crack tip is modeled using beam elements, and a constant mode mixity KI/
KII is considered. The boundary of the cellular solid is subjected to displacement boundary conditions u1
and u2 corresponding to an arbitrary value of KI (or KII). The rotational degree of freedom at each node
of the beam element on the boundary of the solid is left as unknown and no couples are applied at these
nodes. The calculation of boundary displacements for a given stress intensity factor is described in Section
3.1.

3.1. Boundary displacements near the crack tip

The displacement components in the vicinity of a crack tip in a homogenous orthotropic material are
derived in Appendix A and they are as follows (Sih and Liebowitz, 1968):
The displacement filed near the crack tip for Mode I:
u1 ¼ KI

ffiffiffiffiffi
2r
p

r
Re

1

s1 � s2
s1p2 cos h þ s2 sin hð Þ1=2 � s2p1 cos h þ s1 sin hð Þ1=2
h i� 

u2 ¼ KI

ffiffiffiffiffi
2r
p

r
Re

1

s1 � s2
s1q2 cos h þ s2 sin hð Þ1=2 � s2q1 cos h þ s1 sin hð Þ1=2
h i�  ð15Þ
The displacement filed near the crack tip for Mode II:
u1 ¼ KII

ffiffiffiffiffi
2r
p

r
Re

1

s1 � s2
p2 cos h þ s2 sin hð Þ1=2 � p1 cos h þ s1 sin hð Þ1=2
h i� 

u2 ¼ KII

ffiffiffiffiffi
2r
p

r
Re

1

s1 � s2
q2 cos h þ s2 sin hð Þ1=2 � q1 cos h þ s1 sin hð Þ1=2
h i�  ð16Þ
In deriving the above expressions, the crack is assumed to be parallel to the 1-axis, and r–h is the polar coor-
dinate system situated at the crack tip. The complex parameters p, q, and s depend on the elastic constants
of the homogeneous orthotropic material as described in Appendix A.
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3.2. Finite element model

The commercial program ABAQUSTM is used to perform the finite element analysis. A portion of the
foam surrounding the crack tip is modeled using beam finite elements as shown in Fig. 7. The displacement
boundary conditions for the FE model are determined from the expression for boundary displacements
described in the previous section. The crack in the FE model is created by removing the beam elements
along the line of the crack behind the crack tip.
To reduce the modeling cost, a FORTRAN code was written to generate nodal and element properties

with user specified unit-cell configuration. The code calculates boundary displacements at corresponding
boundary nodal coordinates. After execution, it exports an ABAQUS input file so that the ABAQUS
can read the input directly.
The maximum tensile stress in the struts is calculated from the finite element method. The FE analysis

outputs axial force, bending moment and shear force at each node of the beam elements, and the maximum
tensile stress was calculated using a separate program. Usually the maximum stress occurs at the crack tip
strut. It should be noted that the stresses in the struts vary linearly with respect to the applied stress inten-
sity factor KI (or KII). Since we know the strength of the strut material, the value of KI (or KII) that will
cause rupture of the strut can be estimated. And then, it is taken as the fracture toughness of the cellular
solid. It should be mentioned such scaling is possible because we assume linear elastic behavior of the strut
material and hence that of the foam. If the strut material undergoes inelastic behavior, then an iterative
method will have to be used to determine the stress intensity factor that will cause the failure of the
crack-tip strut.
Before we describe an analytical model for estimating the fracture toughness, we will discuss the results

from the FE simulation. At first, we will check the validity of applying continuum fracture mechanics. It
was found that a model consisting of 100 · 100 cells (total 10,000 cells) gave a converged result for fracture
toughness and the same model is used throughout the study.

3.3. Convergence analysis for mode I

The convergence analysis is performed to evaluate the variation of fracture toughness with various sizes
of foam models, 12 mm · 12 mm (3600 cells), 20 mm · 20 mm (10,000 cells), 40 mm · 40 mm (40,000 cells)
Fig. 7. Open-cell foam model with a crack.
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and 80 mm · 80 mm (160,000 cells). In the convergence analysis the length of the unit-cell was taken as 200
lm and the cell wall thickness as 20 lm.
The values of fracture toughness computed from various size models are plotted in Fig. 8 as a function of

number of cells in the model. As the model size increases, fracture toughness converges to a value approx-
imately equal to 0.467 MPa

ffiffiffiffi
m

p
as shown in Fig. 8. The difference in results for models containing 10,000

and 160,000 cells is about 2.7%. Therefore, the 10,000-cell model is chosen for further analysis to maintain
reasonable accuracy but with less CPU time. For the 10,000-cell model, a computer with 1.7 GHz Intel Pen-
tium� 4 takes 13 1

2
min to complete the job, but the 160,000 cells takes more than 2 h.

The axial stresses in the beam element cross-sections ahead of the crack tip are shown in Fig. 9. Smaller
size models produce slightly higher axial stresses in the crack tip element. Away from the crack tip,
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differences in axial stresses become insignificant for different size models. The log–log plot of stress varia-
tion ahead of the crack tip is shown in Fig. 10. One can note that in Fig. 10 the slope of the straight line is
approximately equal to �0.5 indicating the existence of an inverse square root singularity at the crack tip.
A least-square fit of the stress distribution results in
r ¼ 41:69ffiffi
r

p ð17Þ
where r is the distance from the crack tip. Using the relation between micro and macrostresses in Eq. (1),
Eq. (17) can be written as
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S. Choi, B.V. Sankar / International Journal of Solids and Structures 42 (2005) 1797–1817 1807
r�
22 ¼

1:05ffiffiffiffiffiffiffi
2pr

p ð18Þ
which indicates that the approximate stress intensity factor in macroscale is equal to 1.05, which is close the
unit stress intensity factor used in imposing the boundary conditions.
If the fracture toughness estimated by using the present method is truly a material (macroscopic) prop-

erty, then it should be independent of the crack length. Hence, the crack length was varied in the microme-
chanical method. The results are shown in Fig. 11. The predicted fracture toughness is plotted as a function
of the crack length. Note that the size of the foam was kept constant and the crack length was varied. In
Fig. 11, the crack length is shown as a percentage of the width of the foam. The result clearly shows that the
fracture toughness is independent of the crack length. Furthermore the crack tip singularity was equal to
�1/2 (see Eq. (18)), which is the theoretical value for homogeneous orthotropic materials. Thus one can
conclude that although the foam is a cellular material consisting of discrete struts, on a macroscale the frac-
ture behavior is similar to that of a homogeneous orthotropic continuum. Hence one can calculate or meas-
ure fracture toughness for such cellular materials.

3.4. Mode I fracture toughness of open cell foam

Since the relative density depends on the length of the strut c and the strut cross-sectional dimension h,
the density was varied in two different ways. In the first case, c was varied and h was kept constant. In the
second case, h was varied while c was constant.
The results of the FE simulation are axial force, bending moment and shear force in each element, which

are used to calculate the maximum principal stress at the crack tip, and then the fracture toughness. A
sample stress distribution due to Mode I loading is shown in Fig. 12.
The variation of Mode I fracture toughness with relative density is shown in Fig. 13. A least square

power law fitting yielded
KIc ¼ 1:961
q�

qs

� �1:045
constant cell length; c ¼ 200 lm

KIc ¼ 7:82
q�

qs

� �0:788
constant strut thickness; h ¼ 20 lm

ð19Þ
Fig. 12. Deformation of the foam subjected to Mode I loading (cell length c = 200 lm, strut thickness h = 20 lm).
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For very low relative densities (0.01–0.04), the fracture toughness seems to be independent of the cell size
or strut size. However, at higher densities, thicker struts yielded higher fracture toughness compared to the
foams with thinner struts but of same density.

3.5. Mode II fracture toughness of open cell foam

The analysis of Mode II fracture toughness is very similar to that of Mode I fracture analysis presented
in the preceding section. An example of deformation in Mode II is depicted in Fig. 14. Unlikely Mode I
fracture, the boundary displacements are not symmetric about the crack plane as shown. The displacement
field for Mode II case is given by Eq. (16). The variation of Mode II fracture toughness with relative density
for both constant strut thickness and constant cell size are shown in Fig. 15. The results of Mode II fracture
Fig. 14. Deformation of the foam subjected to Mode II loading (cell length c = 200 lm, strut thickness h = 20 lm).
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toughness shown in Fig. 15 were fitted to a power law using least square error procedure. The results are as
follows:
KIIc ¼ 6:95
q�

qs

� �1:32
constant cell length; c ¼ 200 lm

KIIc ¼ 2:76
q�

qs

� �1:07
constant strut thickness; h ¼ 20 lm

ð20Þ
As before the Mode II fracture toughness seems to be independent of the cell size and strut thickness
at low densities, but vary significantly with the dimensions at higher densities. A semi-empirical relation
for Mode II fracture toughness is presented in Section 4.2.
Fig. 16. Deformation of the foam subjected to mixed mode loading conditions (c = 200 lm, h = 20 lm).
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3.6. Mixed mode fracture toughness

The procedures for mixed mode analysis is similar to that of Mode I and Mode II. A fixed KI/KII ratio is
assumed and the boundary displacements were obtained as superposition of displacement given in Eqs. (15)
and (16). An example of deformation in mixed mode is depicted in Fig. 16. The value of KI (or KII) that will
cause rupture of the crack tip strut was calculated.
The results are shown in Fig. 17 for constant strut thickness and in Fig. 18 for constant cell size. It is

found that the results can be expressed as
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KI
KIc

� �
þ KII

KIIc

� �
¼ 1 ð21Þ
This result does not reveal any surprise as we are using stress based failure criterion for the struts and the
usual linear superposition holds good.
4. Semi-empirical models for fracture toughness

4.1. Analytical model for mode I fracture toughness

In order to derive an analytical model for fracture toughness, the stress intensity factor of the homoge-
neous model should be related to the actual stresses in the crack tip ligament of the foam. This can be ob-
tained by assuming that the internal forces and bending moment in the crack tip strut are caused by a
portion of the crack tip stress field ahead of the crack tip in the homogeneous model as illustrated in
Fig. 19.
Let us define a non-dimensional factor a that describes the effective length l as follows:
l ¼ ac ð22Þ

Previous researchers (e.g. Gibson and Ashby, 1988) have arbitrarily assumed that the effective length l is
equal to the cell spacing c, i.e., a = 1. Because of the existence of the singularity, such assumption may
not be valid. Furthermore, it could be a function of the foam density also. In this study we use the micro-
mechanics results (Eq. (19)) to estimate the effective length more accurately. The ideal stress distribution r22
ahead of crack tip is described as follows:
r22 ¼
KIffiffiffiffiffiffiffi
2pr

p ð23Þ
where r is the distance from the crack tip. The axial force F in the crack tip ligament can be obtained by
integrating r22 over the effective length
F ¼ c
Z l

0

r22 dr ¼ KIc

ffiffiffiffiffi
2l
p

r
ð24Þ
Similarly the bending moment M in the crack tip strut is given by
M ¼ c
Z l

0

rr22 dr ð25Þ
9. Crack-tip forces and moments in the actual foam and corresponding crack tip stresses in the idealized homogeneous
uum.
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Substituting for r22 from Eq. (22), we obtain the expression for crack tip bending moment as
Fig. 2
thickn
M ¼ KI

ffiffiffi
2

p

r
l3=2

3
c ð26Þ
Assuming fracture occurs when the maximum bending stress equals the tensile strength of the ligament
material, a relationship between the tensile strength and fracture toughness can be derived as
ru ¼
M h=2ð Þ
h4=12
� �þ F

h2
¼ 6M

h3
þ F

h2
¼ KIcc

h2

ffiffiffiffiffi
2l
p

r
1þ 2 l

h

� �
ð27Þ
In deriving Eq. (27) expressions forM and F in terms of KIc given in (24) and (26) have been used. By sub-
stituting for l in terms of a from Eq. (22), a relation between fracture toughness and tensile strength of the
strut material can be derived as
KIc ¼ ru
ffiffiffi
c

p ffiffiffi
p
2

r
h2

c2
1ffiffiffi

a
p

1þ 2a c
h

� � ð28Þ
The results for KIc presented in Fig. 13 were used in conjunction with Eq. (28) to calculate the value of a for
various cases. The results for a as a function relative density are plotted in Fig. 20. It may be noted that a
increases with relative density and the variation can be accurately represented by a power law. Interestingly
both constant wall thickness (constant h) case and the constant cell size case (constant c) we have studied so
far fit accurately into a single power law. The effective length is about 9% of the cell spacing for low-density
foam and about 23% for the high-density foam.
Thus one can consider the results presented in Eq. (19) as empirical formulas for fracture toughness,

whereas Eq. (28) is semi-empirical in the sense that it is based on mechanistic approach.

4.2. Analytical model for mode II fracture toughness

The effective crack tip distance for Mode II can be derived following steps similar to that in the preceding
section for Mode I.
Relative Density (ρ*/ρs)

α

0 0.05 0.1 0.150

0.05

0.1

0.15

0.2

0.25

Mode I fracture with constant thickness
Mode I fracture with constant length
Mode II fracture with constant thickness
Mode II fracture with constant length

0.308
α

α

= 0.411(ρ*/ρs)

= 0.4730.677(ρ*/ρs)

Mode I

Mode II

0. Variation of a with relative density for Mode I and Mode II fracture. Both constant cell length case and constant strut
ess case follow the same equation.
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The shear stress (s12) distribution ahead of the crack tip is given by:
s12 ¼
KIIffiffiffiffiffiffiffi
2pr

p ð29Þ
The total shear force F over the effective distance l can be derived as
F ¼ c
Z l

0

s12 dr ¼ KIIc

ffiffiffiffiffi
2l
p

r
ð30Þ
The maximum bending moment in the crack tip element is the product of force F and the moment arm
given by c/2:
M ¼ KII

ffiffiffiffiffi
2l
p

r
c2

2
ð31Þ
The maximum bending stress is derived as
r ¼ 6M
h3

¼ 3KII
ffiffiffiffiffi
2l
p

r
c2

h3
ð32Þ
An expression for fracture toughness KII in terms of strut tensile strength, strut dimensions and the effective
distance can be derived as
KII ¼
ruh

3

3c2

ffiffiffiffiffi
p
2l

r
ð33Þ
Using l = ac in the above equation we obtain
KII ¼
ruh

3

3c2

ffiffiffiffiffiffiffi
p
2ac

r
¼ ruh

3

3c3=2

ffiffiffiffiffi
p
2a

r
ð34Þ
From Eq. (34) an expression for a can be derived as
a ¼ ruh
3

3KIIc3=2

ffiffiffi
p
2

r� �2
¼ pr2uh

6

18K2IIc
5

ð35Þ
The constant a can be evaluated using the FE results of fracture toughness. The value of a as a function of
relative density is plotted in Fig. 20. Again, it can be noted that a power law description is adequate forMode
II also. Further the value of a depends only on the relative density and not on individual cell or strut dimen-
sions. It is about 7% of the strut spacing c for low-density foams and about 22% for high-density foams.
5. Mode I fracture toughness of inclined cracks

So far our attention has been focused on cracks parallel to the principal material direction. The next step
will be to study cracks inclined at an angle to the principal material direction. The procedures for predicting
the fracture toughness of angled cracks are very similar to those described in the preceding sections. The
only change is in the material elastic constants, which have to be transformed from the material principal
directions to the global x–y coordinate system where x-axis is aligned parallel to the crack.
The deformation in the vicinity of the crack tip under Mode I fracture for various crack angles are

shown in Fig. 21. One can note the symmetric opening of the crack surfaces behind the crack tip. The var-
iation of Mode I fracture toughness with crack orientation is shown in Fig. 22 for various relative densi-
ties. In all these cases the cell spacing was kept at 200 lm and the density was varied by changing the



Fig. 21. Deformation of foam containing various angled cracks under Mode I loading.
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Fig. 22. Mode I fracture toughness for various cracks inclined to the principal material direction.

Fig. 23. Deformation of foam containing various angled cracks under Mode II loading.
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strut cross-sectional dimension from 10 to 40 lm in steps of 10 lm. It may be noted that the KIc is max-
imum when the crack is oriented parallel to the principal material direction and it reduces by about 50% as
the crack rotates by 45� to the principal direction.
The deformation under Mode II loading for various crack orientation is depicted in Fig. 23. The vari-

ation of Mode II fracture toughness with crack orientation is shown in Fig. 24 for various relative densities.
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Again it is interesting to see that the crack surfaces do not open but slide indicating pure Mode II condi-
tions. Mode II fracture toughness increases with crack angle and it reaches a maximum for cracks oriented
at 45� to the principal material direction. Because of symmetry, the fracture toughness relations for both
Mode I and Mode II in Figs. 22 and 24 are expected to be symmetric about h = 45�.

6. Summary and conclusions

A finite element based micromechanics method has been developed to determine the fracture toughness
of cellular materials. A portion of the cellular medium surrounding the crack tip is modeled using beam
finite elements. Displacement boundary conditions are applied such that they correspond to a given value
of stress intensity factor in a homogeneous solid that has the same elastic constants as the cellular medium.
The stresses developed in the beam elements (struts) are used to determine if the strut will break or not.
From the results the fracture toughness of the cellular medium is estimated. It is shown that the value ob-
tained is independent of the crack length indicating that the calculated value of the fracture toughness is
truly a material property of the foam. The fracture toughness is a function of relative density only for
low-density foams, however at higher densities it depends on the cell size and the strut cross-sectional
dimensions. The concept of an effective length is introduced and empirical formulas for Mode I and Mode
II fracture toughness have been derived. The locus of mixed mode fracture toughness follows a straight line
between Mode I and Mode II fracture toughness values. Cracks at an angle to the principal material direc-
tions were studied. The mode I fracture toughness is maximum when the crack is parallel to the material
principal direction and it is minimum when it is at 45�. The converse is true for Mode II fracture toughness.
Future work will be concerned with developing analytical formulas for angled cracks and foams of different
microstructures including functionally graded foams.
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Appendix A. Crack tip displacement fields for orthotropic materials

The open-cell foam is considered as an orthotropic material. The principal material directions are par-
allel to the 1 and 2 axes. The stress–stain relations in the 1–2 plane for the case of plane stress can be
expressed as
e1

e2

c12

8><
>:

9>=
>; ¼ ½S�frg ¼

1
E� � m

E� 0

� m
E�

1
E� 0

0 0 1
G�

2
64

3
75

r1

r2

s12

8><
>:

9>=
>; ðA:1Þ
The stress–stain relation can be transformed from the 1–2 coordinate system to the x–y coordinate system
by using transformation matrix [T ]:
r1

r2

r3

8>><
>>:

9>>=
>>;

¼ ½T �

rx

ry

rz

8>><
>>:

9>>=
>>;

ðA:2Þ
where the transformation matrix is defined as
½T � ¼
cos2h sin2h 2 sin h cos h

sin2h cos2h �2 sin h cos h

� sin h cos h sin h cos h cos2h � sin2h

2
664

3
775 ðA:3Þ
and h is the angle made by the 1-axis with the x-axis.
By applying the transformation matrix, the compliance matrix ½S� in the x–y plane can be written as
S
� �

¼
S11 S12 S16

S12 S22 S26

S16 S26 S66

2
664

3
775 ¼ ½T �T½S�½T � ðA:4Þ
Explicit expressions for the components of ½S� matrix are as follows:
S11 ¼ S11cos4h þ ð2S12 þ S66Þsin2hcos2h þ S22sin
4h

S12 ¼ S12ðsin4h þ cos4hÞ þ ðS11 þ S22 � S66Þsin2hcos2h

S22 ¼ S11sin
4h þ ð2S12 þ S66Þsin2hcos2h þ S22cos4h

S16 ¼ ð2S11 � 2S12 � S66Þ sin hcos3h � ð2S22 � 2S12 � S66Þsin3h cos h

S16 ¼ ð2S11 � 2S12 � S66Þsin3h cos h � ð2S22 � 2S12 � S66Þ sin hcos3h

S11 ¼ 2ð2S11 þ 2S22 � 4S12 � S66Þsin2hcos2h þ S66ðsin4h þ cos4hÞ

ðA:5Þ
The characteristic equation of the orthotropic material is given by Sih and Liebowitz (1968)
S11l4 � 2S16l3 þ 2S12 þ S66
� �

l2 � 2S26l þ S22 ¼ 0 ðA:6Þ
where the complex roots of the characteristic equation are given by lj (j = 1,2,3,4).
From the four roots, the two unequal roots with positive conjugate values are denoted by s1 and s2:
s1 ¼ l1 ¼ a1 þ ib1; s2 ¼ l2 ¼ a2 þ ib2 ðA:7Þ
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The constants pj and qj (j = 1,2) are related to s1 and s2 as follows:
p1 ¼ a11s21 þ a12 � a16s1; p2 ¼ a11s22 þ a12 � a16s2

q1 ¼
a12s21 þ a22 � a26s1

s1
; q2 ¼

a12s22 þ a22 � a26s2
s2

ðA:8Þ
The displacement field in the vicinity of the crack tip is a function of the orthotropic material parameters p1,
p2, q1, q2, s1 and s2 shown in Eqs. (15) and (16).
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