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This paper presents an analytical two-port, lumped-element model of a piezoelectric composite circular plate. In

particular, the individual components of a piezoelectric unimorph transducer are modeled as lumped elements of an

equivalent electrical circuit using conjugate power variables. The transverse static deflection field as a function of

pressure and voltage loading is determined to synthesize the two-port dynamic model. Classical laminated plate

theory is used to derive the equations of equilibrium for clamped circular laminated plates containing one or more

piezoelectric layers. A closed-form solution is obtained for a unimorph device in which the diameter of the

piezoelectric layer is less than that of the shim. Methods to estimate the model parameters are discussed, and model

verification via finite-element analyses and experiments is presented. The results indicate that the resulting lumped-

element model provides a reasonable prediction (within 3%) of the measured response to voltage loading and the

natural frequency, thus enabling design optimization of unimorph piezoelectric transducers.

I. Introduction

M ANY commonly used electroacoustic devices , such as
microphones and headphones, employ circular disk trans-

ducers that are piezoelectric composite plates. Recent devices, such
as synthetic jet actuators , used in flow control applications, can also
be driven by piezoelectric composite circular plates. Micro-fluidic
pump drivers represent another relatively new application for these
devices [3]. The design of these transducers requires the develop-
ment of analytical models to predict the electroacoustic behavior
of the transducer elements. In addition, these transducers are often
part of a larger, multi-energy domain, dynamic system. Therefore, a
transfer function block is required to relate the input voltage to the
output property of interest (e.g., volumetric flow rate).

A piezoelectric composite plate actuator or sensor represents a
coupled electro-mechanical-acoustic system with frequency
dependent properties determined by device dimensions and material
properties. The analysis and design of coupled-domain transducer
systems are commonly performed using lumped-element models
[1,4]. The main assumption employed in lumped-element modeling
(LEM) is that the characteristic length scales of the governing
physical phenomena are much larger than the largest geometric
dimension. For example, for the vibration of a piezoelectric com-
posite plate, the bending wavelength and electromagnetic wave-
length must be significantly larger than the device itself. If this
quasistatic assumption holds, then the temporal and spatial variations
can be decoupled. This decoupling permits the governing partial
differential equations of the distributed system to be “lumped” into a
set of coupled ordinary differential equations via the solution of the

static equations. The resulting lumped parameter system is used to
construct an equivalent electrical circuit. This approach provides a
simple method to estimate the dynamic response of a piezoelectric
composite plate for design and optimization purposes and is much
simpler than a direct analytical or numerical finite-element model for
estimation of the dynamic response. The quasistatic assumption
limits the validity of LEM to frequencies just beyond the first
fundamental natural frequency [1,4]. Despite this limitation, LEM is
a useful tool because most electroacoustic transducers operate in the
compliance-dominated frequency region or at resonance. For this
study, the lumped-element parameters are determined from the
transverse static response of the composite plate to uniform pressure
loading and voltage applied across the piezoelectric composite.

Previous modeling work in the area of piezoelectric composite
circular plates has mainly focused on structures that are sym-
metrically layered about the neutral axis, such as bimorph trans-
ducers or asymmetric composites in which all layers possess the
same radius [5–9]. Adelman and Stavsky [5] formulated the problem
of piezoelectric circular composite plates using Kirchoff’s plate
theory. The static behavior of metal-piezoceramic unimorphs and
PZT-5H bimorphs containing silver electrodes was obtained. In their
analysis, the radius of the piezoelectric layer was the same as that of
themetallic layer. They found that the static displacement for a given
applied electric field might be significantly different depending on
the manner in which the plate is supported. Dobrucki and Pruchnicki
[6] formulated the problem of a piezoelectric axisymmetric bimorph
in the form of a shell of revolution, but used the finite-element
method to obtain an approximate numerical solution. For the purpose
of experimental verification of their results, they used a flat circular
plate bimorph. Morris and Foster [3] performed optimization of a
piezoelectric bimorph for amicropump driver application. They used
thefinite-elementmethod to compute plate deflections. The effects of
edge support conditions were discussed, and empirical equations
were derived for the optimum actuator dimensions. Heyliger and
Ramirez [7] investigated the free vibration characteristics of lami-
nated composite piezoelectric plates using the weak form of the
governing equations. Chang and Du [8] derived the dynamic
equations of axisymmetric unimorph disk transducers (referred to as
an asymmetric bimorph by the authors). Solutions for the deflection
field were obtained by solving the resulting eigenvalue problem
using the technique of Stavsky and Loewy [10]. Optimum configu-
rations for maximum static displacement sensitivity were presented.
Ha and Kim [9] used impedance and admittance matrices to numeri-
cally simulate the behavior of asymmetric piezoelectric annular
bimorphs. Percin and Yakub [11] analyzed annular piezoelectric
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disks for microelectromechanical systems-based ultrasound
applications. They formulated the plate equations based on the
classical (Kirchoff) plate theory for the first few modes and Mindlin
plate theory for higher modes. They also suggested an equivalent
circuit model for the transducer but limited their discussion to the
electrical input impedance.

Many piezoelectric electroacoustic devices are not bimorphs
possessing midplane symmetry. Such configurations may not be
possible in all applications; i.e., access to electrical leads on both
sides is often precluded. In such situations a unimorph transducer
with a piezoceramic bonded to just one side of the structure is the
only possible configuration. In addition, many commercially avail-
able piezoelectric unimorphs possess piezoelectric layers that do not
cover the entire shim layer. Furthermore, many existing models
result in numerical solutions rather than algebraic expressions and
are computationally expensive for design optimization. Hence, there
exists a need to develop a closed-form solution of the electroacoustic
model for piezoelectric unimorphs.

This paper presents a two-port electroacoustic model of an
axisymmetric piezoelectric unimorph transducer. The synthesis of
the two-port model requires determination of the transverse static
deflection field as a function of pressure and voltage loading. Classi-
cal laminated plate theory (CLPT) is used to derive the equations of
equilibrium of circular laminated plates containing one or more
piezoelectric layers. Figure 1 shows a cross-section of a typical
clamped circular piezoelectric unimorph composite plate subjected
to a uniform transverse pressure loading P and/or an applied voltage
Vac. The piezoceramic material possesses a thickness hp and radius
R1. It is bonded to one side of a shim material possessing a radius R2

and a thickness hs. The pressure and/or voltage loading generates a
transverse displacement field w�r� and a radial displacement field
u�r; z� in the plate. In this paper, the equations are solved for a
practical unimorph device wherein the diameter of the piezoelectric
layer is less than that of the shim, i.e., R1 < R2 (see Fig. 1). Closed-
form expressions for the deflection field as a function of the applied
uniform pressure and/or the uniform electric field across the piezo-
electric layer are found. The deflection field is then used to generate a
two-port electroacoustic model of the unimorph transducer.

II. Two-Port Network Modeling

Ideally, a piezoelectric unimorph actuator/sensor is a linear,
conservative, reciprocal transducer [4]. As an actuator, the
piezoelectric composite diaphragm vibrates in response to an
applied ac voltage. As a sensor, electrical charge is generated on the
piezoelectric electrodes in response to pressure loading. Up to and
just beyond the first resonant mode, the piezoelectric composite
unimorph can be lumped into idealized discrete circuit elements
using conjugate power variables. In this electroacoustic analogy,
differential pressure and voltage are effort variables, whereas current
and volumetric flow rate are flow variables. The resulting
approximate piezoelectric coupling equations for this model are

similar to those of a one-dimensional piezoelectric electro-
mechanical coupling [1,4] and are written as�

�Vol

q

�
� CAS dA

dA CEF

� ��
P
Vac

�
(1)

where �Vol is the volume displaced by the plate due to the
application of differential pressure P and/or voltage Vac, q is the
charge stored on the piezoelectric electrodes,CEF is the electrical free
capacitance of the piezoelectric material, CAS is the short-circuit
acoustic compliance of the shim plate, anddA is the effective acoustic
piezoelectric coefficient of the assumed reciprocal transducer. The
displaced volume is calculated by integrating the transverse
displacement w�r� over the entire plate area

�Vol�
Z

R2

0

2�rw�r� dr (2)

The electrical free capacitance is the capacitance of the
piezoelectric material in an unloaded or “free” state (i.e., P� 0)

CEF �
"r"0�R

2
1

hp

(3)

where "r is the relative dielectric constant of the piezoelectric
material and "0 is the permittivity of free space. The short-circuit
acoustic compliance is determined by integrating the transverse
diaphragm displacement generated by a unit pressure loading with
the piezoelectric layer electrically shorted:

CAS �
�Vol

P

����
Vac�0

�
R R2

0 w�r�jVac�02�r dr

P
(4)

Similarly, the effective acoustic piezoelectric coefficient is most
easily determined from the volumetric displacement due solely to an
applied voltage:

dA �
�Vol

Vac

����
P�0

�
R R2

0 w�r�jP�02�r dr

Vac

(5)

The piezoelectric coupling equations are written in conjugate
power-variable form by assuming sinusoidal steady state operating
conditions, i.e., replacing P and Vac in Eq. (1) by Pe

j!t and Vace
j!t,

respectively, and differentiating Eq. (1) with respect to time,�
Q
i

�
� j!CAS j!dA

j!dA j!CEF

� ��
P
Vac

�
(6)

where

Q�
Z

R2

0

2�r
dw�r�
dt

dr� d��Vol�
dt

� j!�Vol (7)

is the volume velocity, i� _q is the current, and ! is the frequency in
radians per second.

In LEM, the coupling between the two different energy domains is
realized by using equivalent two-port models [4]. For this paper, we
employ an impedance analogy, in which elements that share a
common effort are connected in parallel, whereas those sharing a
common flow are connected in series. Because an ideal piezoelectric
unimorph is an indirect, conservative transducer, the two-port model
can be represented by a transformer with a parallel shunt capacitance
attached to the electrical port and a series compliance attached to the
mechanical port as shown in Fig. 2.

The parameter �, also called the transformer turns ratio in the
equivalent circuit representation, is the electroacoustic transduction
coefficient. This coefficient is defined as the negative ratio of the
effective acoustic piezoelectric coefficient and the short-circuit
acoustic compliance of the plate,

��� dA

CAS

(8)

hp

z

piezoelectric

shimhs

p

R1

r

Vac

R2

Fig. 1 A cross-sectional schematic of a clamped axisymmetric

piezoelectric transducer.
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The blocked electrical capacitance is related to the free capacitance
by

CEB � CEF�1� k2� (9)

where k2 is the electroacoustic energy-coupling factor,

k2 � d2
A

CEFCAS

(10)

This coefficient provides an indication of the electroacoustic energy
conversion efficiency for the unimorph transducer but does not yield
the actual efficiency because it does not account for electrical and
mechanical losses as well as electrical and mechanical loads [1].

The equivalent circuit in Fig. 2 is exact in the static limit as! ! 0,
but an effective short-circuit acoustic mass, MAS, must be added in
series with the acoustic compliance as shown in Fig. 3 to accurately
approximate the dynamic behavior up to just beyond the first
resonant frequency [4]. The acoustic mass is determined by equating
the lumped kinetic energy of the electrically shorted vibrating
diaphragm expressed in acoustic conjugate power variables to the
total kinetic energy,

MAS � 2�

Z
R2

0

�A

 
w�r�
�Vol

����
Vac�0

!
2

r dr (11)

where �A is the areal density of the piezoelectric composite plate
(kg=m2),

�A �
Z

z2

z1

� dz (12)

and � is the density of the corresponding layer.
The short-circuit resonant frequency fS of the lumped-element

model of the piezoelectric unimorph is

fS �
1

2�
������������������
CASMAS

p (13)

The lumped-element model is an idealized representation that
does not take into account mechanical dissipation due to structural
damping or acoustic radiation. It also does not take into account the
dielectric losses in the piezoelectric material. Depending on the
application of the unimorph, these losses can be represented by
parallel and/or series resistors attached to the mechanical and
electrical ports [1].

III. Electromechanical Plate Model

The synthesis of the two-port, lumped-element model outlined in
the preceding section requires the determination of the short-circuit
acoustic compliance, Eq. (4), the effective acoustic piezoelectric
coefficient, Eq. (5), and the short-circuit acoustic mass, Eq. (11). All
of these quantities depend on the electromechanical behavior of the
piezoelectric composite plate.

The equilibrium equations [12–14] of the axisymmetric plate
shown in Fig. 1 are

dNr

dr
� Nr � N�

r
� 0 (14)

Qr �
dMr

dr
�Mr �M�

r
(15)

and

dQr

dr
� P�Qr

r
� 0 (16)

where Nr and N� are the force resultants in the radial and
circumferential directions, respectively. Similarly,Mr andM� are the
moment resultants, andQr is the transverse shear force resultant. The
number of equilibrium equations can be reduced to two by
substituting for Qr from Eq. (15) into Eq. (16) to obtain

1

r

d

dr

�
r
dMr

dr
�Mr �M�

�
� P� 0 (17)

The radial and circumferential strain-displacement relationships
from Kirchoff’s plate theory are

"rr � "0rr � z�r (18)

and

"�� � "0�� � z�� (19)

where �r ���d2w=dr2� � ��d�=dr� and �� ���1=r��dw=dr� �
���=r� are the radial and circumferential curvatures, respectively,
and � is the transverse deflection slope. The strains in the reference
plane (z� 0) are

"0rr �
du0

dr
(20)

and

"0�� �
u0

r
(21)

The constitutive equations for a transversely isotropic, linear
elastic axisymmetric piezoelectric plate are�

�rr
���

�
� �Q�

�
"0rr
"0��

�
� z

�
�r
��

�
� Ef

�
d31

d31

�� �
(22)

where

�Q� � E

1 � �2

�
1 �
� 1

�
(23)

E is the Young’s modulus, and � is Poisson’s ratio. The last term in
Eq. (22) is due to the piezoelectric effect, where Ef � Vac=hp is the
electric field strength for an electrically conductive shim, and d31 is
the piezoelectric modulus. The explicit z-dependence of the material
properties is understood and is omitted here for convenience.

The force and moment resultants are obtained by integrating the
constitutive equations through the thickness of the composite plate,
resulting in �

Nr

N�

�
� �A�

�
"0rr
"0��

�
� �B�

�
�r
�r

�
�
�
NP

r

NP
�

�
(24)

+

-

Vac

+

-

P

i QφQ

φVac

+

-

 CEB

1:φ CAS

Fig. 2 Equivalent two-port circuit representation of piezoelectric
transduction.

+
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-
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 CEB

1:φ CAS MAS

Fig. 3 Equivalent two-port circuit representation of axisymmetric

piezoelectric unimorph disk.
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and �
Mr

M�

�
� �B�

�
"0rr
"0��

�
� �D�

�
�r
��

�
�
�
MP

r

MP
�

�
(25)

where

�A� �
Z

z2

z1

�Q� dz (26)

is the extensional stiffness matrix,

�B� �
Z

z2

z1

�Q�z dz (27)

is the flexural-extensional coupling matrix, and

�D� �
Z

z2

z1

�Q�z2 dz (28)

is the flexural stiffness matrix. In the preceding expressions, z1 is the
z location of the bottom of the composite, and z2 represents the z
location of the top of the composite. As shown in Fig. 1, the reference
plane was chosen to be at the middle of the shim material to simplify
the annular plate solution.

The piezoelectric coupling generates both force and moment
resultants that are given by

NP
r

NP
�

� �
�
Z

z2

z1

Ef�Q� d31

d31

� �
dz (29)

and

MP
r

MP
�

� �
�
Z

z2

z1

Ef�Q� d31

d31

� �
z dz (30)

The governing equations for a piezoelectric composite plate are
derived by substituting for the force and moment resultants from
Eqs. (29) and (30) into the equilibrium equations, Eqs. (14) and (17).
Then the strain and curvature terms are replaced by displacement
u0�r� and slope ��r� to obtain the two equilibrium equations in terms
of u0�r� and ��r� as

d2��r�
dr2

� 1

r

d��r�
dr

� ��r�
r2

�� Pr

2D�
11

(31)

and

d2u0�r�
dr2

� 1

r

du0�r�
dr

� u0�r�
r2

�� Pr�

2D�
11

(32)

where �� B11=A11 and the reduced bending stiffness is
D�

11 � �D11 � �B2
11=A11��.

The specific problem shown in Fig. 1 is solved by combining the
homogenous annular plate solution with the solution of the inner
piezoelectric composite plate of radius R1. Equations (31) and (32)
are thus valid for both the inner circular and outer annular regions. In
the inner piezoelectric composite plate region, the electric field is not
a function of r; therefore the piezoelectric force and moment
resultants are constant. As a result, the piezoelectric coupling does
not explicitly appear in the governing displacement equations, but
arises from the matching conditions at the interface (r� R1). The
general solutions to Eqs. (31) and (32) are

��r� � b1r�
b2

r
� 1

D�
11

�
Pr3

16

�
(33)

and

u0 � a1r�
a2

r
� �

D�
11

�
Pr3

16

�
(34)

where a1, a2, b1, and b2 are arbitrary constants. The inner and outer

solutions require the determination of eight constants via boundary
conditions and interface matching conditions. The boundary
conditions consist of finite values at the origin and clamped
conditions at the support:

��0�<1 (35)

u0�0�<1 (36)

u0�R2� � 0 (37)

and

��R2� � 0 (38)

The interface compatibility conditions between the inner circular
composite plate and the outer annular plate are

��1��R1� � ��2��R1� (39)

u�1�
0 �R1� � u�2�

0 �R1� (40)

N�1�
r �R1� � N�2�

r �R1� (41)

and

M�1�
r �R1� �M�2�

r �R1� (42)

where the superscripts (1) and (2) denote the central composite plate
and annular shim regions, respectively. The piezoelectric coupling is
introduced by the piezoelectric contributions to the integrated force,
Eq. (29), andmoment, Eq. (30), resultants in thematching conditions
at the interface Eqs. (41) and (42).

The transverse deflection w0�r� is calculated by first integrating
the slope ��r� with respect to the radius in each of the regions and
then by applying the clamped boundary condition and the matching
conditions at the interface. The resulting expressions for transverse
deflection for the inner and outer regions are

w�1�
0 �r� � b�1�

1

�
r2 � R2

1

2

�
� P�r4 � R4

1�
64D��1�

11

� b�2�
1

�
R2
1 � R2

2

2

� R2
2 ln

�
R1

R2

��
� P

64D�2�
11

�
4R4

2 ln
�
R1

R2

�
� R4

1 � R4
2

�
(43)

and

w�2�
0 �r� � b�2�

1

�
r2 � R2

2

2
� R2

2 ln
�
r

R2

��

� P

64D�2�
11

�
4R4

2 ln
�
r

R2

�
� r4 � R4

2

�
(44)

respectively. The expressions for the constants are found in the
Appendix and the complete details of the solution are given in Prasad
. The short-circuit acoustic compliance is then obtained fromEq. (4):

CAS �
2�

P

�
b�1�
1

��R4
1

8

�
� b�2�

1

��R2
2 � R2

1�2
8

�
� PR6

1

192D��1�
11

� PR2
1��R4

1 � 3R4
2 � 2R6

2=R
2
1�

192D�2�
11

�����
V�0

(45)

The effective acoustic piezoelectric coefficient is obtained from
Eq. (5):

dA �
2�

V

�
b�1�
1

��R4
1

8

�
� b�2�

1

��R2
2 � R2

1�2
8

������
P�0

(46)

The expression for the acoustic mass [Eq. (11)] does not possess a
closed-form solution and is obtained via numerical integration.
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IV. Model Validation and Parameter Extraction

Both numerical simulations and experiments are used in to
validate the two-port lumped-element model. The devices used are
commercially available circular piezoelectric unimorphs (APC
International Ltd.—Model APC 850) whose characteristics are
summarized in Table 1.

First, a finite-element (FE) analysis of the structure is performed
to validate whether CLPT is appropriate to model a device. As
noted previously, the composite plate can respond to two types of
loading: voltage and/or pressure. A FE analysis is then indepen-
dently performed in Abaqus for both loading situations. The
shim plate is modeled using eight-node biquadratic axisymmetric
solid elements having the transverse and radial displacements as
degrees of freedom (DOF), whereas the piezoceramic is modeled
using eight-node biquadratic axisymmetric piezoelectric quadri-
laterals having the transverse and radial displacements and electri-
cal potential as DOF. The electric potential DOF is only active
during the voltage loading analysis. A grid resolution study yielded
a total of 110 	 3 elements used for the piezoelectric part and 130 	 4
elements to accurately model the shim. The elements are clustered
near the edge of the piezoelectric patch where maximum shear
stress occurs. Because axisymmetric elements are employed, a
symmetric boundary condition (BC) is applied at the middle
plane section and the edge of the shim surface has a perfectly
clamped BC. Furthermore, a perfect bond is assumed between the
piezoceramic and the shim. Because the FE model uses solid
elements, the converged solution may be considered as exact.
Figures 4 and 5 show excellent agreement between the plate theory
deflection and the FE results for both pressure and voltage loading
analysis, respectively. This indicates that the geometry, material
properties, and support conditions of the device allow use of CLPT in
the present case.

Next, an experimental investigation is performed to further
validate the ability of the analytical model to predict dynamic effects.
The transverse deflection of the clamped piezoelectric com-
posite plate is acquired via a Polytec PI scanning laser vibrometer
(MSV200), as shown in Fig. 6, and the measured velocity is
integrated in the frequency domain to obtain displacement. The
frequency response of the diaphragm center isfirst acquired, inwhich
the device is excited by a low voltage (5 V amplitude) periodic chirp
signal with frequencies ranging from 200 to 4000 Hz. The results,
shown in Fig. 7, are representative of a typical second-order
underdamped system with a damping ratio 	 
 0:007 and reveals
that the fundamental natural frequency fd � 3505 Hz compares
favorably with the predicted short-circuit natural frequency via
Eq. (13) of fs � 3542 Hz. The measured fd frequency is slightly
different from the predicted fs due to the finite source impedance of
the function generator. Note that an empirical acoustic resistance

RAS � 2	
��������������������
MAS=CAS

p
can be inserted in series with CAS andMAS in

Fig. 3 to account for acoustic radiation and inherent structural
damping.

Next, to determine the mode shape of the piezoelectric diaphragm
at low frequencies, the scanning laser vibrometer is again used,
where the radius of the diaphragm is scanned every 0.6 mm and a
fixed input sinusoidal voltage of 5 V at 100 Hz is applied across the
piezoceramic. As shown in Fig. 7, this frequency is sufficiently close
to dc to represent the static response of the composite diaphragm and
to allow a direct comparison with the predicted analytical model
response. The comparison is shown in Fig. 8, where fair agreement is
obtained between the linear static mode shape predicted by the
analytical model and the experimental data. Uncertainty estimates of
the frequency response function are calculated and shown in the
figure in accordance with the procedures outlined in Bendat and
Piersol [16].

Table 1 Properties of APC 850 device

Geometric properties

Outer radius R2 11.5 mm
Radius of piezoelectric R1 10.0 mm
Radius of silver 9.2 mm
Thickness of shim hs 0.20 mm
Thickness of piezoelectric hp 0.23 mm
Thickness of silver 1 
m
Material properties

Elastic modulus of shim Es 90 GPa
Poisson’s ratio of shim �s 0.32
Density of shim �s 8700 kg=m3

Elastic modulus of piezoelectric Ep 63 GPa
Poisson’s ratio of piezoelectric �p 0.31
Density of piezoelectric �p 7700 kg=m3

Electrical properties

Relative dielectric constant "r 1750
Piezoelectric constant d31 �175 pm=V

Fig. 4 Comparison of center deflection for different radii of the

piezoelectric material as predicted by the analytical solution and finite-
element model for unit pressure loading with Vac � 0 and hp=hs � 0:4.

Fig. 5 Comparison of center deflection for different radii of the

piezoelectric material as predicted by the analytical solution and finite-

element model for a unit voltage loading with P � 0 and hp=hs � 0:4.

Scanning
Laser

Vibrometer

Piezoelectric composite
circular plate

PZT

Incident
laser

Reflected
laser

Brass

V

Fig. 6 Schematic of the experimental setup showing the scanning laser
vibrometer focused on the clamped PZT unimorph transducer being

excited by a sinusoidal voltage.
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The present theory is used to extract the lumped-element
parameters used in the two-port network model. Table 2 summarizes
the results. The lumped-element model predicts the experimental
resonant frequency shown in Fig. 5 to within 3%. The error in the
prediction of the center transverse deflection is also approximately
3%. This implies that the effective acoustic piezoelectric coefficient,
which is a function of the transverse deflection and mode shape, also
matches well.

The results from the experiments and numerical simulations
confirm the validity of the linear electroacoustic model presented in
this paper. However, some limitations of this model need to be
pointed out. First, the effects of the bond layer between the
piezoelectric and the shim layers, as well as the silver electrode, are
neglected in the current analyticalmodel.Additional FE analyses and
experiments have shown that the silver layer (having a thickness on
the order of 1 
m) does not significantly affect the performance of
the device in terms of mode shape and stress distribution. On the
other hand, the effect of the bond layer (having a thickness on the
order of 25 
m) is negligible only when the thickness of the
piezoceramic is at least a few times greater than the bond layer. In
addition, the axisymmetric assumption implies that the circular
piezoceramic patch is bonded in the center of the shim, and the
commercially available unimorphs exhibit some nonuniformity in

this regard. Finally, it should be emphasized that an ideal clamped
boundary is difficult to achieve in practice. In our setup, thick clamp
plates are used in conjunction with several uniformly spaced bolts
around the circumference, and uniform clamping pressure is assured
via a torque wrench. Nonetheless, despite these limitations, the two-
port electroacoustic model presented in this paper is shown to yield a
valid prediction of the dynamic response of the piezoelectric
composite plate actuator for design and optimization purposes.

V. Results and Discussion

Using the validated model, the general effects of pressure and
electrical loading are now studied in greater detail. For the pressure-
loading case, the nondimensional center deflection, �wP�0�, is
obtained via normalization ofwP�0� by the corresponding value for a
homogeneous plate with the same radius, thickness, and material
properties of the shim

�wP�0� �
wP�0�

PR4
2=64D

�2�
11

� wP�0�=R2

3
16
�1� �2s��P=Es��R2=hs�3

(47)

where D�2�
11 �Ds � Esh

3
s=12�1 � �2s� is the flexural rigidity of the

shim, and the subscript P denotes pressure loading. The main
advantage associated with this choice is that the nondimensional
deflection is dependent only on the ratio of the radii, thickness and
Young’s modulus of the piezoceramic material and the shim

�wP�0� � f

�
Ep

Es

;
hp

hs

;
R1

R2

�
(48)

The parameter �p=�s does not vary sufficiently to be a design
parameter.

The best way to illustrate the device behavior is to plot the
nondimensional center deflection against the radius ratio R1=R2 for
different values of hp=hs and for a fixed Ep=Es as shown in Fig. 9.
The value of Young’s modulus ratio Ep=Es � 0:7 (Brass/PZT)
corresponds to the APC 850 piezoceramic unimorph transducer. The
results demonstrate that the theory correctly reverts to homogeneous
plate behavior as the nondimensional piezoceramic radiusR1=R2 and
thickness hp=hs approach zero. Furthermore, as R1=R2 and hp=hs

increase due to increase piezoceramic patch size, the nondimensional
center deflection due to pressure loading decreases as expected due to
the increased stiffness of the device.

Similarly for an applied voltage, the center deflection is
nondimensionalised by the product of the piezoelectric modulus, the
piezoelectric radius and the critical electric field Efcrit

�wV�0� �
wV�0�

Efcrit
d31R2

(49)

where Efcrit
� 30 V=mil is a typical coercive field for PZT and the

subscript V denotes an applied voltage. Nondimensionalizing by
electric field, and not by applied voltage, was selected in Eq. (49) for
optimization purposes. In practice, it is likely that a large (or near
coercive) electric field will be imposed as an operational constraint.
Furthermore, the typical design problem is to maximize �wV�0� by
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Fig. 7 Measured displacement frequency response function at r� 0
obtained by integrating velocity measurements.

Fig. 8 Comparison between the measured mode shape at 100 Hz and

the static linear composite plate theory.

Table 2 Lumped-element model parameters

Parameter Theory Experiment Error, %

� 138:3 Pa=V —— ——

CAS 1:5243 	 10�13 m4s2=kg —— ——

MAS 13456 kg=m4 —— ——

dA �2:1080 	 10�11 m3=V —— ——

CEF 21.155 nF —— ——

CEB 18.239 nF —— ——

k2 0.1378 —— ——

fs 3514.1 Hz —— ——

fd —— 3505 Hz 0.3
w0�0�jP�0

Vac

0:1163 
m=V 0:1182 
m=V 1.6
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varying the piezoceramic dimensions for a prescribed shim radius
R2. The nondimensional deflection is again dependent only on the
ratios of the radius, thickness, and Young’s modulus

�wV�0� � f

�
Ep

Es

;
hp

hs

;
R1

R2

�
(50)

As before, the best way to illustrate this behavior is to plot the
nondimensional center deflection versus the radius ratio R1=R2 for
different values of hp=hs and for Ep=Es � 0:7. Figure 10 reveals
several interesting features. First, for a given thickness ratio hp=hs,
there exists an optimum piezoceramic patch radius to maximize the
deflection due to an applied voltage. As hp=hs increases from 0 to
1.2, �wV�0�monotonically increases and the optimumvalue ofR1=R2

increases from approximately 0.65 to 0.85. In contrast to a
piezoelectric cantilever unimorph, the assumption of a clamped
boundary condition forces �wV�0� � 0 when the piezoelectric
material covers the entire shim. In practice, the boundary condition
will possess finite compliance, and hence will result in a finite
deflection.

VI. Conclusions

This paper presents an analytic two-port, lumped-element model
of an axisymmetric piezoelectric unimorph transducer. LEM

provides a compact analytical model and valuable physical insight
into the dependence of the device behavior on geometry andmaterial
properties. The synthesis of the two-port model requires
determination of the transverse static deflection field as a function
of linear pressure and voltage loading. Classical laminated plate
theory is used to derive the equations of equilibrium for clamped
circular laminated plates containing one ormore piezoelectric layers.
The equations are solved for a unimorph device wherein the diameter
of the piezoelectric layer is less than that of the shim. The model is
validated using both finite-element analyses with separate pressure
and voltage loading and experiments with voltage loading. In
particular, the natural frequency inferred from the lumped-element
model compares favorably with the experiments. Limitations of the
model are discussed.

The nondimensional center deflection depends only on the radius
and thickness ratios of the piezoceramic to the shim as well as the
material properties. In terms of application, the derived analytical
expressions of the lumped-element parameters will be useful for
modeling, design, and optimization of transducer systems that use
unimorphs. Specifically, this model has already been employed in
the electroacoustic model of synthetic jet actuators [2].

Appendix: Solution Constants

The constants involved in the general solution are obtained by
substituting the boundary and interface matching conditions in the
general solution [15]. They are listed here:

a�2�
1 � �

�1 � R2
2=R

2
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�
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11 � B�1�
12 �� �
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��
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�
� �s
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