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Abstract 

An analytical method has been developed to determine the state of three-dimensional stresses in a sphere subjected to multiple contact 
loads. The method has been used to study the stress distribution in a sphere under a variety of loading conditions important to particulate 
systems. It is found that in the case of three-point in-plane loading the maximum ter, sile stresses are larger than that in uniaxial compression. 
As the number of contact points increases, the maximum internal tensile stress, in general, decreases as the state of stress inside the sphere 
approaches hydrostatic compression. The method was used to analyze the stresses in some tests carried out on glass and alumina spheres. The 
stress analysis indicates that the maximum contact stress and hence the tensile stress outside the contact circle ton'elate well with failure and 
are partially responsible for attrition in particulate systems. ~.3 1997 Elsevier Science S.A. 
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I. Introduction 

Attrition is the wear and fracture of particles during trans- 
port and handling. Some of the industries which face this 
problem are the cement, agricultural, mineral and chemical 
industries. Attrition is manifested in many ways, including 
lbrmation of line dust, breakage of bigger particles into 
smaller ones, contamination of food grains, etc. The effect of 
attrition is more widespread and is not understood properly 
because of the complex nature of the process itself, in real 
time flow systems, the shape, size and number of particles 
are highly irregular and change with time. Attrition depends 
on particle shape and size, the fluid or gas velocity, and the 
material properties of the particles, fike Young's modulus 
and fracture toughness, in fact, attrition occurs whenever 
there is some relative velocity between particles in contact. 
it occurs during collision between particles or when the .r'ar- 
ticles collide against the wall of the container or during con- 
fined compression. Hence, the number of particles change 
with time and it is very difficult to simulate such a granular 
flow. in order to understand the physical process involved in 
attrition and to assess attrition, a number of tests have been 
conducted by different people. A detailed analysis of attrition 
and the various tests to describe it were studied by Bemrose 
and Bridgewater I I I in 1987. They discussed the process of 
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attrition, the different types of attrition and the industries 
affected due to attrition, it is very important to get the com- 
plete stress distribution of an attriting particle for a better 
understanding of its resistance to attrition. One of the impor- 
tant steps in this understanding is the analysis of the single 
particle in detail under different types of loading. The particle 
under uniaxial compression was studied in detail by Shipway 
and Hutchings 121 but they did not discuss the state of internal 
stress under such a loading. Kienzler and Schmitt 131 studied 
the compression of spheres using the finite element method 
( FEM ). However, they did not give a detailed description of 
the state of internal stress under such a configuration. Ouwer- 
kerk 141 studied the micromechanical connection between 
the single-particle strength and the bulk strength of random 
packing of spherical particles with reference to attrition. They 
made use of the discrete element method ( DEM ) to simulate 
the tests on packed spheres as a function of particle-particle 

interactions. 
Since in a real particulate system the particles will be under 

multiple contacts we decided to analyze an idealized version 
of the multiple contact problem. In this paper we describe an 
analytical method to compute the state of stress in a spherical 
particle subjected to multiple contact loading on its surface. 
The method is based on the elasticity solution of Dean, Sned- 
don and Parsons (DSP solution) 15] for a sphere under a 
single contact load which is equilibrated by a uniformly dis- 
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tributed body force. In this paper we have extended the 
method for spheres under multiple contacts, and the loads are 
assumed to be self-equilibrating. Numerical results are pre- 
sented for the case of a sphere under: (i) uniaxiai compres- 
sion; (ii) four-point loading; (iii) three-point in-plane 
loading; and (iv) six-point orthogonal loading. Interestingly. 
the maximum tensile stress in the case of three-point in-plane 
loading is about 25% larger than that in uniaxiai compres:: on. 
The stress analysis procedure is also used to study the state 
of stress in two multiaxial compression tests performed in a 
companion study [ 61. We suggest that the stress analysis will 
be useful in understanding the breakage of spheres under 
multiaxial loading. 

X 

,Y 

Fig. 2. Coordinate system for single-particle and multiple particle systems. 

2. Analytical method 

The analysis of stress c'.istribution in a sphere subjected to 
uniform hydrostatic pressure (pressure normal to the surface 
of the sphere) on a part of its surface while being decelerated 
by a uniform body force (Fig. i ) was first studied by Dean 
et al. I51 in 1944. The stress field obtained by them can be 
considered as a first approximation to a sphere impacting a 
target. The static equilibrium was achieved by balancing the 
external pressure by uniformly distrtbuted body pressure. In 
this method the applied surface pressure was expanded in a 
series containing spherical harmonics. A closed-form solu- 
tion for displacements and stresses was obtained for each 
term in the series. The solution for each harmonic was then 
summed to obtain the solution for the stated problem. The 
stresses are given in a spherical coordinate system shown in 
Fig. 2. Since the case is an axisymmetric one, out of the six 
stresses tr,,. or,,, cr,t,,t,, ~ro,t,, ~r,,., and ~r,,. the two shear stresses 
with tb as one of the subscripts are equal to zero. The formulae 
for the stresses are given in Appendix A. The stresses are 
dependent only on the radius of the sphere R. applied pressure 
p. and the angle 0~ that detines the contact radius. The solution 
is in terms of the r .'rod 0 coordinates of the point where the 
stresses need to be found. Because of the axisymmetric nature 

la 

IT'IIT ) 
Fig. I .  A sphere '~ubjected to unifl)rm pressure and decelerated by a uniform 
~dy  force 

of the problem, the solution is independent of tb. The accuracy 
of the solution depends on the number of terms used in the 
series. 

The solution as obtained is linear and hence two or more 
such solutions can be superposed to obtain solutions for var- 
ious other problems of practical significance. For example. 
Shipway and Hutchings [ 2 ] superposed two solutions ( pres- 
sure being applied at 0 = 0  ° and 0= 180 °) to treat the case of 
a sphere in uniaxiai compression. The uniaxial compression 
case is strictly a contact problem, wherein the contact stress 
distribution takes an ellipsoidal shape. However. the above 
solution is fairly accurate as the forces tend to redistribute 
themselves during compression and hence the assumption of 
uniform pressure to calculate stresses is valid in this context. 
Shipway and Hutchings [ 2 ] found the stress distribution on 
the surlhce of the sphere as well as at points along the loading 
axis for different contact radii, i~ their analysis, they fotmd 
that the maximum ten,;ile stre:,.; ,~n the surface occurs at the 
equatorial belt and If.is value is about 0.4 times the applied 
force divided by the tnaximum cross-sectional at'e;~ of the 
sphere. They plotted the maximum tensile stress along the 
loading axis. They observed that for small t'/R. where c' is 
the cc~,tact radius .~r~d R is the radius of the sphere, the peak 
tensile stress occurs very near to the st,.face and that this peak 
decreases with the increase in t ' /R and moves toward the 
center, in the present p'~per, a similar analysis was carried out 
;,-~r spheres in multi-point compcession making use of the 
DSP solution and subsequent transformation of stresses to a 
global coordinate system. 

In the present study we use the DSP solution 151 to solve 
the problem of a sphere under multiple contact loading, it is 
assumed that the external loads are applied in such a way that 
the sphere is in static equilibrium. The solution to this prob- 
lem can be obtained by superposing the corresponding DSP 
solution as the decelerating body forces in the DSP solution 
151 will be self-equilibrating and get canceled alter the super- 
position. The superposition procedure is described in 
Appendix B. 

Consider a sphere of radius R under N contact loads acting 
on the surface. The contact pressures are assumed to be uni- 
form within the respective contact region.,, and also to be 
hydrostatic, as assumed in the DSP solution. This means that 
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the external pressme acts normal to the surface in the contact 
region and not parallel to the loading axis. However. for small 
contact radii, we can assume that the entire pressure loading 
is parallel to the loading axis. Then the ith contact load P, can 
be approximated as P, '--7rc,-~#, where c~ and/.t, are the ith 
contact radius and contact pressure, respectively. The contact 
radius for each contact load can be estimated by using the 
Hertz formula [ 71 or from experiments. 

The number of terms used to sum the stresses was about 
2000 for all examples in this study. There were small oscil- 
lations in the stresses for very small contact regions ( Gibbs" 
effect): however, for most cases the solution converged to a 
constant ~,alue. 

3 .  N u m e r i c a l  r e s u l t s  

We applied the analytical method described above to four 
problems: (i) uniaxial compression: ( ii ) four-point loading: 
(iii) three-point in-plane loading: and (iv) six-point mul- 
tiaxial loading. The purpose of the uniaxial compression case 
was to provide additional results that were not given by 
Hutchings and Shipway 12 I. For example, the results include 
the state of internal stresses in the entire sphere under uniaxial 
compression. Cases ( ii )-( iv ) represent more realistic situa- 
tions, such as occur in granular flows. In the case of four- 
point loading (see Fig. 3) the sphere is supported by three 
identical spheres at the bottom and loaded on the top. Exper- 
iments were also conducted on several brittle materials in 
simulating this configuration, in the case of three-point in- 
pl:me loading, tile three forces are on one plane and symmetric 
about the center, in the case of six-point loading, eqmd and 

(,,) (b )  

(c )  ( d )  

Fig. 3. Different types of h)ading: (a) uniaxial: (b) three-point in-plant" 
loading: ( c ) six-point Io~,ding: and ( d ) four-point loading. 

opposite forces are applied along the three mutually perpen- 
dicular coordinate axes. These configurations are depicted in 
Fig. 3. In all cases we limited the value ot c / R  to 0.2. which 
is the maximum we observed in the tests conducted in a 
companion study 161. All stresses are nondimensionalized 
with respect to P)/rrR -~. where P. i~ the primary load acting 
on the top of the sphere. 

3. I. U ,  iaxial ( 'ompressio ,  

The maximum tensile principal stresses at points inside the 
sphere are plotted for c/R = O. I in Fig. 4. The nondimensional 
stresses are plotted as a function of r / R  for various values of 
0. The very high stres,,es that occur outside the contact circle 
on the surface of the sphere are not shown in the figure. From 
Fig. 4 it may be noted that a large volume of the sphere (0 < 
r /R<0 .6 .  0 < 0 < 9 0  °) is subjected to a nondimensional 
stress of about 0.6. This was the case for c / R  = 0.2 also. This 
high value of tensile stress could cause catastrophic failure 
in spheres where the surl;ace flaws have been removed by 
some processes such as acid etching or surface erosion. 

3.2. ['oto'-i~oint loading 

Tile maximum principal stresses on the surface for 
c / R  = 0.2 and for various & values arc plotted in Fig. 5 as a 
function ()f #. It must be noted that for this loading the bottom 
supports are at #=  144.76 ° and at (b = 0  °. 120 ° and 240 °. 
respectively. As is evident from the figure, the stress is very 
high .just outside tile contact circles, but it occurs over a 
narrow region. Elsewhere on tile surface the stress is very 
low and the rnaximum value of this nondimensional stress is 
al~out 0.4. which is the same as that which occurs in t, niaxial 
c~mlpres.~ion, as discussed in Section 3. I. Further. the surface 
stresses exhibit good axisymmetry about the loading axis up 
to #=  100 °. This stress is present over a large volume of the 
sphere, it was observed Ihat the peak tensile stress near tile 
contact region decreases with increase in c /R .  whereas the 
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Fig. 5. M a x i m u m  principal stress on the surface o f  Ihe sphere on different  
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Fig. 7. M a x i m u m  principal stress a long the loading axis in two-point  loading 
and tour-point  loading. 
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Fig. 6. Maximum principal stress along the loading axis in fuur-point loading. 

ntaximum stress away from the contact region (-,,0.4~ 
remains unaffected. 

The maximum stress at internal points in the entire top half 
of the sphere for the case c/R = O, ! can be visualized from 
Figs. 6-8. The nondimensional principal stresses on the load- 
ing axis forc/R=O,I and 0.2 are shown in Fig. 6. It is clear 
from these figures that with increase in c/R the peak tensile 
stress decreases and it also moves closer to the center of the 
sphere. The maximum internal stress on the loading axis for 
various c/R values is compared with corresponding results 
from two-point compression in Fig, 7. it may be noted that 
the results are identical, indicating that the nature of the bot- 
tom supports (either one support or three supports) does not 
alter the maximum stress that occurs closer to the top contact 
region, at least for 0 < clR < 0,2. 

Fig. 8 represents a plot of internal stress against r/R for 
~b= O. it may be interesting to compare these figures with the 
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Fig. 8, Maximum principal stress along radial lines in the four-point test on 
the plane defined by dJ=O ° and fi)r t'IR =O. I. 

corresponding uniaxiai compression results presented in 
Fig. 4. The maximum stress at the center of the sphere in four- 
point loading is about 0.4, compared with the value of O.6 in 
uniaxial compression. When the internal stress was plotted 
against r/R tbr 05-30 ° and 60 °. the pattern obtained was 
similar to that for 05= 0 °. The axisymmetric nature of the 
stresses is approximately preserved lbr 0 0 < 0 < 6 0  °. For 
O = 90 ° (equatorial plane) the stresses also vary with respect 
to 05. In general, the internal stresses are considerably less in 
four-point compression than in two-point compression, 

3.3. Three-point in-plane hJading 

In the case of three-point loading, three equal loads were 
applied in the ;adial direction on a plane given by 05=0 ° 
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(Fig. 3). The (&, 0) values in degrees for the three contact 
points were (0, 0),  (0, 120) and ( 180, 1201, respectively. 

Fig. 9 shows the plot of the nondimensional maximum 
principal stress along the loading axis for c/R = O. I, 0.2, 0.3 
and 0.4. It may be noted that very close to the loading point 
( r/R = I ) the stress distribution is similar to that in uniaxial 
compression. It is observed that the nondimensional stresses 
in the central region of the sphere are very high ( ~ 0.9),  
unlike the cases for uniaxial compression or four-point load- 
ing where the corresponding values were 0.6 and 0.4, respec- 
tively. The surface stresses for different O and ~b values are 
shown in Fig. 10. It is very interesting to note that the maxi- 
mum surface stress at regions away from the contact point is 
about 0.5, which is higher than for the earlier cases where the 
stress was about 0.4. This maximum stress occurs at 0 =  60° 
in the loading plane and also at the bottom of the sphere 
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Fig. 12. Maximum principal stress along the loading axi.~ in the six-point 
test. 

( 0 =  180°). The stress was also plotted along the radial lines 
in the loading plane for different 0 in Fig. I I. Again it can be 
seen that the maximum stress is about 0.9 and that it occurs 
in most of the interior region of the sphere. 

3.4. Six-point orthogonal loading 

The variation of nondimensionai stress along the loading 
axis lbr different c/R values is shown in Fig. ! 2. When com- 
pared with uniaxial compression and other types of loading 
discussed earlier, it may be seen that the region of tensile 
stress is very limited, and most of the inner region is under 
compression. Fig. 13 shows the variation of surface stress 
with 0 for different planes (4,). The maximum peak tensile 
stress at points away from the contact region is only 0.2 and 
it occurs at 0 = 4 5  ° . The maximum stress away from the 
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contact region is low and is about 0.2, much lower than that 
for uniaxiul compression. 

4. Experimental results 

in order to understand better the failure of a spherical 
particle under muitiaxial loading, three types of confined 
compression tests were perlbrmed. In these tests sodalime 
glass and alumina spheres were subjected to two- and four- 

point loading (see Fig. 14). The glass and the alumina 
spheres were of diameters 3 and 7.94 mm, respectively. In 
the case of four-point loading the supporting spheres were 
inside a steel cylinder to prevent lateral movement. The load 
was applied to the specimens either by a silicon nitride plate 
or a 9.88 mm diameter silicon nilride sphere. The tests were 
carried out in an Instron machine at a rate of 25 mm/min 
until they fractured catastrophically. The broken pieces were 
carefully collected for use in a fractographic analysis. The 
origin of fracture was noted in over 80% of the samples for 
each case. Local failure in the form of chipping in the contact 
region always occurred at very low loads. Nevertheless, they 
did not cause any global fracture. More experimental details 
and results of fractographic analysis are presented in Ref. 
161. In this paper, we will focus on the stress distribution in 
the spheres and their relation to the nature of fracture. 

The material properties that were used in the data reduction 
are listed in Table i. The average failure loads from six to 
eight tests for each case are presented in Table 2 lor glass 
spheres and in Table 3 tbr alumina spheres. Also presented 
are the maximum Hertzian contact stresses ( 1 . 5 F / m  "~-) cor- 
responding to the failure load F, where c is the Hertzian 
contact radius ! 7 ]. Note that in the case of four-point loading 
the contact stresses were computed either at the top contact 
point or at the bottom contact points, depending on where the 
failure was initiated. The next column in Table 2 (also in 

| .1 T,a~,,c 3) contains the maximum principal stress on the sur- 
face computed using the analytical method described in the 
previous sections. The maximum tensile stress on the loading 
axis under the top contact point ( or above the bottom contact 

l a )  (b )  (c) (tl)  

(e} ef) {hl 

T 
(gl 

Glass .... ] Alumina I Silicon Nitride 

Fig. 14. Experimental conliguration fur the four-point tent. Both Ilat and spherical indentors were u.,,ed Ibr comp,'e.,,sitm. 

Table I 
Material properties fur sodalime glass and alumina 

Material Young's modulus ( G P a )  Failure strength ( GPa ) Fracture ttmghness ( MPa m ~' -' } Pois.,,t)n" s ratio 

SLxJalime glass 73 3.6 0.7-(I.8 I).25 
Alumina 3(X) 5 3-5 0.27 
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for glass spheres 

159 

Case Failure hind 

( N I  

Type of  stress 

Contact  stress 

( GPa ) 
Surface stress 

( MPa I 

Axial stress for various values of  C/OH ( MPal 

i ' l l ' i t - - - -  1.0 ¢'//C H = I. I ( ' / C I !  = 1.2 ~ ' / ( ' 1 t  = 1.3 l ' / ( ' l i  = i .4 ( ' / l " l  i = 1.5 

Test A I ! 10 4.94 63.(X) 

Test B 870 4.5(I 61.25 

Test C 61(1 4.00 43.75 

Test D 541) 4.50 38.75 

113 105 98 92.3 86.4 82 

96 87 83 78 76 75 
77 71 67 63 59 56 

71 65 61 57 54 51 

Table 3 
Summary of  different stresses for alumina spheres 

Case Failure load Type of  ::tress 

( N )  
Ctmtact stress Surface stress 

( GPa ) (MPa)  

Axial stress for various values of  c/~'H ( MPa 

c/oH = 1.0 C/OH = I. I C/OH = !.2 C/OH = !.3 C/C'H = 1.4 C/OH = !.5 

Test A 561)3 8.73 44.60 

Test B 6(11)3 ! 0. I 0 60.00 

Test C 6018 I 1.65 60.00 

Test D 4305 12.00 34.30 

115 106.5 99.4 93.3 88 83.4 

180 167 156.4 147.3 138.5 131 

191) 178 165.3 156 146.4 139.2 

110 103 89.5 91 85.3 79 

point if the failure initiated at the bottom ) was also computed. 
As mentioned earlier, there is local failure under the contact 
area even tor small loading and it might have changed the 
contact radius and hence the contact stress distribution. Since 
the maximum stress in the axis is very sensitive to the contact 
radius, the axis stress was computed lor various contact radii 
varying from 1.0 to 1.5 times the Hertz(an contact radius 
( c / q i  = 1.0-1.5). These results are presented in the last six 
columns of Tables 2 and 3. 

The results presented in Tables 2 and 3 were analyzed to 
lind out what stress could have caused the fracture of the 
spheres. Since the failure was observed to be initiated always 
in the vicinity of contact, we can conjecture that the failure 
was due to the stresses on the axis in the vicinity of contact 
( last six columns in Tables 2 and 3 ). However, we find that 
there is no unilbrmitv in these stresses. The variation between 
various tests is quite significant. 

On the other hand, the maximum contact stresses seem to 
have less variation. Recently, Korsunsky et al. [ 81 have pro- 
posed that fracture of spheres due to impact or static contact 
can initiate from surface cracks just outside the contact 
region, and the maximum value of contact stresses plays a 
significant role in the stress intensity factors of the surface 
cracks. Thus, we can surmise that lbr a given flaw distribution 
the maximum contact stresses can determine the fracture load 
of the spheres. The exact relation between the fracture tough- 
ness and the contact stresses will depend on the flaw size 
distribution and their location with respect to contact. This 
will be investigated in detail in a future study. 

5. Conclusions 

An analytical method has been developed to determine the 
state of three-dimensional stress in a sphere subjected to mul- 

tiple contact loads. The method has been used to study the 
stress distribution in a sphere under a variety of loading con- 
ditions important to paniculate systems. It is found that in the 
case of three-point in-plane loading the maximum tensile 
stresses are larger than in uniaxial compression. As the num- 
ber of contact points increases, the maximum internal tensile 
stress, in general, decreases as the state of stress approaches 
hydrostatic compression. The method was used to analyze 
the stresses in some tests can'ied out on glass and alumina 
spheres. The stress analysis indicates the maximum contact 
stress and hence the tensile stress outside the contact circle 
correlates well with failure and may be responsible lor frac- 
l u r e  n l l t l a t l o n .  
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Appendix A 

A spherical coordinate system is used tot calculation pur- 

poses as shown in Fig. A-I. 
Due to the axisymmetric nature of the problem, the two 

shear stresses with ~b as one of the subscripts are equal to 
zero, i.e. o'r,t, = o',,t, = 0. The other stresses are given by the 
following expressions of the DSP solution [51, where a is 

the radius of the sphere: 
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Fig. A- !. Coordinate system for the analytical solution. 

= COS 0 - -  
/.t 4n 2 + 6n + 5 

2 

× [ n ( 2 n 2 + 4 n - l , - ( n + l , ( 2 n - ~ - 2 n - 5 ) ( a )  ] 

(A-I )  

o'~, n( n + I ) ( 2n 2 + 4n - 1 )J;, 
-~ - - - - -  1 - ~  cosec0 ( 2 n + l ) ( 4 n 2 + 6 n + 5 )  

X i P,,- ,(cos 0) - P. + ~(co~ 0) ! (A-2) 

t r ,~=  _fo_f~(r )  - cos O 
/.t a 

_ ( 2 n  "~+13n+5)J;, r 
2 4n" + 6n + 5 cos O) 

+ cosec-'0 ~ t!t;, r 
. ( 2 n -  I ) ( 4 n " + 6 n + 5 )  a 

[ ():] r 
x 2 n - ' + 4 n - I - l n - 1 ) 1 2 n + 8 )  - 

tl 

X I P,,--.,1 cos 0) - P,,(cos 0) I (A-3) 

(rrr+O'dtO+O'tMb.-_311 _3f~ (r)cos 0 
p, 

- 5  ~ ( n +  I ) ( 2 n + _ ) f .  r P.Icos 0) 
2 4n-" + 6n + a 

(A-4) 

where P. + ~ is the Legendre polynomial of (n + I ) th order 
given by 

(2n+  1) cos O P,,(cos O)-nP,,_ t(cos O) 
P,, + t( cos O) = 

n +  I 

" ~ I O<O<a 
f(O)=~"f,,P.(cosO)= 0 ot<O<rr 

then 

Ji, = ~( I - c o s  or) 

(A-5) 

(A-6) 

(A-7) 

and 

f,,= ~ I P,,-~(cos ~) - P . +  i(cos a)  l n >  1 (A-8)  

Appendix B 

Consider a sphere of radius R subjected to a normal surface 
pressure/~ at point C(X,:, Y,:, Z~), where (XYZ) and (R(9@) 
are the global coordinate systems (Fig. A-2). The pressure 
is assumed to be uniformly distributed over a contact circle 
of radius c with C as its center. The state of stress at any point 
in the sphere can be obtained from the DSP expressions [ 5 ]. 
In this solution, the stresses are referred to the local coordinate 
system (rOd?). Also, (.~'z) represents the local coordinate 
system within the rectangular coordinate system, where the 
z-axis passes through the point C and the x-axis is perpendic- 
ular to plane AOC and passes through O( 0, 0, 0). Apart from 
the local and global coordinate systems, we define an inter- 
mediate rectangular coordinate system, x*y*z*. The x*-axis 
coincides with the local x-axis and the z*-axis coincides with 
the global Z-axis. 

In this section we describe the transformation matrices to 
transfer the stresses from the local coordinates to a global 
coordinate system, (Rtg~) or (XYZ). The purpose of the 
transformation is to express the stresses due to contact loads 
at different surface points in a common global coordinate 
system. 

In the present problem, the state of stress due to a unitbrm 
pressure centered around C is given by the DSP solution [ 51 
in the local (r#tb) coordinate system as {tr,.}. TiLe stress in 
the local (xyz) coordinate system is given by {t r, }, and the 
stresses in global coordinates are given by {trx} and {trio ] in 
the global (XYZ) and (ROtlJ) systems, respectively, it is 
required to express {or,} in the global ( R O ~ )  system. The 
transformation from the global (XYZ) to the local (xyz) sys- 
tem is carried out via an intermediate rectangular coordinate 
system given by x*y*z*. The main loading axis is the global 
Z-axis passing through O(0, 0, 0) and A(0, 0, R). 

The angle between the vectors k and X j +  Yj+Z,.f is 
given by 

/~.(x,.t+ Y~.f+zJ~) z~ 
COS 01 = (Me2 + yc2+Zc2)i/2 -" R (B-I) 

t 

x 
..~ x" 

. . .-  

( , 

X 
z ~ 

Fig. A-2. The different coordinate systems used in transformation of stresses, 
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The transformation matrix required to transform the global 
(XYZ) to the ( x * y * : * )  coordinate system is given by 

[Tl ]=  X~.IRI -Y~.IRI 0 ( B - 2 )  
0 0 1 

where 

R, = X,~-" + Y~-" 

Also, the transformation needed to rotate the (x*y*:*) 
coordinate system to the local (.,t3':) about thex*-axis is given 
by 

! 0 0 ] 
[ ~ ]  = 0 cos01 sinOl 

0 - s i n 0 ,  cos0~ 
(B-3) 

Hence. the transformation required to transform the global 
(XYZ) to the local (xvz) is given by 

IT, I = IT_,IlT, i 

- Y~/RI X~./Ri 0 ] 
= -X,:cos0m/Ri - Y,.cos01/RI sin0t 

X,./RI Y~.sinOi/RI cOSOl 
(B-4) 

Let 

I T ~ I - ' - -  IT~lr= IT.I (B-5) 

The transformation required to convert a vector in the spher- 
ical coordinate system (r0~,) to a vector in the rectangular 
coordinale system (.~-y:) is given by 

[ 1 7s I = sin 0 sin ~b cos 0 cos ~ cos d~ ( B-6 ) 
cos 0 - s in  0 () 

where 

Z 
0=arccos ( ~ )  and 

Y 

and the transformation matrix required to transtorm from the 
rectangular coordinate system (XYZ) to the spherical coor- 
dinate system (ROq~) is given by 

IT,,I 

sin Ocosq~ 
= cos ¢-)cos 

- sin 

sin O sin ~ cos O 3 
cos ~.~ sin q, - s i n  ¢-) | 

3 cos ~ 0 
(B-7) 

where 

Y 
(")=arccos(Z) and ~,=arctan( .~)  

Hence. the following steps represent the sequential trans- 
formation: 

[ tr, i = [ 7~ ]v{ ~r,-} [ 'T,~] (B-8 )  

I o~.1 = I T . , IV {o , } l  "r~l ( B - 9 )  

I o, , !  = I T,  IT{ ~r.,.} I 7",,I ( B - 1 0 )  

and therefore, from Eqs. (B-8). (B-9) and ( B- I 0). we get 

Io'RI=IT~IVlT.~IrIT,,irIo',.IIT,,IlT411T.~I (B-II)  

IcruI=IIT,,IIT41IT~IITIo',.IIT,,IIT.,IIT~i (B-12) 
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