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Abstract

The one-parameter singular expression for stresses and the corresponding displacements near a crack tip in aniso-

tropic solids has been widely thought to be su�ciently accurate over a reasonable region for any geometry and loading

conditions. In many cases, however subsequent terms of the series expansion are quantitatively signi®cant, and hence

we propose to consider the evaluation of such terms and their e�ect on the predicted crack growth direction. For this

purpose the problem of horizontal-cracked orthotropic plate subjected to a biaxial loading is analyzed. It is assumed

that the material is ideal homogeneous anisotropic. By considering the e�ect of the load applied parallel to the plane of

the crack, the distribution of stresses and displacements at the crack tip is examined. In order to determine the direction

of initial crack extension we employ the normal stress ratio criterion. The analysis is performed for a wide range of

anisotropic material properties and applied loads. It is shown that the direction of crack extension can be seen to occur

for nonzero values of h0 as the load parallel to the crack increases. Ó 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Crack extension; Anisotropic solids; Biaxial loading; Nonsingular term

1. Introduction

Composites have found many applications as advanced engineering materials, e�ectively employed in
various structural systems such as aircraft, automobiles, and power plants. The safety and reliability of
these systems are dependent on the design of the constituent components. These components are often
subjected to complex service loading conditions, in which two static principal stresses may exist. An ad-
vantage of using composites is the ability to tailor the sti�ness and strength to speci®c design loads. Since
most composite materials exhibit brittle failure with little or no ductility, as o�ered by metals, the behavior
of the composite structure must be understood, and analysis to predict the failure needs to be performed.

A fundamental problem in predicting the failure of laminated composite materials is prediction of
the direction of crack growth in the individual laminate as well as the laminate. Predicting the direction of
crack extension in laminates is very complex three-dimensional problem. Since the lamina is the
basic building block of the laminate, its behavior must be fully understood as a stepping stone toward
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understanding the behavior of the laminate. Thus, understanding the parameters that a�ect lamina failure,
particularly those in¯uencing the direction of crack growth in the lamina, is of critical importance in
predicting the failure response of laminates.

The direction at which a fracture propagates in anisotropic material is a function of several variables. In
anisotropic materials a variable material strength is associated with the potential direction of fracture. The
crack direction is a function of the stress intensity factors, the crack orientation and the material strength.
In designing against fracture in composite materials, especially ®ber reinforced composite materials, the
prediction of crack direction in anisotropic materials is of signi®cance.

The general solution of the local stress and displacement ®elds in the vicinity of the crack in anisotropic
bodies was obtained by Sih and Liebowitz [2] by using the Riemann±Hilbert formulation. In that analysis,
they found an inverse square root stress singularity. When uniform load is applied on the surface of the
crack, the nonsingular term related to outer boundary loading is omitted. Until recently the one-parameter
singular expression for stress near a crack tip was widely thought to be su�ciently accurate over a rea-
sonable region for any geometry and loading conditions [1±3].

In the present study, the problem of a cracked anisotropic plate subjected to a biaxial loading is
analyzed. We consider the evaluation of the subsequent term of the series representation for the stresses
and its e�ect on the predicted crack growth direction. It is assumed that the material is ideally homo-
geneous anisotropic. By considering the e�ect of the load applied parallel to the plane of the crack,
the distribution of stresses and displacements at the crack tip is examined. In order to determine the
direction of initial crack extension we employ the normal stress ratio theory [4]. Our goal here is to
show that the angle of crack extension can be altered by loads applied parallel to a crack and the use of
second order term in the series expansion is essential for the accurate determination of crack growth
direction.

2. Fundamental equations in homogeneous anisotropic solids

A plate of homogeneous rectilinearly anisotropic material whose principal axes of material symmetry
coincide with the x and y directions is considered. The stress±strain relationship for the two-dimensional
case can be written in terms of compliance coe�cients as
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where aij �i; j � 1; 2; 6� are the compliance coe�cients.
The compatibility equation can be represented in terms of Airy's stress function, U�x; y� as
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The general expression of Eq. (2) in plane elasticity problem can be written in terms of complex variables as
[5]

U�x; y� � 2Re�U1�z1� � U2�z2�� �3�
where Re indicates the real part of the complex, U1�z1� and U2�z2� are stress function of complex variables
z1 � x� s1y and z2 � x� s2y, and s1 and s2 are roots of the following characteristic equation:

a11s4 ÿ 2a16s3 � �2a12 � a66�s2 ÿ 2a26s� a22 � 0 �4�
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To simplify Eq. (3), we introduce new functions, /�z1� and w�z2�. Then, the stress and displacement
components can be expressed as

rxx � 2Re�s2
1/
0�z1� � s2

2w
0�z2��

ryy � 2Re�/0�z1� � w0�z2��
sxy � ÿ2Re�s1/

0�z1� � s2w
0�z2��

�5�

u�x; y� � 2Re� p1/�z1� � p2w�z2��
v�x; y� � 2Re�q1/�z1� � q2w�z2��

�6�

where /0�z1� � d/�z1�=dz1 and w0�z2� � dw�z2�=dz2. pj and qj �j � 1; 2� are given as
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In orthotropic solids of elastic symmetry, a16 � a26 � 0 and the characteristic equation of Eq. (4) can be
simpli®ed as

a11s4 � �2a12 � a66�s2 � a22 � 0 �8�

Then, the roots of the characteristic equation is given as

s1 �
���������������
a0 ÿ b0

2

r
� i

���������������
a0 � b0

2

r
� a1 � ib1

s2 �
���������������
a0 ÿ b0

2

r
� i

���������������
a0 � b0

2

r
� a2 � ib2

�9�

where

a0 �
������
a22

a11

r
�

�������
E11

E22

r
and b0 �

1

a11

a66

2

�
� a12

�
� E11

2l12

ÿ m12 : a0 > b0

3. Analytic functions for a horizontal-crack in in®nite anisotropic plate under biaxial loading

In order to derive the analytic function / and w including the nonsingular term in anisotropic cracked
problem under biaxial loading, we consider an elliptical hole in an in®nite plate under tension as shown in
Fig. 1. When an elliptical hole in a plate is subjected to uniaxial stress at an angle a with the x-axis, the
analytic function is given as follows by Savin [6]

/�a��z1� � /�a�0 �z1� � B��a�z1

w�a��z2� � w�a�0 �z2� � �B0��a� � iC0��a��z2

�10�

where /�a�0 �z1�, w�a�0 �z2�, B��a�, B0��a�, and C0��a� are de®ned as
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Therefore if a equals p=2, the analytic function can be represented as

/�a�p=2��z1� � /�a�p=2�
0 �z1� � B��a�p=2�z1

w�a�p=2��z2� � w�a�p=2�
0 �z2� � �B0��a�p=2� � iC0��a�p=2��z2 �12�

Fig. 1. Anisotropic plate with an elliptical hole under tension.
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where /�a�p=2�
0 �z1�, w�a�p=2�

0 �z2�, B��a�p=2�, B0��a�p=2� and C0��a�p=2� are de®ned as
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The analytic function in the case of a � 0 is determined similarly from Eq. (10) and is given as
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where /�a�0�
0 �z1�, w�a�0�

0 �z2�, B��a�0�, B0��a�0� and C0��a�0� are de®ned as
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Thus, the analytic functions for a horizontal-crack under biaxial loading as shown in Fig. 2 can be derived
by combining the functions given in Eqs. (12) and (14), and substituting zero for the short radius of el-
liptical hole, i.e., b � 0. The analytic function on crack tip can be expressed as
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where C1 � B� and C2 � �B0� � iC0��. B�, B0� and C0� are real constants computed from material properties
and external loads as
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4. Stress and displacement components including nonsingular term

Calculation may be facilitated by use of coordinate fj originating at the crack tip.

zj ÿ a � fj � r�cos h� sj sin h�; zj � x� sjy

Thus, the analytic function of Eq. (16) and its ®rst order derivative are given as
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Fig. 2. Plane biaxially loaded center-crack geometry.
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Expressing the right sides of /0�f1� and w0�f2� in Eq. (18) as power series expansion, the above equation can
be expressed as
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Ignoring the higher order terms of f1 and f2, /0�f1� and w0�f2� can be simpli®ed as
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Thus, by substituting /0�f1� and w0�f2� into Eq. (5), the crack tip stresses including the nonsingular term can
be expressed as
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where KI � r1
������
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p

.
Similarly, in order to derive displacement components near a crack tip it is necessary to express the right

sides of /�f1� and w�f2� in Eq. (18) as power series expansion. Ignoring the higher order terms of f1 and f2,
/�f1� and w�f2� can be simpli®ed as
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Thus, by substituting the above equation into Eq. (6), the crack tip displacements can be expressed as
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In this case, we observe from Eqs. (21) and (23) that second order term makes signi®cant contribution. In
particular we note that the e�ects of the horizontal load appear only in the secondary terms. Thus, far from
being negligible second order terms, they have an important in¯uence on results obtained.

5. Direction of initial crack extension

In order to show the e�ects of the loads parallel to the plane of the crack on the predicted crack growth
direction we employ the normal stress ratio theory. This criterion, proposed by Buczek and Herakovich [4],
is a direct extension of the maximum circumferential tensile stress criterion, formulated to make it appli-
cable to anisotropic fracture problems. The model assumes that a direction of crack extension is determined
by the ratio of normal stress acting on a radial plane, rhh, to the related strength, Thh. Crack extension will
take place in the direction in which the ratio at a given distance, r0 �0 < r0 � 1�, from the crack tip, R0, is of
maximum value. Here, R0 is de®ned as

R0�r0;h� � rhh�r0;h�
Thh

�24�

where Thh is the tensile strength on the h plane and is de®ned as

Thh � XT sin2 h� YT cos2 h �25�
In the above expression XT and YT are the tensile strengths in anisotropic solids to longitudinal and
transverse directions, respectively and rhh is the normal stress which can be calculated from

rhh � rxx sin2 h� ryy cos2 hÿ 2sxy sin h cos h �26�
Substituting the rectangular stress components of Eq. (21) into Eq. (26) the normal stress including non-
singular term can be expressed as
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Thus algorithmically, the direction of crack extension h0 is found by maximizing Eq. (24) or its normalized
equivalent as
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6. Results and discussion

We now turn to the familiar cracked sheet problem with biaxially loaded boundary conditions as shown
in Fig. 2. To investigate the e�ects of biaxial loading more clearly, we analyze the distribution of the cir-
cumferential stress near crack tip. Fig. 3 shows the variation of normalized circumferential stress, rhh=r1

with polar angle, h plotted for di�erent values of horizontal ratio, k with a0 � 3:0 and b0 � 1:0. The curves
were obtained with the ratio, r0=a taken to be 0.01, which is arbitrary since r0=a is left unspeci®ed. As shown
in ®gure, the positive maximum of circumferential stresses can be seen to occur for nonzero value of h,
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which increases as k increases, starting in the vicinity of k � 0. This graph further indicates that the e�ects
of k on the distribution of the circumferential stress are particularly represented as k has high values. Our
analysis demonstrates quite conclusively the importance of the nonsingular term to expression (27).

In order to examine further the e�ects of biaxial loading we predict the direction of initial crack ex-
tension for the biaxially loaded sheet with a horizontal crack. As noted previously, the point of crack
initiation is selected on the basis of maximum value of the normal stress ratio, R acting on crack boundary.
The direction of crack extension is measured from a direction parallel to the x-axis passing through this
point of crack initiation.

We calculated R±h curves for the three cases of the tensile strength ratio, YT=XT being equal to 1=1:5, 1=2
and 1=3 with a0 � 2:0 and b0 � 1:0. The results based on the case r0=a � 0:01 are shown in Figs. 4±6. At
®rst, Fig. 4 shows the results for the case of YT=XT � 1=1:5. As shown in ®gure, the maximum normal stress
ratio takes place along the plane of the original crack for uniaxial load. So the direction of the crack ex-
tension occurs at h0 � 0. However, in the case of biaxial load the maximum normal stress ratio can be seen
to occur for nonzero value of h0 although the crack shape and the applied load are symmetric. The crack
extension therefore begins to turn from the value of h0 � 0. It is starting in the vicinity of k � 6 and

Fig. 3. Variation of rhh with k for a0 � 3 and b0 � 1.

Fig. 4. Variation of R0 with k for a0 � 2, b0 � 1 and YT =XT � 1=1:5.
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increases as k increases. For example, the predicted direction of initial crack extension is h0 � 44:6° for k
having a value of 7 and h0 � 66:3° for k having a value of 11. As the horizontal tension becomes large
relative to the vertical tension the direction of initial crack extension turns so as to be oriented normal to the
direction of the larger of the tensile loads. Fig. 5 shows the results for the case of YT=XT � 1=2. For values of
k greater than 9 the maximum normal stress ratio can be seen to occur for nonzero value of h0. So the crack
extension deviates from the plane of the original crack. It can be seen that the e�ects of horizontal load
ratio to the direction of crack extension decrease as the di�erence of the tensile strengths increases. We can
see the phenomenon more clearly in the case of YT=XT � 1=3 shown in Fig. 6. The maximum normal stress
ratio can be seen to occur for zero value of h0 in the case k � 13 though. If a value of k greater than 13 is
applied the crack extension will gradually deviate from the plane of the original crack. The predicted di-
rections of initial crack extension are compared in Table 1 for various horizontal load ratio and two r0=a
ratios. The predicted propagation direction becomes very much dependent on the ratio r0=a, especially for
large values of YT=XT � 1=1:5 (see Table 1). The critical value of r0=a for a given material should be de-
termined by performing experiments.

Fig. 5. Variation of R0 with k for a0 � 2, b0 � 1 and YT =XT � 1=2.

Fig. 6. Variation of R0 with k for a0 � 2, b0 � 1 and YT =XT � 1=3.
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Next calculated R±h curves for three cases of the elastic modulus ratio, a0 being equal to 1.2, 3.0 and 5.0
with YT=XT � 1=1:5 and b0 � 1:0. The results based on the case of r0=a � 0:01 are shown in Figs. 7±9. In the
®gures we note that the value of the horizontal load ratio to deviate the crack extension from the plane of
the original crack decreases as the elastic modulus ratio increases. For example, the maximum normal stress
ratio takes a nonzero value of h0 around k � 7 in the case of a0 � 1:2, k � 4 in a0 � 3:0 and k � 1 in
a0 � 5:0. It can be seen that the e�ects of the horizontal load ratio on the predicted direction of crack
extension generally increase as the material becomes more anisotropic. However, in the case of r0=a � 0:05
the value of the horizontal load ratio to deviate the crack extension occurs in about 4 for all three a0 ratios
as shown in Table 2.

As a further example, we examined the crack extension for horizontal crack under uniaxial tension load.
We calculated R±h curves for the four cases of the elastic modulus ratio a0 being equal to 1.2, 2.0, 3.0, and
5.0 with b0 � 1:0 and YT=XT � 1=1:5. The results in Fig. 10 are computed by taking singular term only, and
results in Fig. 11 are based on the appropriate value of nonsingular term. A comparison between predicted

Table 1

Predicted direction of initial crack extension for various horizontal load ratio with a0 � 2:0 and b0 � 1:0

k h0 (degrees)

YT =XT � 1=1:5 YT =XT � 1=2 YT =XT � 1=3

r0=a � 0:01 : 0.05 r0=a � 0:01 : 0.05 r0=a � 0:01 : 0.05

ÿ1 0 0 0 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 �37.9 0 0 0 0

5 0 �57.5 0 0 0 0

6 �28.9 �66.2 0 �46.5 0 0

7 �44.6 �71.2 0 �58.9 0 0

8 �53.2 �74.5 0 �65.6 0 0

9 �59.0 �76.8 0 �69.8 0 �40.7

10 �63.2 �78.5 �36.6 �72.8 0 �53.4

11 �66.3 �79.8 �47.0 �75.0 0 �60.3

12 �68.9 �80.9 �53.5 �76.7 0 �64.8

13 �70.9 �81.7 �58.2 �78.1 0 �68.1

Fig. 7. Variation of R0 with k for a0 � 1:2, b0 � 1 and YT =XT � 1=1:5.
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directions of crack extension for singular and subsequent term approximation is given in Table 3. In the
table we illustrate the important e�ects produced by nonsingular terms on the crack growth direction based
on the case r0=a � 0:01. Until as elastic modulus ratio a0 � 3:0 the directions predicted by the two ap-
proximations are identical to zero. However, it can be seen that the inclusion of the nonsingular term
produce markedly di�erent results for the crack propagation direction for the cases considered, particularly
as a0 gets high values. We see that it is possible in the case of a symmetric loaded sheet to have situations
where the direction of initial crack extension necessarily deviates from the plane of the original crack.

7. Conclusions

Evidence is accumulating that the predicted crack growth direction may vary with the degree of local in-
plane load biaxiality, in addition to its established primary dependence on the elastic stress intensity factor.
It is therefore suggested that the prediction of crack extension using only singular term may not be
meaningful. The specimen which has been most commonly used for examining crack extension under
varying biaxial loading, the central notched plate, is given special attention.

Fig. 8. Variation of R0 with k for a0 � 3, b0 � 1 and YT =XT � 1=1:5.

Fig. 9. Variation of R0 with k for a0 � 5, b0 � 1 and YT =XT � 1=1:5.

414 W.-K. Lim et al. / Engineering Fracture Mechanics 68 (2001) 403±416



Table 2

Predicted directions of crack extension for various horizontal load ratio with YT =XT � 1=1:5 and b0 � 1:0

k h0 (degrees)

a0 � 1=1:2 a0 � 3:0 a0 � 5:0

r0=a � 0:01 : 0.05 r0=a � 0:01 : 0.05 r0=a � 0:01 : 0.05

ÿ1 0 0 0 0 0 0

1 0 0 0 0 �13.6 0

2 0 0 0 0 �23.1 0

3 0 0 0 �29.7 0

4 0 �37.7 �12.2 �34.6 �35.5 �28.2

5 0 �61.3 �32.0 �51.9 �40.9 �40.9

6 0 �69.5 �41.8 �61.7 �45.9 �51.4

7 �20.6 �73.9 �49.0 �67.7 �50.4 �59.5

8 �47.2 �76.8 �54.7 �71.7 �54.5 �65.3

9 �57.0 �78.7 �59.1 �74.5 �58.0 �69.4

10 �62.8 �80.2 �62.6 �76.6 �61.1 �72.4

11 �66.7 �81.3 �65.6 �78.2 �63.7 �74.7

12 �69.6 �82.2 �67.8 �79.4 �65.9 �76.5

13 �71.9 �82.9 �69.8 �80.4 �67.9 �77.9

Fig. 10. R0 for one-term approximation in uniaxially loaded sheet.

Fig. 11. R0 for two-term approximation in uniaxially loaded sheet.
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By considering the e�ect of the load applied parallel to the plane of the crack, the distribution of stresses
and displacements at the crack tip has been examined. Present analytical results show signi®cant biaxial
loading e�ects on the crack tip region stresses and displacements, and on the direction of initial crack
extension. Inclusion of the nonsingular stress terms along with the normal stress ratio criterion results in
signi®cant di�erences in the predicted direction of crack growth. Thus a detailed experimental study is
needed to develop a meaningful criterion for crack branching in orthotropic materials.
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Table 3

Predicted directions of crack extension for horizontal crack under uniaxial tension load with YT =XT � 1=1:5 and b0 � 1:0

a0 h0 (degrees)

One-term Two-term

1.2 0 0

2.0 0 0

3.0 0 0

4.0 31.2 0

5.0 40.9 0
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