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Abstract Breast conserving therapy (BCT) comprised of complete surgical exci-
sion of the tumor (partial mastectomy) with post-operative radiotherapy to the re-
maining breast tissue, is feasible for most women undergoing treatment for breast
cancer. The goal of BCT is to achieve local control of the cancer as well as to pre-
serve a breast that satisfies the woman’s cosmetic concerns. While most women
undergo partial mastectomy with satisfactory cosmetic results, in many patients the
remaining breast is left with major cosmetic defects including concave deformities,
distortion of the nipple areolar complex, asymmetry and changes in tissue density
characterized by excessive density associated with parenchymal scarring. There are
currently no tools, other than surgical experience and judgment, that can predict the
impact of partial mastectomy on the contour and deformity of the treated breast. The
objectives of this study are to determine if a computational model can allow predic-
tion of the breast contour, surface features and tissue density after partial mastec-
tomy and potentially identify targets for intervention to improve cosmetic results.
This chapter is a preliminary study. The aim is to start from the simplest model and
build on complexity until we obtain a model that can add value in surgery planning.

1 Problem and Motivation

1.1 Introduction

If a surgical intervention is needed, early stage breast cancer may lead to three basic
surgery choices: breast-sparing surgery followed by radiation therapy, mastectomy,
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mastectomy with breast reconstruction surgery. Breast-sparing surgery (Breast Con-
servation Therapy - BCT - ) removes the breast tumor and a margin of surrounding
normal tissues. It is also known by other names: lumpectomy, partial mastectomy,
segmental mastectomy and quadrantectomy. Radiation therapy follows lumpectomy
to eliminate any microscopic cancer cells in the remaining breast tissue. The purpose
of BCT is to give women the same cure rate they would have if they were treated
with a mastectomy but to leave the breast intact, with an appearance and texture as
close as possible to what they had before treatment. Trials for breast conservative
therapy with patients affected by breast cancer (I and II) have demonstrated con-
clusively that BCT produces disease control and survival rates at least equivalent to
those of mastectomy, and possibly better in the long run for patients with stage II
[8]. BCT is combined to radiation therapy. While BCT removes the tissue that con-
tain the tumor with a negative margin, radiotherapy insure that residual microscopic
disease are controlled. Contra-indications to BCT is generally for patients with high
probability of recurrence, high probability of normal tissue damage from irradia-
tion. While cosmesis after BCT might be generally satisfactory, the quality of the
result is very sensitive to the location and extend of the tumor. Further the breast is
a very deformable structure with a complicated anatomy that is patient specific. The
mechanical properties of glandular, fatty and cancerous tissue are quite different,
and vary from one patient to another. The Cooper’s ligament play also a key role
in the outcome. Strong asymmetry in the location or large tumor size are prone to
anesthetic BCT result. Surgical results are also depending on the time scale. Beside
the short time scale modeling that might be caught by the mechanical model, one
can expect that inflammation, post-surgical radiotherapy and healing dynamic can
change significantly in the long time scale the cosmetic outcome. In other words
biology plays a role as well.

The same way that it takes a multidisciplinary team, involving a surgeon, a ra-
diologist, an oncologist etc... to manage a breast cancer, it takes a multidisciplinary
model involving soft tissue mechanic, medical imaging and biology modeling to
predict the outcome of BCT. The objectives of this study is to construct a modular
computational model that can allow the prediction of the breast surface contour, af-
ter partial mastectomy and potentially identify targets for intervention to improve
cosmetic results. Key questions are:

• a priori model of the breast deformation in order to be able to define the pattern
of cosmetic defects for women undergoing BCT with numerical simulation.

• to determine if patterns of deformity can be predicted based on preoperative
imaging and surgical data points.

The philosophy of this preliminary study is to develop a computational framework
that can feed on a cost effective clinical protocol and help significantly surgery plan-
ning with BCT. We do not look for a perfect model but rather a useful model.

We are going first to review the individual models that are available in the litera-
ture.
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1.2 Model and Related Work

There have been a large stream of work on patient specific bio-mechanical models
of the breast used to predict deformation [17]. The goal of such studies is to compute
the change in shape as external mechanical forces are varied. The standard applica-
tion is co-registration of internal structure of interest such as tumors. We are going to
see that this soft tissue mechanical problem by itself is fairly difficult to solve. While
the surgical intervention is typically with the patient lying on his back, pre-surgery
planning relies on medical imaging with different positions. The breast is a highly
deformable organ fairly sensitive to gravity load. For MRI the patient lies prone and
the breast is allowed to drop under gravity. The prone position is not particularly
inherent to the MRI procedure, but rather to the available existing equipment. It is
unfortunate that these MRI images cannot be directly used to surgery but should
rather be transformed to accurately track the tumor location. For x-ray, the subject
stands and the breast has to be pressed between two plates. Under such conditions
it is critical to compute an accurate registration of the tumor that can localize the
tumor in the absence of external pressure. Registration should be much improved
if one use a bio-mechnical model to predict the tumor location as a function of the
gravity load. The problem of an accurate registration of the tumor location is also
seen in biopsy, because the needle is not a very sharp object. A straight trajectory
may result in fact into a trajectory that changes direction at the interface between
different layers of tissues. Overall the biopsy may not collect the targeted tissue
sample. There is a large number of papers on the prediction of mechanical defor-
mation of the breast that started with the extensive use of Finite Element Models
(FEM) [1, 16, 20]; two papers of particular interest are the Medical Image Analysis
article of F.Azar, D. N.Metaxas and M.Schnall [2] that concentrates on the biopsy
application and emphasis the link between the model and image analysis, and the
article of V.Rajagopal, J.H. Chung, D.Bullivant, P.M.F.Nielsen and M.Nash in the
Inter. J.of Numer. Meth. Engng [14] that discusses the problem of the reference
state. Both papers have pretty extensive bibliographies. In Azar et Al work, a cus-
tom written program for the image segmentation of the 3D breast is linked to the
ABAQUS model. Image segmentation of the breast should at least take into account
the two predominant types of tissue that are fat and normal glandular tissue. Image
segmentation of the tumor should be added for BCT.

There is a fair amount of uncertainty in material properties of the soft tissue
that compose the breast. Further such properties are very much patient specific.
According to Krouskop et Al [12] fat tissue and glandular tissue have similar elastic
modulus at low strain levels, while glandular tissue elastic modulus increases by
one order of magnitude at high strain levels. Further fibrous tissue have an elastic
modulus one to two order of magnitude higher than fat tissue. In [2] the breast fatty
tissue model takes also into account the effect of fat compartmentalization due to
Cooper’s ligament. Finally tumor tissues are much stiffer than surrounding tissue as
measured for example in [13].

Actually skin mechanical properties might also be taken into account separately
and modeled possibly as a two dimensional deformable shell that bounds the 3D
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model. Further it might be difficult to predict the right boundary conditions that
describes the attachment of the breast to the muscle of the thorax. For all these rea-
sons, while the validation of the FEM with a phantom study using a deformable
silicon gel is kind of reassuring, the FEM still needs to be validated with patient as
in [2, 15]. Most previous studies of breast modeling deformations have been con-
ducted for large deformation due to mammographic compression or for biopsy. Most
of these studies were conducted using Moonley-Rivlin Hyperelastic models under
large deformation. Still small deformation theory has been used thanks to either a
continuation method or time stepping but requires then to control the accumulation
of errors from each step. In many of these studies, the computation of the mechani-
cal model was verified by comparison with experimental data on gel phantoms that
have very similar properties to breast tissue. Comparison to clinical data is however
sparse and/or involves very few human subjects. One additional difficult problem is
that one cannot recover directly the unloaded shape of the breast. Rajagopal et Al
[14] have shown that the accuracy of shape prediction is much improved by recov-
ering a stress free unloaded position virtually. In this work Rajagopal et Al propose
a numerical algorithm to solve that inverse problem, and use a special experimental
set up to validate that study with human subjects. One still needs to assume that
the unloaded shape is free of stress which is fairly unclear in particular for breast
cancer. Though most of these studies reported here considered the breast tissue as
incompressible isotropic homogeneous, no study, as far as we know, was focussed
on BCT.

Realistic tumor dynamic modeling is very challenging as well. For BCT one
is interested on tissue margin, i.e how much of the tissue BCT should take away,
and possibly how one make sure that chemotherapy and/or radiotherapy can control
what might be left of cancer cells in the breast. There is a vast literature on model
and simulation of tumor growth. The chapter from T. Colin et Al in this book con-
centrates on a multi-scale PDE model representative of the state of the art. Cellular
Automata (CA) [21] and/or Agent Base Model (ABM) [10] might be used as well
to simulate the dynamic of the population of cells involved in cancer [5], in partic-
ular in situation with sparse density of tumor cells. Both CA and ABM techniques
belongs to the bottom up approach where individual cells behavior and interaction
with their environment are explicitly modeled. One can observe a posteriori in the
simulation the emerging dynamic of the complex system. Implementation of these
methods has been reviewed recently in [11]. These methods can be applied to tumor
dynamic as well as modeling inflammation and tissue healing [3, 6, 19, 9, 7]. The
limit of such model is the inherent complexity of the biological environment and the
difficulty to capture adaptation and mutation of individual cells.

However the future is to design multi-scale hybrid model that can couple the
mechanical description of tissue with the long time scale dynamic of the biological
tissue that is essential to recovery [4]. The challenge, indeed, is to have patient spe-
cific model that can be used in clinical conditions and that can feed on existing data
acquisition processes such as tissue elastography for tissue mechanical properties
and biopsy for cell population.
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We are going now to discuss various computational methods to simulate the me-
chanical deformation of the breast. We will report in this chapter exclusively on
artificial benchmark problems to develop the computational methods. Image based
simulation with patient data will be reported elsewhere.

2 Model of Mechanical Deformation of the Breast

Typically a mechanical model requires the description of the material properties of
the breast along with anatomic data, an initial state and some boundary conditions.

The model can be either static, i.e describe an equilibrium, or dynamic, i.e de-
scribes the time dependent deformation. Further the model can incorporate the ma-
terial properties of the tissue with a wide range of level of details.

We are going to review our experiment with several models with increasing level
of complexity. We will assume that we start from a known shape at zero gravity con-
ditions and with zero internal stress. The solution of our benchmark problem is the
displacement and stress distribution for the equilibrium position at standard grav-
ity. All simulations here are implemented with the commercial software COMSOL
MULTIPHYSICST M [23]. COMSOL is a software based on finite element approx-
imation that allows fast prototyping.

For simplicity our benchmark problem is a semi-sphere attached to the wall as
in figure 1. This simplified benchmark problem will be used to compare linear and
nonlinear models, and will be enough to show some limitation of the simulation. We
start with the standard linear elasticity model.

Fig. 1 Geometry of the
benchmark problem
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2.1 Linear Elasticity

Let us start with the small deformation theory that is implicitly assumed in the linear
elasticity model that will help understanding further refinement in the modeling:
The unknown of the mechanical problem is the field:(−→u (−→x ) ,σ (−→x )

)
,∀−→x ∈ S (1)

in the semi-sphere S with−→u (−→x ) representing the displacement, σ (−→x ) representing
the engineering stress.

It is possible to completely describe the strain condition at a point with the de-
formation components ui for i = 1,2,3 and their derivatives. The strain components
are given from the deformation as follows:

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(2)

Also, the stress-strain relationship for a linear isotropic material reads:

σ = λ
(
trε
)

I3 +2µε , ∀−→x ∈ S (3)

with λ and µ the elasticity coefficient of Lame linked to E, the modulus of elasticity
(known as Young’s modulus), and ν Poisson’s ratio by:

λ = E
ν

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

(4)

Under static conditions, the equilibrium equations writes:

divσ +ρ−→g =−→0 (5)

where −→g denotes the body forces per mass.
The Boundary Conditions are the following:
For the embedment: ui (−→x ) = 0 , ∀−→x ∈ Γwall
For the free surface: ti (−→x ) = σi j (−→x )n j (−→x ) = 0 , ∀−→x ∈ Γf ree
With Γ = Γwall ∪Γf ree, Γwall ∩Γf ree =�
where the n j (−→x ) ,( j = 1,2,3) are the components of the outward unit normal vector
−→n (−→x )

Instead of using directly this formulation, to extend the small deformation theory
to the large deformation situation we use time stepping with the adaptive time step
provided by COMSOL, and increase the gravity progressively from zero at initial
stage to g in a physical time of 60 s.

We suppose that the tissue is an linear isotropic material with Young’s Modu-
lus E = 2520 Pa and a Poisson’s ratio ν = 0,4 [22]. The simulation is completed
with 17000 Quadratic Lagrange Elements. The static solution is shown in figure 2.
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Figure 2 shows the von Mises stress: a singularity appears near the corner of the

Fig. 2 Deformation of the single 3D isotropic breast model under the gravity, plotting the von Miss
stress [Pa](E = 2520 Pa ,ν = 0,4)

.

breast. This singularity appears to be an artifact due to the non-realistic boundary
condition imposed at the ”wall”.This problem should be avoided by choosing a new
geometry model that includes the body core. We provide more realistic boundary
conditions next by adding a wall support as in figure 3. Regardless of this singular-
ity, the breast static state has some analogy with good shape of a healthy women
breast.

The next step was to simulate the breast state after a surgical intervention of the
breast with the removal of cancerous tissue. This surgical intervention was mod-
eled with the introduction of a small sphere Sremoval with a radius Rinterior = 3cm
inside the semi-sphere - see Figure 3 (Material 2). We suppose that after the surgical
intervention this empty part will be first filled up with a liquid.

Model I: We approach the liquid properties material by choosing a water density
ρ = 1000kg.m−3 a small Young’s Modulus E = 300 Pa and a Poisson’s ratio ν =
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0,495 since only the mass contribution of the fluid during the analysis is of interest.
Simulation results are shown in figure 4 .

Fig. 3 Geometry of the post-
surgery breast model

.

This simulation still exhibit a singularity near the wall due to the change in ma-
terial properties at the interface between material 2 and 3. We observe the impact
of tissue removal on the overall shape of the breast. A bump appears which gives a
non-conform shape to the breast. Our modeling of tissue removal is fairly naive and
the modeling of water can be interpreted in a more physical way.

Model II: To model water in COMSOL we use an anisotropic material with a
singular representation of the elasticity matrix. The stress-strain relationship for an
anisotropic material is linked by the following relation σ = D ε where D is the
6-by-6 elasticity matrix and the stress and strain are both given in column vector
form: 

σx
σy
σz
τxy
τyz
τxz

and


εx
εy
εz
γxy
γyz
γxz


Water is supposed to be a perfect fluid, with no friction, indeed the only permissi-
ble load is the hydrostatic pressure, volumetric force. In order to avoid the friction
force the elasticity matrix is divided in 4 smaller 3-by-3 matrix where the 3 blocs
that are in relation with the friction effect, τ∗∗, are equal to zero. Since only the
hydrostatic pressure force occurs it can be represented by the relation with the bulk
modulus. Indeed the bulk modulus of a fluid measures the fluid resistance to uni-
form compression. It is defined as the pressure increase needed to effect a given
relative decrease in volume. The bulk modulus K can be formally defined by the
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equation: K =−V ∂P
∂V where P is the pressure, V is the volume, and ∂P

∂V denotes the
partial derivative of pressure with respect to volume. The inverse of the bulk modu-
lus gives a substance compressibility. This relation can be arranged as the following
K ∂V

V = −∂P. By analogy on mechanic basic we can state that σ = −∂P and that
trace(ε) = (εx +εy +εz) = ∂V

V . This leads to an elasticity matrix with the following
form:

D =


K K K 0 0 0
K K K 0 0 0
K K K 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.


The result of this simulation is illustrated in figure 4, where it shows von Miss stress
of the meridional cut of the breast. This simulation was done with the same elastic
linear model than before and the value of the water bulk modulus K = 2.2e9 Pa. In
comparison with the first water model we can see that in our second model the value
of the stress inside the liquid is equal to zero whereas in the first model the liquid
has some stress. We can assume that our second model is more realistic and gives a
more physical result. However we can see that in the two models the bump and the
exterior shape are quite similar.

The material property chosen for the model so far was linear isotropic. This is
not the true mechanical properties of soft tissue. Indeed the stress-strain relationship
of breast tissue is hyperelastic.

2.2 Towards a non-linear modeling

The breast often deforms significantly, linear elasticity with the infinitesimal defor-
mation formulation is not appropriate to formulate the breast model. As a result we
used a finite deformation formulation in conjunction with hyperelastic material.

The problem is to find the coordinates (x) of the deformed body, V , given the
coordinates, (X) of the undeformed body V0. the deformation gradient tensor F pro-
vides the relationship to map between the undeformed states, and is defined as

F =
{

∂xi

∂XM

}
(6)

The Green Lagrange strain tensor E is calculated using:

E =
1
2

(
F

T
F− I

)
(7)

The aim is to find a solution vector −→x representing the degrees of freedom defining
the deformed state, such that the principles of conservation of mass, linear mo-
mentum, and angular momentum are satisfied. The modeling framework has been
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expressed with respect to the reference configuration and thus the equations below
are written in terms of the undeformed state. The reason is that we do not know the
deformed shape since we are dealing with large deformation.

Fig. 4 Von miss stress and deformation of the breast model with tumor removal using: (left) water
model I [min 17 Pa;Max 1822 Pa] ; (right) water model II [min 0.Pa;Max 1836 Pa]; (middle)
Comparison of breast and tumor removal deformation for water model I (red), and water model II
(blue)

Fig. 5 Plot of the time depen-
dent gravity load ×10 m.s−2

.
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When a body is in equilibrium, all of the forces must balance. This is achieved
by satisfying the principle of conservation of linear momentum that can be written
for a static problem as:

∂

∂XM

(
SMN ∂x j

∂XN

)
+ρ0 f j = 0, (8)

where SMN are components of the second Piola Kirchhoff stress tensor (force per
unit area of the undeformed body) and f j are the body forces in the reference
frame(such as gravity in our problem).
We model the breast tissue as a Hyperelastic material which is a material where the
stresses are computed from a strain energy density function. It is assumed that the
Second Piola-Kirchhoff stresse S is used, so that

S =
∂WS

∂E

For an isotropic material the strain energy function, WS, can only be a function of
the strain invariants. In a total Lagrangian formulation it is convenient to use the

right Cauchy-Green tensor C = F
T

F for the representation of the strain. Hence the
invariants are:

I1 = trace(C) = C11 +C22 +C33 (9)

I2 =
1
2
(I2

1 − trace(C2)) (10)

I3 = det(C) = J2 (11)

where J = det (F) . We used Mooney Rivlin strain energy, with no thermal expan-
sion, to model breast tissue, it is defined as:

WS = C10(−3+ J−
2
3 I1)+C01(−3+ J−

4
3 I2)+

κ

2
(J−1)2, (12)

where C10, C01 and κ are the material constants of the breast tissue, these constant
units are Pa. The value of the material constants C10 and C01 for the breast tissue are
to be determined experimentally. κ is the bulk modulus and carries the volumetric
part that represents the resistance to hydrostatic compression. Therefore the higher
κ is the more incompressible is the material.

The simulations are done for a static problem. We set the value for the mate-
rial constants to be C10 = 3740 Pa and C01 = 1970 Pa; these values correspond to
a material that is a silicon gel [2]. The first computation was made with a 14000
Quadratic Lagrange Elements. This computation appears then to diverge while we
checked that this was not an issue with mesh refinement. An easy solution is to com-
pute the solution of this nonlinear problem as the end result of a transient problem
with increasing gravity load as in Figure 5. Alternatively we can stay within the



12 D.Thanoon, M.Garbey, Nam-Ho Kim and B.Bass

small deformation theory by artificially increasing the gravity field form zero to the
standard value. This continuation method has two advantages: for each step it keeps
the strain below the small deformation criteria (strain under 4% ) and it enable us
to get a solution that converges for each step. Keeping small deformations between
each step leads to fast computation. However this method could lead to an accumu-
lation of discretization errors. This method could be seen as a quasi-static method.
In our simulation we have increased the gravity for each step by 0.3% of the real
gravity value. This means that after 333 incremental steps we can reach the real
gravity load. The result of this simulation is shown in figure 6. We can see no singu-

Fig. 6 Simulation of the de-
formation of the 3D breast
model under the gravity us-
ing hyperelastic model and
the ’quasi-static’ method,
plotting the von Miss stress
[Max=1.24e4 Pa; Min=1039
Pa]

.

larity at the corner and the von Miss stress is continuous. Nevertheless the value of
the stress is much higher than the linear elastic model. Although hyperelasticity and
linear elastic model are not the same there exists some connection. Indeed for low
strain hypothesis (strain < 5%) one can express the relationship between C01, C10
and E. The material properties of silicon gel we use, did not allow us to link these
two models. Also more validation and verification against experimental data need
to be done to validate the model.

2.3 Influence of Poisson ratio

One of the main difficulties with the breast mechanical model is the lack of initial
conditions, i.e the fact that no shape under zero load is available. A naive approach
will be to start from the loaded configuration, reverse the gravity and expect that this
will be the initial shape at zero gravity.

One of the reasons for which this idea does not work, beside the fact that the
loaded configuration is not stress free, is that the standard linear elasticity model
does not even conserve the volume. In the elastic linear equation the poisson’s ratio
ν represents the incompressibility of a material. Indeed when a sample of material
is stretched in one direction, it tends to contract (or rarely, expand) in the other two
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directions. The Poisson’s ratio, ν , is a measure of this tendency. The influence of
the poisson’s ratio can be shown by a two step method. First we apply to our initial
geometry a gravity load in a direction, ez, and we obtain the geometry of the breast
under a gravity load. The second step consists in extracting the deformed geometry
under gravity and in applying a gravity load in the opposite direction,−ez. After the
first deformation the volume changes, hence the integration of the volumetric forces
for our deformed geometry differs from the original if we apply the same body force.

However if our model were correct we should obtain after the second step the
exact same initial geometry. In order to see the influence of ν , we apply this two
step procedure, for different value of ν . The Poisson ratio for materials stands be-
tween−1 and 0.5. The value of ν = 0.5 representing the complete incompressibility
cannot be reached according to (4). One compute the percentage of the relative error
in L2 norm for the meridional plan of the breast as a function of the second gravity
load (in the inverse direction) for different values of ν . We observe that the closer
ν is to 0.5 the smaller the error but this error is no less than 2% at minimum. A
remedy to that lack of volume conservation would be to constraint the model with
a Lagrange multiplier. We are going now to discuss an algorithm to solve the in-
verse problem that consists in the reconstitution of the initial unloaded shape from
a loaded configuration.

2.4 Retrieving the unloaded shape

For simplicity we restrict ourselves to a two dimensional case.

Let us consider a curve Cmed(t) = (θmed(t),rmed(t)) define for t ∈ [0,π], that
represents the 2D breast external envelop under gravity loading. This parametric
representation is done in the polar coordinate system. Our goal is to find the curve
Cs(t) = (θs(t),rs(t)) representing the breast model under zero gravity load. When
we apply the gravity load to Cs we should obtain Cmed .
We consider a set of Nc points : t1 = 0 < t1 < ... < tNc = π to support a B-spline
representation cs of our unknown contour curve Cs. Our optimization problem in
this finite approximation space is summarized in figure 7.

The optimization algorithm is an iterative process that requires an initial guess
C0. We build the initial guess by applying the gravity load in the inverse direction on
Cmed . We may apply a surface rescaling to impose the surface area to be preserved.
After construction of our initial guess we compute the loaded shape with one of the
previous forward model and compare our controlling points to the medical shape,
Cmed . The controlling points position are updated with an optimization algorithm
that minimizes the distance between the two curves. If the tolerance condition is
met, the optimization process is terminated. This occurs when the sum of differ-
ences between the medical shape and the FEM shape is sufficiently small. Our first
attempt to use a gradient based method fails, because this method appears to be too
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sensitive to the noise of the forward FEM calculation. Second we use a Nelder-Mead
method, that turns out to be more stable and provided convergence. We found more
efficient to use some kind of a local relaxation technique that sweep the parameter
space and solve the optimization problem one component at a time. This simple al-
gorithm is described as follows:

Until convergence criteria is met repeat the sweeping algorithm:
for i = 1 : Nc
− Optimize position of point i in C0;
− Set the new C0 with the optimize position of point i;
end for

This procedure converges faster with the following regularization that consists to
update the two neighbor points with a spline interpolation from the other fixed point
and the ith perturbed point.

A representative example of our numerical results was for example with the
benchmark problem corresponding to the shape define in the Cartesian coordinates
by (X(t),Y (t)) = (R0cos(t),−R0sin(t)+X(t)). The inverse problem requires 1200
forward simulation with 20 control points which is a fair amount of calculation.
The relative error expressed in the L2 norm on the coordinate of the control points
was equal to 0.73%. The larger the number of control points the smaller should be
this error. To solve efficiently this inverse problem in three space dimension will
undoubtedly benefit from a parallel version of the sweeping algorithm that exploit

Fig. 7 Optimization algorithm flowchart used to determine the unloaded shape of a breast from a
loaded shape

.
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the relative independence of distanced control points. This work is under develop-
ment for 3d clinical cases that are necessary to provide a validation of the method.
This reconstruction of the unloaded shape must be done only once. From that result
a forward simulation with arbitrary direction of gravity can be done very quickly.
However as mentioned earlier there is a fair amount of uncertainty on mechanical
soft tissue properties with clinical situation. We are going next to explore the sensi-
tivity of the forward simulation to material properties.

2.5 Influence of Tissue Description

We are mainly concerned by how important is the geometric distribution of soft
tissue mechanical properties and what is the impact of internal stiffer tissue on the
whole deformation.

To tackle this question, let us consider a 2D breast model with a realistic distribu-
tion of tissue. The geometry of the breast, as well as the tissue distribution is given
in figure 8.

We differentiate three types of tissue: fat, fibroglandular, skin. The individual
tissue types were modeled as isotropic and homogeneous. Linear elastic model was
used, and we tested a broad variety of Youngs modulus ratios for each tissue types
as in table 1), compatible with data find in the literature. Six linear models were

Table 1 Youngs modulus E of fatty and fibroglandular tissue for linear

Young’s modulus E in Pa

Name Fatty tissue (E f ) Fibroglandular tissue (Eg)
E f
Eg

MM1 2500 2500 1
MM2 2500 3750 1.5
MM3 2500 12500 5
MM4 2500 25000 10
MM5 2500 37500 15
MM6 2500 50000 20

constructed where fibroglandular tissue was 1,1.5,5,10,15 or 20 times stiffer than
fatty tissue. These six models were tested without skin (MM1−MM6), and with
skin. The skin envelope was supposed to be 4 times stiffer than the fatty tissue in
the linear models (MM1S−MM6S). We start from a loaded configuration with the
person standing up. To test our model we apply a body load ‖ −→g ‖= 9.8m.s−2 in
the upward −→y direction. This would correspond to the position of the breast at zero
gravity. The deformation of the breast was monitored by plotting the displacement
of five markers attached to the breast. Figure 9 illustrates the displacement of the 5
markers, placed on the breast model (see figure 8), along the −→x and −→y directions
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for the different Young’s modulus values. As we can see the general behavior is the
same between the model with skin and the model without skin. The sensitivity of
the model to the skin effect decays as the foibroglandular tissue is stiffer.

We notice as expected that the stiffer is the fibroglandular tissue, the smaller is
displacement. There is however a saturation effect and we get roughly the same
displacement when fibroglandular are 10,15 and 20 times stiffer than fat.

We have tested second the effect of the presence of a small tumor on these de-
formations. We place some disk of 1cm radius to model a tumor and look at the
impact on the deformation of the breast while the tumor is supposed to be 25 stiffer
than the fat tissue. We observe mainly a local perturbation of the previous results.
In particular the markers closest to the tumor get most affected as one can expect.

This sensitivity analysis reveals (with a two dimensional simulation), the impor-
tance of the choice of the breast model. An homogeneous tissue description to model
the breast would be inaccurate. However regarding to the general behavior an exact
description of the tissue property is not mandatory. Moreover this will lead to ex-

Fig. 8 Model for the sensitivity analysis of the Fibroglandular tissue.
.
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cessive constrain at the input of our model. One speculate that a coarse distribution
of the tissue is needed to have prediction that fit within a few millimeter accuracy.
Regarding the skin introduction in the model, the skin affects the amplitude of dis-
placement, however the skin introduction does not impact the general behavior of
the deformation.

With three dimensional clinical data, we expect to retrieve some good tissue com-
position indicator with either a coarse segmentations of MRI images, or even better
elastography imaging. We can expect however some uncertainty left on those tissue
mechanical properties, and a practical solution would be to calibrate the mechanical

Fig. 9 Displacement of the different marker along x and y direction after loading
.
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model with breast external 3d images obtained in various positions relative to the
gravity. The solution of this identification problem may use the same optimization
framework that the one we use for recovering the unloaded position.

3 Conclusion

The motivation of this study was to highlight the different aspects that it takes to
develop a reliable mechanical model of breast deformation for BCT, in order to
provide a good predictive tool for surgery. We discussed the choice of the model
with linear elastic, hyperelastic approximation to simulate breast tissue and multi-
material description in particular for tissue removal. We found global deformation
and local deformation due to BCT with good correlation with surgeons observations.
A sensitivity analysis was run to determine what are the most significant parame-
ters to measure. We have shown that we can learn much from artificial benchmark
problems and they should be used as a preliminary test of methods and ideas for
BCT. However a reliable predictive model needs much more work and should start
from the clinical data we have started to accumulate. Our next step will be to con-
centrate on a mechanical model that retain enough of the desired characteristic to
predict outcomes of BCT but can still work in a clinical environment characterized
by a significant level of uncertainty on tissue properties. Later on this mechanical
model will be coupled to a tumor growth model that should provide information on
negative margin in surgery planning.
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