EAS6939 Homework #6

1. In engineering, the random wind pressure \(Y \) is typically modeled as a quadratic transformation of the random wind speed \(X \). If \(X \sim N(\mu, \sigma^2) \) and \(Y = X^2 \), find approximation of \(Y \) based on the first-order Taylor series expansion about mean of \(X \) and equivalent linearization. For equivalent linearization, consider \(Y_L = aX + b \), where \(a \) and \(b \) are optimal parameters. Calculate the mean and variance of the above approximations of \(Y \).

2. A vehicle has a deterministic mass, \(m = 2 \), and random velocity, \(V \), which can take on both positive and negative values. The kinetic energy \(K \) of the vehicle is \(K = \frac{1}{2} m V^2 \). If \(V \) follows Normal (Gaussian) probability distribution with mean, \(m_V = 0 \), and standard deviation, \(\sigma_V = 1 \), determine the probability density function and cumulative probability distribution function of \(K \). Use the method of general transformation.

3. The resistance (or strength), \(R \), of a mechanical component which is subject to a load, \(S \), are modeled as random variables with the following probability density function:

\[
\begin{align*}
 f_r(r) &= \begin{cases}
 0.5 & 0 \leq r \leq 2 \\
 0 & \text{otherwise}
 \end{cases} \\
 f_s(s) &= \begin{cases}
 2s & 0 \leq s \leq 1 \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

Assume that \(R \) and \(S \) are statistically independent. Find the cumulative probability distribution functions, \(F_Y(y) \) and \(F_Z(z) \) of

(a) \(Y = R - S \)
(b) \(Z = R/S \)

Furthermore, evaluate
(c) \(F_Y(0) \)
(d) \(F_Z(1) \)
(e) Explain why \(F_Y(0) = F_Z(1) \)