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Subsurface Stress Fields
in Face-Centered-Cubic
Single-Crystal Anisotropic
Contacts

Single-crystal superalloy turbine blades used in high-pressure turbomachinery are sub-
Ject to conditions of high temperature, triaxial steady and alternating stresses, fretting
stresses in the blade attachment and damper contact locations, and exposure to high-
pressure hydrogen. The blades are also subjected to extreme variations in temperature
during start-up and shutdown transients. The most prevalent high-cycle fatigue (HCF)
failure modes observed in these blades during operation include crystallographic crack
initiation/propagation on octahedral planes and noncrystallographic initiation with crys-
tallographic growth. Numerous cases of crack initiation and crack propagation at the
blade leading edge tip, blade attachment regions, and damper contact locations have
been documented. Understanding crack initiation/propagation under mixed-mode load-
ing conditions is critical for establishing a systematic procedure for evaluating HCF life
of single-crystal turbine blades. This paper presents analytical and numerical techniques
for evaluating two- and three-dimensional (3D) subsurface stress fields in anisotropic
contacts. The subsurface stress results are required for evaluating contact fatigue life at
damper contacts and dovetail attachment regions in single-crystal nickel-base superalloy
turbine blades. An analytical procedure is presented for evaluating the subsurface
stresses in the elastic half-space, based on the adaptation of a stress function method
outlined by Lekhnitskii (1963, Theory of Elasticity of an Anisotropic Elastic Body,
Holden-Day, Inc., San Francisco, pp. 1-40). Numerical results are presented for cylin-
drical and spherical anisotropic contacts, using finite element analysis. Effects of crystal
orientation on stress response and fatigue life are examined. Obtaining accurate subsur-
face stress results for anisotropic single-crystal contact problems require extremely re-
fined 3D finite element grids, especially in the edge of contact region. Obtaining resolved
shear stresses on the principal slip planes also involves considerable postprocessing
work. For these reasons, it is very advantageous to develop analytical solution schemes
for subsurface stresses, whenever possible. [DOI: 10.1115/1.2180276]

Introduction

Single-crystal nickel-base superalloy turbine blades are espe-
cially prone to fretting/contact fatigue damage because the subsur-
face shear stresses induced by fretting action at the damper con-
tact and blade attachment regions can result in crystallographic
initiation and crack growth along octahedral planes. The presence
of fretting in conjunction with a mean stress in the body of a
component can lead to a marked reduction in high-cycle fatigue
(HCF) life, sometimes by a factor as great as 10 [1,2]. Fretting
occurs when assemblies of components, such as blade and disk
attachment surfaces, bolt flanges, snap fit areas, and other clamped
members, are subjected to vibration, resulting in contact damage.
The combined effects of corrosion, wear, and fatigue phenomena
at the fretting contact facilitate the initiation and subsequent
growth of cracks.

Currently, the most widely used single-crystal nickel-base tur-
bine blade superalloys are PWA 1480, PWA 1484, RENE’ N-5,
and CMSX-4. These alloys play an important role in commercial,
military and space propulsion systems [3-7]. Military gas turbine
mission profiles are characterized by multiple throttle excursions
associated with maneuvers, such as climb, intercept, and air-to-air
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combat. This mission shifts attention to fatigue and fracture con-
siderations associated with areas below the blade platform that
contain various stress risers in the form of buttresses and attach-
ments. Blade-disk attachment areas and blade frictional damping
devices are particularly prone to fretting/galling fatigue damage
[4]. Rocket engine service presents another set of requirements
that shifts emphasis to low-temperature fatigue and fracture capa-
bility with particular attention given to environmental effects (i.e.,
high-pressure hydrogen gas exposure, thermal, and cryogenic).
Attention has shifted from oxidation erosion, creep, stress rupture,
and creep fatigue damage mechanisms to the micromechanics of
fatigue and fracture observed between room temperature and
871°C (1600°F). Fatigue crack initiation, threshold and region II
fatigue crack growth are of primary importance, and the demand
for improvements in fracture mechanics properties for turbine
blade alloys is imminent [4].

Study of crack initiation under mixed-mode loading is impor-
tant for understanding fretting fatigue crack initiation in single
crystals. The subsurface shear stresses induced by fretting action
can result in crystallographic initiation of failure, under mixed-
mode loading conditions. Fretting fatigue at low slip amplitudes
that induces little or no surface damage can result in greatly re-
duced fatigue life with accelerated subsurface crystallographic
crack initiation, akin to subsurface shear-stress-induced rolling
bearing fatigue. The complex interaction between the effects of

JULY 2006, Vol. 128 / 1

Copyright © 2006 by ASME

PROOF COPY [GTP-04-1107] 012603GTP



PROOF COPY [GTP-04-1107] 012603GTP

Damoer

Damper
Contact

Fig. 1

Damper contact locations on the turbine blade

environment and stress intensity determines which point-source
defect species initiates a crystallographic or noncrystallographic
fatigue crack [4-7].

This paper presents analytical and numerical methods to evalu-
ate the subsurface stresses in face-centered-cubic (FCC) single-
crystal cylindrical and spherical contacts as a function of crystal-
lographic orientation, and contact loads. The subsurface stresses
evaluated are subsequently used to assess contact fatigue life,
based on a fatigue life model developed previously [8—11]. The
motivation for this work is provided by the crystallographic sub-
surface cracks induced at the damper contact locations in single-
crystal turbine blades. Figure 1 shows a schematic of the damper
contact location. Figure 2 shows a close-up view of the subsurface
induced crystallographic crack propagating on intersecting octa-
hedral planes, ultimately resulting in a pyramidal hole in the blade
platform [12].

There is a considerable body of work done on fretting fatigue
damage of isotropic polycrystalline materials. Some representa-
tive examples are by Hills and Nowell [1], Giannokopoulos et al.
[13], Szolwinsky and Farris [14], Attia and Waterhouse [15], Hoe-
ppner [16], Vingsbo and Soderberg [17], and Ruiz et al. [18].
However, studies on subsurface contact stresses and mechanics of
fretting fatigue crack initiation and crack growth in orthotropic
single-crystal materials are very few. There is an extensive body
of literature available in the classical area on the evaluation of
subsurface stresses for nonconformal contacts in isotropic materi-
als using analytical methods [19]. However, the amount of pub-
lished literature involving analytical solutions in anisotropic non-
conformal contacts is considerably less. Green and Zerna [20]
looked at the two-dimensional (2D) anisotropic contact problem
in 1954, for a specific type of anisotropy. Willis [21] examined the
Hertzian elliptical contact problem for anisotropic half-spaces us-
ing a Fourier transform method. Turner [22] examined the spheri-
cal contact between transversely isotropic nonconformal bodies.
Fan and Keer [23] examine the 2D contact problem using the

Fig. 2 Crystallographic crack initiation at the damper contact
location shown in Fig. 1 [12]
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analytic function continuation approach based on the Stroh formu-
lation [24]. Vlassak et al. [25] looked at calculating an effective
indentation modulus for anisotropic contacts. Analytical solutions
were developed for indenters of arbitrary shape being pressed into
an anisotropic half-space. For axisymmetric indenters, a limited
family of Green’s functions is used to obtain a solution for the
displacement field. This solution is denoted as an equivalent iso-
tropic solution.

In this paper, we present an analytical solution for a cylindrical
contact, using the stress function approach outlined by Lekhnitskii
[26], for an anisotropic half-space under conditions of generalized
plane strain problem. Finite element subsurface stress results of
the cylindrical and spherical anisotropic contacts modeling the
damper contact locations shown in Fig. 1 are also presented.

Deformation Mechanisms and Elastic Anisotropy in
FCC Single Crystals

Nickel-based single-crystal materials are precipitation strength-
ened, cast, monograin superalloys based on the Ni-Cr-Al system.
The microstructure consists of =60-70% by volume of ' pre-
cipitates in a y matrix. The y' precipitate, based on the interme-
tallic compound NisAl, is the strengthening phase in nickel-base
superalloys and is a face-centered-cubic (FCC) structure. The '
precipitate suspended within the y matrix also has a FCC structure
and is comprised of nickel with cobalt, chromium, tungsten, and
tantalum in solution [4].

Deformation mechanisms in single crystals are primarily de-
pendent on microstructure, orientation, temperature, and crystal
structure. The operation of structures at high temperature places
additional materials constraints on the design that are not required
for systems that operate at or near room temperatures. In general,
materials become weaker with increasing temperature due to ther-
mally activated processes, such as multiple slip and cross-slip. At
temperatures in excess of approximately half the homologous
temperature (the ratio of the test temperature to the melting point,
=T/T,,), diffusion controlled processes (e.g., recovery, recrystalli-
zation, dislocation climb, and grain growth) become important,
which results in further reductions in strength. Slip in metal crys-
tals often occurs on planes of high atomic density in closely
packed directions. The four octahedral planes corresponding to the
high-density planes in the FCC crystal have three primary slip
directions (easy slip) resulting in 12 independent primary (110)
{111} slip systems. The four octahedral slip planes also have three
secondary slip directions resulting in 12 secondary (112) {111}
slip systems, which represent twinning systems. In addition, the
three cube slip planes have two slip directions resulting in six
independent (110) {100} cube slip systems. Thus, there are 12
primary and 12 secondary slip systems associated with the four
octahedral planes and six cube slip systems with the three cube
planes, for a total of 30 slip systems [27]. At high temperatures,
slip has been observed in non-close-pack directions on the octa-
hedral plane, and on the cube plane, in FCC crystals. The analysis
presented in this paper is restricted to the 12 primary (110) {111}
slip systems only.

Elastic response of FCC crystals is obtained by expressing
Hooke’s law for materials with cubic symmetry. The generalized
Hooke’s law for a homogeneous anisotropic body in Cartesian
coordinates (x, y, z with origin at point O) is given by Eq. (1)
[26,27].

{e}=laKo} (1)
[a,-j] is the matrix of 36 elastic coefficients, of which only 21 are
independent, since [a;;]=[a;;]. The elastic properties of FCC crys-
tals exhibit cubic symmetry, also described as cubic syngony. The
elastic properties of materials with cubic symmetry can be de-
scribed with three independent constants designated as the elastic
modulus, shear modulus, and Poisson ratio [26], and hence, [a;]
can be expressed as shown in Eq. (2), in the material coordinate
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Table 1 Slip plane and slip direction for the 12 primary octa- NS
hedral slip systems [27] .
Surface Traction
Slip Slip plane Slip G
system (110Y{111} direction @ o—,
| () 10T] AUV VVVV VUV VAV
2 (111) [oi1] Anisotropic Half-Space
3 (111) [110] ¥
4 (1 [101] . . . . .
5 - [110] Fig. 3 Anisotropic elastic half-space under generalized plane
(1_1 1_) deformation subjected to normal and tangential traction forces
6 (111) [o11]
7 (111) [110]
8 (111) [011] (o - -
9 (111) [101] 7 1 0 -1 1 0 -1
10 (1T1) [o11] 7 0 -1 1 -1 1 0
1 (111) (101] 7 =10 0 1 —1f
12 (I11) [110] ™ -1 0 1 1 0 -1[]o,
i -1 1 0 0 -1 -11|o,
7 110 1 -1 -1-10 o
(o= {0 @
T vof 1 -1 0 0 -1 -1 Oy
) P 0 1 -1 -1 1 0 o,
system (FCC crystal axes are parallel to x-, y-, and z- coordinate N
axes). In contrast to the FCC single-crystal material, an isotropic 7 0 -1 -1 0 -1 \ %z )
material can only have two independent elastic constants 70 0O -1 1 -1 -1 0
il -1 0 1 -1 0 -1
r 7 \712 J -1 0 0 1 -1
app dpp dpp 0 0 0 _ L - -
ap ap ap 0 0 0 a“_Em
ap ap a; 0 0 0 1 . . . .
[a;]= D Ay =— Analytical Solution for Two-Dimensional Stress
00 0 ay 0 0 Gy Distribution (Generalized Plane Deformation) in an
0 0 0 0 ay O ap=— Py . Pay Anisotropic Elastic Half-Space
L 00 0 0 0 ay i Eq Ey, The damper contact regions shown in Fig. 1 will be modeled as
(2) an elastic anisotropic half-space. This approximation is reasonable

The elastic constants in the generalized Hooke’s law of an aniso-
tropic body, [a,-j], vary with the direction of the coordinate axes.
For orientations other than the (x,y,z) axes, the [aij] matrix varies
with the crystal orientation. In the case of an isotropic body, the
constants are invariant in any orthogonal coordinate system. Con-
sider a Cartesian coordinate system (x’,y’,z’) that has rotated
about the origin O of (x,y,z). The elastic constant matrix [ai'j] in
the (x’,y’,z") coordinate system that relates {¢'} and {c'} ({e}
=[ai'j]{a-/ }) is given by the following transformation [26]:

6 6
[az‘ll] = [Q]T[atj][Q] = E E aanmian! (l’] = 1’2’ s 76)

m—=1 n—1

3)

The transformation matrix [Q] is a 6 X 6 matrix that is a function
of the direction cosines between the (x,y,z) and (x’,y’,z’) coor-
dinate axes. Knowing the state of stress at a given location, in the
material coordinate system (x,y,z), the resolved shear stresses on
the 12 primary octahedral slip systems, denoted by 7,7, ..., 72,
can be readily obtained using the transformation given by Eq. (4)
[28]. The slip plane and slip direction of the 12 primary octahedral
slip systems are given in Table 1 [27]. The resolved shear stresses
on the secondary octahedral and cube planes are obtained using
similar expressions [8,27].
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since Hertzian-type contact stresses are confined to very small
volumes in the vicinity of the contact. An analytical procedure
will be presented for evaluating the subsurface stresses in the
elastic half-space using a stress-function approach outlined by Le-
khnitskii [26]. Lekhnitskii’s method for a general anisotropic body
has been adapted for a orthotropic FCC single-crystal half-space.
Figure 3 shows the elastic half-space subjected to normal traction
N(&) and tangential traction 7(£€) over the region —a to +a on the
x-axis. The traction forces are independent of z, and functions of x
and y only. The stresses are also functions of x and y only.

The equilibrium equations under generalized plane strain con-
ditions, for an anisotropic half-space, are expressed as follows
[26]:

g, i

—_0
ox dy
do, Ty,
9o, I, )
ady ox
ox dy

Note that the third equilibrium equation in Egs. (5) is not used for
plane strain condition for isotropic materials. However, because of
shear coupling induced by anisotropy, the shear stresses 7,, and
7,, are nonzero and functions of x and y.
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The stress-strain relations, as defined by the Hooke’s law, Egs.
(1), are given by

gy=a 0t alZO-y +oo a167-xy
8y = a0+ Ap0y+ 7"+ AxeTy,

(6)

yxy =a;60, + 61260'), +oo aééTxy

where [a;;] are a function of crystallographic orientation.

Under the assumptions of generalized plane strain, the subsur-
face stresses due to the applied traction forces can be determined
as outlined below.

The stress functions are given by

1 +a
HO+d0as0=-— | e @)
mi)_, E-z
1 +a
1 P1(2) + pa i (2) + a3 5(z) = - N %dg (8)
N1 91(2) + Nah5(2) + $3(2) =0 (9)

The u; are the roots of the cylindrical characteristic equation,
given by Eq. (10), and z=x+ wy.

L) = () =0 (10)
L(p) = ﬂssﬂz =245+ Bus
L) = [315%’«3 - (Ba+ ,356)#«2 + (Bos+ Bag) b = Boa
Li(w) = Brm’ = 2B161” + (2B + Boo) 4* — 2Basit + B

__ L) __ L) __ I3(ps)

! lz(;“«l), lz(,Uvz)’ ’ L4(p3)
ﬁij=aij—M (11)

as3

The matrix aj; relates the strains to the stresses. The a;; are
functions of the crystal orientation. The stresses are then given by

7, =2 Re[ui$](2) + w35 (2) + uiN343(2)]
0y, =2Re[¢](2) + $(2) + N3¢3(2)]
Ty == 2 Re[11181(2) + pa5(2) + a3 i (2)]
Tee =2 Re[ s\ 8] (2) + 1oM103(2) + p3h3(2)]

Ty =~ 2 Re[)\l‘ﬁ;(z) + )\2¢£(Z) + d’;(z)]

(12)

g, == P (@130, + x50, + a3y Ty, + A35Ty, + 36T ]
33

=X+ My
The normal traction force N(&) used is the Hertzian cylindrical
contact pressure as N(&)=p,\1-&/a* and T(§)=pump,\1 —-&/d?,
where p, is the peak pressure and uy the coefficient of friction.
The tangential traction force is based on a sliding contact and not
a contact in partial slip. It must be noted that we are not solving a
contact problem here, but rather a stress analysis problem in an
elastic anisotropic half-space subject to normal and tangential
traction forces. The contact dimensions are obtained from a simu-
lated Hertzian cylindrical contact. The semi-elliptical normal pres-
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Fig. 4 Three-Dimensional FE model of the elastic anisotropic
half space [28]

sure distribution seen in isotropic cylindrical contacts is also true
for anisotropic contacts [11]. The stress solution has been pro-
gramed and subsurface stresses computed for various crystal ori-
entations.

Figure 4 shows the finite element model used for the numerical
results. This ANSYS model represents an elastic anisotropic half-
space and was developed using eight-node hexahedral elements
(SOLID45s) in the contact region and four-node tetrahedral ele-
ments (SOLID45s) in the far field. The load functions,N(£)
=p,N1-&/a* and T(§)=,4pr0\“"1—§2/a2 were applied directly to
the finite element model. This applied stress problem does not
require the use of contact elements.

Figure 5 shows a comparison of the analytical and finite ele-
ment o, stress fields for a=0.01 inch, p,=260 ksi, and for the
(x,v,7) axes parallel to the edges of the FCC crystal, i.e., x
=(100), y=(010) and z=(001) (Case A). The analytical solution
shows excellent agreement with the finite element numerical so-
lution. The FEA solution is evaluated at the midplane, where gen-
eralized plane strain conditions prevail. It was observed that the
stress field approaches the 2D generalized plane strain solution
after a short distance from the edges, indicating that the analytical
solution could be used effectively for many practical 3D contact
problems. The advantage of this analytical solution is that it is
accurate and extremely quick to compute anywhere in the compu-
tational domain. The subsurface stress solutions are discussed in
greater detail in later sections.

Finite Element Analysis (FEA) of the Cylindrical Aniso-
tropic Contact Problem

A cylindrical indenter on an anisotropic half-space contact
model (Fig. 6) was developed in ANSYS. The cylindrical indenter
and plate were modeled using eight-node elements (SOLID45s).
Surface-to-surface  contact  elements (CONTA174  and
TARGE170) were used at the interface of the two bodies. Because
of very high stress gradients in the contact region, a highly refined
FE mesh must be used to obtain reliable stress solutions. The
densely meshed regions in both the half-cylinder and half-space
have roughly the same element size. The refined mesh and the
iterative solution of the contact problem require computationally
intensive resources, both in time and space. A typical analysis
takes two CPU hours on a 2.4 GHz multiprocessor PC-based
workstation.

The analytical solution outlined in the previous section can be
used for obtaining subsurface stresses in a half-space for a known
or applied normal and tangential tractions. The analytical solution
was obtained by applying a semi-elliptical normal pressure distri-
bution over the contact width. The blades are subjected to fretting
stresses at the attachment regions; however, this analysis (both the
analytical and numerical solutions) does not include friction at the

Transactions of the ASME
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Fig. 5 Stress (o) contours using analytical solution and finite
element (Ansys) solution [28]

contact and, hence, no tangential tractions are generated. The au-
thors are extending this work by examining the effects of friction
in a subsequent paper. Fatigue considerations are made toward the
end of the paper and the data used in it. An approach for modeling
the influence of crystal orientation on fatigue life is given in the
same section, but no numerical modeling involving crack initia-
tion and propagation is presented here.

The contact width, 2a, was estimated initially using a Hertzian
isotropic calculation. It should be pointed out that the loads ap-
plied here are not the exact same loads imparted on the blades
during operation. These loads are, in fact, larger, and this was
done to make the contact width large enough so the available
resolution (element sizes of 0.001 in.) could be utilized. Thus, the
effects of plastic deformation, which could arise from high loads,
are not included here. The FEA contact model converges to the
correct anisotropic contact width. Figure 7 shows a representative
comparison of subsurface stresses computed using the analytical
solution and FEA contact model (Fig. 6). Excellent agreement is
seen between the two solutions.

The crystallographic orientations are designated by successive
rotations about the (XYZ) axes, as follows: 7 is rotation about X
axis, A is rotation about Y’ axis, and 6 is rotation about Z" axis.
Table 2 shows four different crystallographic orientations consid-
ered in the analysis. Figure 8 shows some representative contour
plots of the resolved shear stress values for slip systems 7, 73, and
711, for two different crystallographic orientations: Case B (A

Journal of Engineering for Gas Turbines and Power
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A

N
N

211/

Fig. 6 Three-dimensional FE model of a cylindrical aniso-
tropic contact and close-up view of the meshed contact region
[28]

=15 deg, y=0 deg, 6=0 deg) and case C (A=-15 deg, y=0 deg,
0=0 deg). The plane on which the crack will nucleate will depend
on the magnitude of the shear stress amplitude. Even though the
contour plots show similarity between cases B and C, the revolved
shear stress (RSS) values are very different because of material
orthotropy, and the stresses are a strong function of both primary
and secondary crystal orientation.

FEA of the Spherical Anisotropic Contact Problem

A 3D FEA of the spherical anisotropic contact problem was
also performed using ANSYS. Figure 9 shows the FEA model of an
isotropic spherical contact on a single-crystal plate. The sphere
was modeled with eight-node hexahedral elements (SOLID45s),
assuming linear-elastic isotropic material behavior. The plate was
modeled with 20-node hexahedral elements (SOLID95s) and ten-
node tetrahedral elements (SOLID95s). Linear-elastic anisotropic
material properties were used in the plate. The contacting surface
between the two bodies was represented using ANSYS surface-to-
surface contact elements with friction (CONTA174-TARGE170).
The indenter or damper is subjected to both normal and tangential
loads, and therefore, frictional effects are incorporated.

An analytical solution for the 3D anisotropic contact problem
was also obtained using the stress-function approach outlined in
Lekhnitskii [26]. However, because of the complexity of the 3D

JULY 2006, Vol. 128 / 5
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Fig. 7 Comparison of FEA contact and analytical subsurface
stresses o, and o, as a function of depth, for crystallographic
orientation defined by case C (A=-15 deg, y=0 deg, #=0 deg)
[28]

analytical solution, its presentation is reserved for a separate pa-
per. The numerical results based on the FEA are reported herein.

The Hertzian solution for a spherical isotropic contact on a flat  *
plate is given by

Fig. 8 Contour plots of RSS 7, 73, and 744, for cases B and C
under the contact region [28]

3 _ _ -1
=4L(E*); E*=<l V%+1 Vg) ;
3R

E Ey
(13) - -
11 1 1.5P
. el 1 -v, -V
R TR Pe=_a - =L =2 0 0 0
R R, R ma
1 2 Ep Ep Ezp
- - -v 1 -V - -
where R, and R, are the radii, and E, and E, the Young’s moduli —£ - —£ 90 0 0
of the contacting spheres, respectively, E” is the effective or com- Exx E, E, E, O
posite modulus at the contact, R .the compqsite radius, P the nor- €y -V, -V, 1 0 0 0 Ty
mal load, and a is the contact radius. To derive an effective modu- e E E E o
lus for the single-crystal orthotropic contact, we refer to Turner’s “ = @ @ ¢ ®
paper [22]. We have adapted his work for a transversely isotropic Vxz 0 0 0 1 0 0 Txz
contact to an orthotropic contact in question. The stress-strain re- Yyz 2G,, Ty
lation in the material coordinate system is given by 1 .
Red o 0 0 0 o [L™
2G,,
1+
0 0 0 0 0 —2
E,
Table 2 Designation of crystallographic orientations - = (14)
Case A deg y deg 6 deg The five elastic constants in transverse isotropic constitutive equa-
tions are the Young’s modulus and Poisson’s ratio in the x-y sym-
A 0 0 0 s . ; .
B +15 0 0 metry plane, E, and v, the Young’s modulus and Poisson’s ratio
C _15 0 0 in the z direction, E,. and v, and the shear modulus in the z
D 0 0 40 direction G,. The solution for the orthotropic spherical contact
can be derived as
6 / Vol. 128, JULY 2006 Transactions of the ASME
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79.51bs

Single Crystal |

Fig. 9 Three-dimensional FE model of the spherical isotropic
indenter on a single-crystal orthotropic substrate

fi(@)
T 3R\ ¢,

E ’772¢2K

ortho =
b

where E ., 1s an effective contact modulus that can be used to
estimate the contact patch size, for the single-crystal contact.

(15)

B d+v,)-v,(1+v,)

ST

y=<i>“(z__sz)
a+pf 2 2(1-w,)

8=(a+,8)”2<1—v1>
2 G,

_EL

G, =
P 2(1+w,)

For example, for crystal orientation case A (A=0 deg, y=0 deg,
0=0 deg), R=0.25 in. and P=79.5 Ib, we can, using Eq. (15),
calculate a contact radius, dqpe, as 0.00814 in. The contact radius,
arga, using FEA is 0.0092 in. The contact radius for the isotropic
Hertzian calculation (Eq. (13)) is a;4,=0.0104 in (based on E,
=18.1% psi, E,=31.2° psi, ,=0.3892, »,=0.293). The effective
modulus, E 40, is very useful for calculating the effective contact
radius. Once the effective contact radius ayy,, 1S known, we can
calculate the maximum contact pressure p,. The semi-elliptic
pressure distribution, p”\r’m, can be applied as a normal pres-
sure on the half-space in the FEA, thus effectively decoupling the
contact problem with the subsurface stress calculations and,
hence, greatly simplifying the numerical problem.

Table 3 shows the contact patch dimensions calculated using
FEA contact elements from a spherical indenter model shown in
Fig. 9. For crystal orientation cases A and D, even though these
two cases represent very different crystal orientations, the contact
radius does not vary significantly from apg,=0.0092 in. However,
it must be pointed out that the FEA mesh size in the contact region
was 0.001 in.2, and for better resolution the mesh size has to be
refined, further highlighting the problems associated with FEA of

(16)

Journal of Engineering for Gas Turbines and Power

PROOF COPY [GTP-04-1107] 012603GTP

Table 3 Spherical orthotropic contact radius as a function of
crystal orientation

Orientation Contact half-width, ag, (in.)
Case A 0.092
Case D 0.092

anisotropic contact problems. Numerical accuracy issues in sub-
surface stresses as a function of mesh refinement in contact prob-
lems is discussed, in detail, by Beisheim and Sinclair [29]. It is
very advantageous to calculate the effective contact radius, @gpe»
and solve the applied stress problem, rather than resorting to solv-
ing the problem using contact elements. This approach is the most
effective way to solve contact problems involving single-crystal
substrates, especially for design iterations.

Representative subsurface stress results, using this decoupling
approach and the full contact solution, are shown in Fig. 10. Com-
parison shows excellent agreement between the two approaches.

Cylindrical and spherical contact simulations were performed
for a wide range of crystallographic orientations. Normal contact
pressure for these cases was compared to that of case A (A
=0 deg, y=0 deg, =0 deg), where the coordinate axes are par-
allel to the crystal axes, to see the effect of crystal orientation. It
was found that even for large orientation deviations from case A,
the normal contact pressure and contact patch size did not vary
substantially, indicating that the effective contact modulus, E 0,
and contact width (cylindrical) or radius (spherical), agqho, are
relatively insensitive to variations in crystallographic orientation.
The E .o and agp, values based on case A orientation can be
used for nearly all practical blade-casting crystallographic orien-
tation deviations from the ideal. This lends further credibility to
using the simulated contact model for FEA, which leads to greatly
simplified contact subsurface stress analysis. Even though the
contact normal pressure does not change substantially, the subsur-
face stresses are a strong function of orientation. The simulated
contact method is very advantageous for performing repeated sub-

Case B
(simulated contact)

Case D

Fig. 10 Comparison of subsurface stresses between the full
FEA contact solution and simulated contact, for the orthotropic
spherical contact
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Fig. 11 Weighted percentage difference in normal contact
pressure for the orthotropic and isotropic spherical contact, as
compared to case A

surface stress calculations required for fatigue life calculations.
The full contact solutions typically took 7—8 h to run on a fast
multiprocessor PC-based workstation, while the simulated contact
took only 1-2 min to execute on the same machine.

Figure 11 shows the weighted percentage differences in contact
pressure for some crystal orientations, as compared to case A, for
the spherical contact. It can be seen that the deviation of normal
pressure from case A is within 2.5% for most practical situations.
In contrast, the difference between the isotropic Hertzian contact
(Eq. (13)) with case A is significantly higher (within 10%).

Fatigue Considerations

The fatigue crack nucleation and crack growth behavior of
single-crystal nickel superalloys is governed by a complex inter-
action between the operative deformation mechanism, stress in-
tensity, and environmental conditions. The fatigue crack growth
behavior is determined by the operative microscopic fracture
mode. As a result of the two-phase microstructure present in
single-crystal nickel alloys, a complex set of fracture modes exist
based on the dislocation motion in the matrix () and precipitate
phase (7). A fatigue life model was obtained by Swanson and
Arakere [8], based on strain-controlled LCF tests conducted at
1200°F in air for single-crystal uniaxial smooth specimens, for
four different specimen orientations (001), (111), (213), and (011).
Several multiaxial fatigue damage theories, including critical
plane methods, were evaluated to identify a suitable fatigue dam-
age parameter that would fit the test data well. The maximum
shear stress amplitude, A7,,,, on the slip systems was found to
give the best fit for the test data, as shown in Fig. 12. Figure 12
comes from experiments. A power-law curve fit for the data
shown in Fig. 12 was used as a fatigue-life estimation equation
(1200°F), given below

AT,

- ax = 397,758 N70-15%8 (17)

It should be pointed out that the RSS values on the primary slip
systems are calculated based on linear elastic (anisotropic) as-
sumptions and hence nonlinear effects, such as latent hardening,
lattice rotation, and twinning in secondary slip systems are not
accounted for). Accounting for these effects requires implementa-
tion of constitutive relations for crystal plasticity. The fatigue
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Fig. 12 Fatigue damage parameter, A7,,, versus cycles to fail-
ure [8]

damage parameter A7, has been tested for an extensive set of
single-crystal fatigue data, under a range of environmental condi-
tions, and was found to be effective [8-10]. A cylindrical or
spherical indenter contacting a single-crystal substrate subject to a
vibratory normal and tangential load will result in subsurface cy-
clic fatigue stresses. These fatigue stresses can lead to subsurface
crystallographic cracks, as shown in Fig. 2. Figure 8 shows the
contour plots of RSS on the primary octahedral slip systems, for a
cylindrical contact loaded with static normal and tangential loads.
If the tangential loads are cycled, as would happen during fretting
fatigue loading, we can compute the shear stress amplitudes A7y,
A7y,..., ATp,, in the subsurface region. The subsurface location
that yields the maximum A7 value is likely to initiate a crystallo-
graphic fatigue crack.

‘We consider a critical subsurface location near the leading edge
of contact, as shown in Fig. 13. We will consider the situation
where the tangential traction force T(x) is cycled between a posi-
tive and a negative value, and compute the shear stress amplitudes
A7 on the primary planes. Because the secondary crystallographic
orientation is not controlled during the blade-casting process, the
variation in A7 due to the variation in secondary orientation alone
is of interest. This effect is illustrated in Fig. 14. We see that
maximum A7 (A7g and A7y, in this case) values vary by 32%

M= oJl-xi

—h-\

/ r(X)-ﬂfPoJ;—X

— 122, X

Criical subsurface ponil nexr
leading edge of contact:
X=0007i8,22Q Y = 0004
#00) in, p, « 20ksi, 34 <04

Single cystal
halfspace

UY

Fig. 13 A critical subsurface point near the leading edge, for a
cylindrical single-crystal contact of width 2a
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Fig. 14 Variation of A~ at the critical point shown in Fig. 13 as
a function of secondary crystallographic orientation # (primary
orientation=case A)

purely because of variation in secondary crystal orientation be-
tween 0 deg and 90 deg. This can result in an order-of-magnitude
variation in fatigue life calculated from Fig. 14.

Variation of A7 is even greater at ~65%, due to a 15 deg pri-
mary axis tilt from case A. This can mean large variations in
Jatigue life between different blades, under the same loading con-
ditions, as a result of blade-to-blade variations in primary and
secondary crystallographic orientation.

Conclusions

A detailed evaluation of subsurface stresses in cylindrical and
spherical orthotropic FCC single-crystal nonconformal contacts is
presented, using analytical and numerical techniques. Effects of
variation in primary and secondary crystallographic orientation on
subsurface stresses are included. Evaluation of subsurface stresses
is an essential part of contact fatigue-life calculations at damper
contacts and dovetail attachment regions. A two-dimensional ana-
lytical solution for subsurface stresses in cylindrical single-crystal
contacts is presented, based on an adaptation of a stress function
approach by Lekhnitskii [26]. Lekhnitskii’s method for an aniso-
tropic half-space in generalized plane deformation has been
adapted to a FCC orthotropic half-space. The analytical solution
showed excellent agreement with the 3D FEA results. It was ob-
served that the 3D FEA stress field approaches the 2D generalized
plane strain solution after a short distance from the edges, indicat-
ing that the analytical solution could be used effectively for many
practical 3D contact problems. The advantage of the analytical
solution is that it is accurate and extremely quick to compute,
anywhere in the computational domain.

Three-dimensional FEA results for the spherical single-crystal
contact are presented. An effective contact modulus for the single-
crystal half-space, Egqh0, and contact radius aqgp, (Eq. (135)) is
shown to be effective in calculating the contact patch size. The
FEA of the contact problem can be greatly simplified by using
Aoriho and applying the normal pressure based on Hertzian assump-
tions over the contact patch. It is demonstrated that this applied
stress problem yields accurate subsurface stresses and greatly sim-
plifies the FEA by avoiding the use contact elements. For a fixed
normal load, the E, 4, and a,.,, values were found to be rela-
tively insensitive to variations in crystallographic orientation.
Hence the E ., and a,.p, values based on case A (6=0) orienta-
tion can be used for nearly all practical blade-casting crystallo-
graphic orientation deviations from the ideal. This lends further
credibility to using the simulated contact model for FEA. The
simulated contact approach is very advantageous for performing

Journal of Engineering for Gas Turbines and Power

PROOF COPY [GTP-04-1107] 012603GTP

repeated subsurface stress calculations required for fatigue-life
evaluation.

It must be noted that even though the contact area and normal
pressure do not vary substantially with crystal orientation, the
subsurface stresses are a strong function of orientation. Therefore,
the resolved shear stresses on the slip systems, and hence, fatigue
life, are a strong function of crystallographic orientation. It is
shown that there can be an order-of-magnitude variation in contact
fatigue life between different blades under the same loading con-
ditions, as a result of blade-to-blade variations in primary and
secondary crystallographic orientation.

Obtaining accurate subsurface stress results for anisotropic
single-crystal contact problems requires extremely refined 3D fi-
nite element grids, especially in the edge of the contact region.
Obtaining resolved shear stresses on principal slip planes also
involves considerable postprocessing work. For these reasons it is
very advantageous to develop analytical solution schemes for sub-
surface stresses, whenever possible.
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