
EML 2322L – MAE Design and Manufacturing Laboratory 
 

Electric Motors and Drives 
 
 
To calculate the peak power and torque produced by an electric motor, you 
will need to know the following: 
 

• Motor supply voltage:  Vs [V] 
• Peak motor current:  Is [amps] 
• Motor velocity:  N [rpm] 

 
The power produced by the motor can be calculated as: 
 
P [watts] = Vs [volts] × Is [amps]     (Eq. 1) 
 
Converting power to units of horsepower: 
 
P [hp] = P [watts] × 0.001341 [hp/watt]    (Eq. 2) 
 
Since power is equal to work divided by time, we can use the definition of 
horsepower to understand the useful torque produced by the motor: 
 
1 [hp] = 750 [W] = 550 [lb-ft/s] = 33,000 [lb-ft/min]  (Eq. 3) 
  
 
Now let’s select a real motor to work with from the Motor Specifications 
link on the course website: 
 
http://www2.mae.ufl.edu/designlab/motors/Motor%20Specifications.pdf 
 
We will select one of the DC right angle drive gear motors used in the lab. 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Watt
http://en.wikipedia.org/wiki/Horsepower
http://www2.mae.ufl.edu/designlab/motors/Motor%20Specifications.pdf


44 RPM 12/24 VDC 1/70 HP ENTSTORT GEARMOTOR 
 

 

• 44 RPM at 12 VDC no load 
• Voltage 12/24 DC 
• Amps 1-1/2 full load 
• Reversible 
• Duty continuous 
• Shaft 10 mm x 1 1/4" with  
     8 mm threaded end 
• Mount 3 bolt on 2" B.C. 
• Size 6 3/4" x 2 5/8" x 4" 
 
 

From the basic equations presented above: 
 
P = 12 V × 1.5 A = 18 W = 0.024 hp 
 
Comparing this value to the rated power of the motor (1/70 = 0.014 hp), we 
see the actual power produced is substantially less than the computed 
electrical power.  This loss is due to the electrical efficiency of the brushed-
type motor.  The electrical efficiency will be denoted by ηmotor and for the 
purpose of this course, we will assume the following: 
 
ηmotor ≈ 60% 
 
Now the power can be more accurately computed as follows: 
 
P = V × I × ηmotor = 12 V × 1.5 A × 0.6 = 10.8 W = 0.014 hp 
 
Using the definition of hp (Eq. 3): 
 
0.014 hp = 7.9 lb-ft/s = 95.0 lb-in/s 
 
Therefore, this motor should be able to lift a 7.9 lb load at the rate of 1 foot 
per second; this is equivalent to lifting a 1 lb load at 7.9 feet per second.  
Note the difference is you trade torque for speed or vice versa. 
 
Looking at it in units of lb-in instead of lb-ft, this motor should be able to lift 
a 95 lb load at the rate of 1 inch per second; this is the same as lifting a 1 lb 
load at 95 inches per second.  

http://www2.mae.ufl.edu/designlab/Class%20Projects/Background%20Information/Electric%20DC%20motors.htm
http://www2.mae.ufl.edu/designlab/Class%20Projects/Background%20Information/Electric%20DC%20motors.htm


Suppose we wish to calculate the velocity of our robot if we consider using 
these motors to power the drive wheels.  First, we need to select a wheel 
diameter.  Returning to parts found in lab, let’s arbitrarily select an 8″ 
diameter wheel to get a baseline.  The linear velocity can simply be 
calculated using the circumference of the wheel: 
 
V [in/min] = π × D [in/rev] × N [rev/min]    (Eq. 4) 
 
In the case of the example 44 rpm right angle drive gear motor and the 8″ 
wheel, this equates to: 
 
Vno-load = (π × 8 in)/rev × 44 rev/min  = 1105 in/min = 18 in/sec = 1.5 ft/sec 
 
Note the 44 RPM speed rating of the motor is under no load.  Ideally, we 
would need to know the torque vs. speed characteristics of the motor to 
calculate the true shaft speed under the load (i.e. weight) of moving the robot 
around.  For a first approximation, let’s take 75% of the no-load speed 
rating.  Therefore our robot velocity is now reduced to 
 
V = .75 × Vno-load = 13.5 in/sec = 1.125 ft/sec 
 
Referring back to a problem statement from a previous semester, the arena 
length is 20 feet, the buckets are placed about 2 feet from the end of the 
arena, the robot passes through a 6 foot long tunnel and the robot starts 5 
feet from the tunnel entrance.  In addition, the buckets appear to be located 
about 6 feet apart from each other.  Therefore, depending on your bucket 
collection strategy, you can approximate the distance traveled by the robot.  
The most direct path for collecting the two buckets would be approximately: 
 
d ≈ 2 × (5 ft + 6 ft + 18 ft) + 6 ft + 2 ft (for backing up) ≈ 66 ft 
 
Now that we know the estimated distance and velocity, it’s easy to calculate 
the estimated driving time (not including the time required to dump, sort and 
release the buckets): 
 
t = d / V = 66 ft / 1.125 ft/sec  ≈ 60 sec 
 
Before each group selects its final drive motors, we want to see a similar 

time estimate computation. 
 



As an example of why we want to perform these simple calculations, 
suppose we ignore the suggestion to read the spec sheet for each motor 
before selecting one.  Instead, we choose one of the Globe DC inline gear 
motors because of their impressive size and cool looks.  Repeating the above 
calculations: 
 
 
4.5 RPM 12 VDC GLOBE GEARMOTOR 
 
Double reduction gear motor. Primary gear motor is removable from 
secondary reduction for use as a 25 RPM output. Ideal motor for robotics, 
rotary actuators, and other low speed DC applications. 
 

 
SPECIFICATIONS 
• RPM: primary 25; secondary 4.5 
• Voltage 12 DC 
• Amps 130 mA no load 
• Torque: primary 33 in-lb;  
                secondary 125 in-lb 
• Ratio 620:1 
• Rotation reversible 
• Duty continuous 
• Mount primary 4 bolt on 1" BC 
     secondary 5 bolt on 4 7/8" BC 
 

 
Notice the RPM specification on the secondary reduction of the 
motor/gearbox assembly: 4.5 RPM.  This is approximately 10% of the speed 
rating of the first motor we looked at (44 RPM), so the robot velocity will be 
reduced 90%: 
  
Vno-load, GLOBE = (π × 8 in)/rev × 4.5 rev/min ≈ 1.8 in/sec = .15 ft/sec 
 
V GLOBE = .75 × Vno-load, GEARMOTOR = 1.35 in/sec = .1125 ft/sec 
 
Computing the time required to traverse the arena using the slower Globe 
gear motor: 
 
t = d / V = 66 ft / .1125 ft/sec ≈ 590 sec ≈ 10 min (!) 



Characterizing Motors 
 

• Speed (rotational velocity), N [rev/min] or ω [rad/s] 
 
• Angular acceleration, α [rad/s2] 

 
• Torque, T [lb-ft] or [N-m] 

o T = F × r 
o T = I × α 
 

• Power – P – the rate at which work is done 
o P = T × ω 

 
 
Electric motors are characterized by torque vs. speed curves, such as the 
following: 
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You make use of the torque / speed curve as follows: 
 

1. Calculate or measure the force required to propel the device.  For 
example, let’s assume 50 N force. 

 
2. Calculate the torque needed as T =  F × r; assuming r = 0.1 m: 

 
T = 50 N × 0.1 m = 5 N-m 

 
 
3. Determine motor speed from torque curve. 

 

 
 
 
 

4. Calculate new wheel speed using the actual motor shaft velocity from 
the torque vs. speed data (V = r × ω ; V = π × D × N ; etc.) 

 
 



A Closer Look at Calculating the Required Wheel Motor Torque 
 
In the above example, for simplicity, I assumed a force of 50N was 
necessary to move the robot.  Now let’s look at how to really calculate this 
number.  To find the actual force, we need to measure or estimate the static 
friction coefficient between the floor and wheels, since that is what we are 
overcoming when we push the robot forward (assuming axle friction is 
negligible).  If we look up this static friction coefficient (which is dependent 
on the two materials in contact, i.e. perhaps a concrete floor and a nylon 
wheel) and we know the weight on each wheel (W1, W2, etc), we can 
calculate the friction force as the static friction coefficient times the wheel 
weight for each wheel on the robot.  If we sum these friction forces, then we 
know how much force is needed to overcome the static friction to get the 
robot rolling. By equating torques, you can translate this force into a wheel 
or a motor shaft torque.  That's the basic calculation. 
 
Beyond that, we need to use superposition and add the extra torque needed 
to accelerate the robot at the intended rate.  For instance, if we desire the 
robot to accelerate at 1 ft/s^2, we can calculate the equivalent inertia of the 
robot's weight reflected to the wheels (let's call this I).  Once we know this, 
we can take our intended acceleration, alpha, and compute the addition 
torque needed as T = I×α.  Summing these two torque values tells us how 
much overall wheel torque we need to (1) just get the robot moving and (2) 
to accelerate the robot at the designed rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Plotting the Torque vs. Speed Graph for a Real Motor 
 
Now that we know how to calculate the required motor torque, let’s look at 
how to find the actual motor speed.  Using the first motor in this lecture as 
an example, (the Entstort gear-motor), recall the peak motor speed was 44 
rpm and we calculated the power as 95 lb-in/s.  Since we know the torque 
vs. speed curve is linear, we need two data points.   
 
We know that power is the rate at which work is performed (P=T×ω) where 
omega is the shaft rotational velocity in rad/s.  In this case, we computed the 
power P as 95 lb-in/s.  Therefore 95 lb-in/s = T × 44 rev/min × [2π 
rad/rev] × [1 min / 60 sec] which gives us T = 20.6 in-lb.  This means this 
motor can lift 20.6 lb at a 1" level arm or radius, or 1 lb at a 20.6" radius, 
MAXIMUM.   
 
For our second data point, let’s use N = 22 rpm.  Since we know the torque 
vs. speed relation for this motor is linear, we can calculate the motor torque 
at this speed as equal to 41.2 lb-in.  (At half the speed the torque will be 
twice as much.)  Below is the resulting torque vs. speed plot for this motor. 
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Power Trends for Motors with Linear Torque Curves 
 
As you can see from the motor torque curve presented in the above example, 
the motor torque is inversely proportional to motor speed.  Since power is 
equal to torque times motor speed, plotting motor power as a function of 
speed produces the following graph.  This example shows peak power will 
always occur at half the no-load speed of the motor, when the motor has 
a linear torque curve.  Therefore, for our initial understanding of 
permanent magnet DC motors, we can assume that peak motor efficiency 
also occurs at this speed.  Consequently, we want to operate the motor as 
close to this speed as possible.  If we select the motor for our application 
based on the required torque, as long as the motor operates between 500 
and 1500 rpm, that would be within 25% of the motor’s peak efficiency 
(390W vs. 520W), which would be acceptable.  Operating outside this 
range results in inefficient power transfer and indicates a design error when 
selecting motors. 
 
 

 
 
 
 
 
 



Motor Use Tips 
 
1. Do not overload motors with excessive overturning moments, which 

refer to moments that are not coaxial with the shaft.  Most motor 
gearboxes are not designed to resist large overturning moments, and 
exceeding the limit will destroy the motors.  As a general rule of thumb 
for the small DC gear motors used in our laboratory, the overturning 
moment on the motor shaft should NEVER exceed the rated torque 
output of the motor.  In addition, whenever possible, good design 
engineers mitigate the adverse effects of overturning moments by using 
bearings or bushings to support the load applied to the motor shaft. 

 
 

2. Use ALL provided mounting holes when attaching a motor to a 
mounting bracket.  Most electric motor housings are made from cheap 
die-cast aluminum or zinc, which are weak metals.  Consequently, using 
more mounting holes/fasteners to attach the motor better distributes the 
reaction forces to the motor housing.  Therefore, motor mounts should 
always be designed to use all of the motor’s mounting holes. 
 

3. Be very cautious of the fragile motor wires and fastener threads.  The 
wires entering a motor’s casing are easily broken if pulled on or bent 
tightly, and once broken they cannot be repaired.  Similarly, threads in 
the motor housing are weak to begin with, so it is imperative to use the 
proper fasteners specified on the motor’s spec sheet.  A simple rule of 
thumb to prevent fastener damage is to always ensure the mounting 
fasteners can be screwed together completely by hand before using a tool 
to apply the final tightening torque. 

 
 

Overturning 
moment 



Gearing 
 

 
 
 
The peripheral velocities at the points of contact between the two gears must 
be equal, so we write: 
 
V1 = V2 => ω1 r1 = ω2 r2 => ω2 = ω1 r1 / r2    (Eq. 5) 
 
If we know the ratio of gear teeth or diameters, we can easily calculate the 
relative gear velocities: 
 
If r1 = 2 r2 => ω2 = 2 ω1       (Eq. 6) 
 
For any pair of gears, the forces transmitted between the teeth in contact 
must be equal (and opposite): 
 
F1 = F2 => T1 / r1 = T2 / r2 => T2 = T1 r2 / r1    (Eq. 7) 
 
Finally, substituting the fixed tooth or diameter ratio: 
 
If r1 = 2 r2 => T2 = T1 / 2       (Eq. 8) 
 
Which proves the speed of gear 2 is doubled at the expense of gear 2 only 
transmitting half the torque to its output shaft.  Stated another way, gear 1 is 
capable of transmitting twice the torque thru its output shaft at half the speed 
of gear 2. 
  



Origins of Horsepower Unit: 
 
In the early 1700’s James Watt determined a horse could turn a 12′ radius 
mill wheel 144 times in an hour pulling with a force of 180 pounds 
 
 

 
 
 
 
Since we know power is the amount of work performed divided by the time 
required to perform it: 
 
P = W / t = F × d / t  
 
Substituting the data presented at the top of the page from Watt’s 
measurements: 
 
1 hp = [180 lb × 2π rad/rev × 12ft] / [1 hr / 144 rev × (60 min / 1 hr)] 
 
Which provides the standard definitions for power: 
 
1 hp = 33,000 lb-ft/min       (Eq. 9) 
 
1 hp = 33,000 lb-ft / min × 1 min / 60 sec = 550 lb-ft / sec (Eq. 10) 
 
 
 


