MAE STUDENT SHOP DETAILED CHECKLIST

DETAIL DRAWINGS. Does each drawing have the following information?

- \Box YES \Box NO Enough views of the part for clarity
- \Box YES \Box NO Dimensions to properly locate EVERY part feature
- \Box YES \Box NO Appropriate tolerances for EVERY dimension
- \Box YES \Box NO Proper surface finish notes for ANY important surface
- \Box YES \Box NO Proper hole and thread notes based on the tap chart
- \Box YES \Box NO Drawing units
- \Box YES \Box NO Material type
- \Box YES \Box NO Quantity of parts to be manufactured
- \Box YES \Box NO Unique part name / number
- \Box YES \Box NO Deburring instructions
- \Box YES \Box NO Legible drawing size and print quality
- \Box YES \Box NO Clearly visible dimensions and tolerances

HOLES AND THREADS.

\Box YES \Box NO	Are the proper type of threads (coarse or fine) used in the proper type of material?
\Box YES \Box NO	Are hole notes, thread notes, and tap drill sizes correct based on the tap chart standards?
\Box YES \Box NO	Are clearance holes properly sized using close and free fit standards off the tap chart?
\Box YES \Box NO	Are threaded holes designed with AT LEAST FIVE threads of engagement?

- \Box YES \Box NO Are threaded holes designed for the largest feasible fastener size? (Taps smaller than #6 or M4 are much easier to break.)
- \Box YES \Box NO If blind holes are required, does the bottom of the hole reflect the conical drill bit geometry? (Flat bottomed holes require special drills.)

DESIGN FOR MANUFACTURING (DFM) TIPS.

\Box YES \Box NO	Is the part as small as possible without affecting its function?
\Box YES \Box NO	Is each feature tolerance as large as possible while still meeting desired design intent?
	(Mfg. time increases exponentially with feature tolerance.)
\Box YES \Box NO	Is each finished surface necessary for part function? Are the coarsest surface finish
	specifications used wherever possible? (Mfg. time increases exponentially with surface finish.)
\Box YES \Box NO	Is the number of dimension datums minimized? (Less edge findings = quicker part production.)
\Box YES \Box NO	When possible are thru bolted holes used instead of threaded holes to reduce mfg. time?
\Box YES \Box NO	Are nominal (versus arbitrary) part dimensions used where possible? (i.e. 3.00" vs. 3.04")
\Box YES \Box NO	Are parts designed for minimum raw-stock removal? (Less material removed = cheaper part.)
\Box YES \Box NO	Have alternative designs been investigated which may lower manufacturing and assembly
	times? (i.e. designs which combine parts, or split parts; or designs which use sheetmetal vs. billet)?
\Box YES \Box NO	Have unnecessary features that increase manufacturing time been eliminated? (fillets, etc.)

MATERIAL AND TOOLING CONSIDERATIONS.

- \Box YES \Box NO Is the material near net shape? (Students with materials requiring 30+ minutes of material preparation will be asked to return with appropriately sized stock.)
- \Box YES \Box NO Has a file test been conducted to ensure the material is not hardened?
- \Box YES \Box NO Are material choices justified? Are lower strength materials that are easier to machine used everywhere possible? (Steel for example requires 3 times as long to machine as aluminum.)
- YES □ NO
 If the part material is specified as ferrous, have the appropriate tools been purchased / provided? (Tools provided in the student shop are for use in non-ferrous materials only. Additional tooling resources are McMaster-Carr or MSC. If you have questions, please see Mike or a TA.)
- YES □ NO
 Is each part feature designed around nominal, standard (commonly produced, imperial) cutter sizes? (If you require metric tooling, it must be purchased. If purchasing metric endmills, order them with imperial (inch-sized) shanks to fit in the imperial collets on the milling machines.)

\Box YES \Box NO

If machining with small tools have you purchased multiple tools due to the increased risk of tool damage and breakage? (If break your tools then it will most likely end your day in the shop unless you have purchased multiple or understand the delicacy of small tools.)