CHAP 2 WEIGHTED RESIDUAL METHODS
FOR 1D PROBLEMS




INTRODUCTION

Direct stiffness method is limited for simple 1D problems

FEM can be applied to many engineering problems that are
governed by a differential equation

Need systematic approaches to generate FE equations
— Weighted residual method
— Energy method

Ordinary differential equation (second-order or fourth-order)
can be solved using the weighted residual method, in
particular using Galerkin method

Principle of minimum potential energy can be used to derive
finite element equations




2.1 EXACT VS. APPROXIMATE
SOLUTION




EXACT VS. APPROXIMATE SOLUTION

« Exact solution
— Boundary value problem: differential equation + boundary conditions
— Displacements in a uniaxial bar subject to a distributed force p(x)

d?u

—+p(x)=0,0<x <1

e p(x)

u(0)=10 |

du - Boundary conditions
ax =1

— Essential BC: The solution value at a point is prescribed (displacement
or kinematic BC)

— Natural BC: The derivative is given at a point (stress BC)
— Exact solution u(x): twice differential function

— In general, it is difficult to find the exact solution when the domain
and/or boundary conditions are complicated

— Sometimes the solution may not exists even if the problem is well
defined




EXACT VS. APPROXIMATE SOLUTION cont.

« Approximate solution u(x)

It satisfies the essential BC, but not natural BC
The approximate solution may not satisfy the DE exactly
Residual:  g2g

X2 + p(X) = R(X)

Want to minimize the residual by multiplying with a weight W and
iIntegrate over the domain

f1R(x)W(x)dx — 0 —Weight function
0 4

If it satisfies for any W(x), then R(x) will approaches zero, and the
approximate solution will approach the exact solution

Depending on the choice of W(x): least square error method,
collocation method, Petrov-Galerkin method, and Galerkin method
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2.2 GALERKIN METHOD




GALERKIN METHOD

* Approximate solution is a linear combination of trial functions

N
{G(x) — Zciqb',t‘(x)w Trial function
=1

/

— Accuracy depends on the choice of trial functions
— The approximate solution must satisfy the essential BC

« Galerkin method
— Use N trial functions for weight functions

j:R(x)qbi(x)dx —0, i=1...,N

= Ji] 5%+ 00

-
:>f tdu 2(p,(x)dx_—fo1p(x)¢i(x)<jx, i =1,...,N




GALERKIN METHOD cont.

Galerkin method cont.
— Integration-by-parts: reduce the order of differentiation in u(x)

du

tdude, 1 P
T fodx o __fo p(X)¢ (X)dx, i =1...,N

— Apply natural BC and rearrange

98 = [p(x)en (x)dx + S (61 (1)~ Q) (0), i =1

— Same order of differentiation for both trial function and approx. solution
— Substitute the approximate solution

du

d
[ Jd(’i‘ dx = [ Tp(x)6 ()X + (M (1) — S (0)6(0), T =1\
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GALERKIN METHOD cont.

 Galerkin method cont.
— Write in matrix form

zyﬁ_ﬁ R VI — PM{Q—wH}

(NXN)(Nx1)  (Nx1)

:Lﬂmm>m+—mmm——«m<>

— Coefficient matrix is symmetric; K; = K;
— N equations with N unknown coefficients




EXAMPLE1

- Differential equation Trial functions
@+1:0,0§x§1 P1(X) = X P1(X) =
32(0) —0 Ga(x) = X P2(X) =
3_;:(1) _ - Boundary conditions

« Approximate solution (satisfies the essential BC)
2

L](X) = Zcigb,(x) = CX + C2X2
i=1

o (Coefficient matrix and RHS vector

Ky = j: (1) dx =1 Fy = f01¢1<x)dx+¢1<1)_ ?K“@@(m—i
1
K12 =Kar = »/:) (19 F, = f01q52(x)dx +¢2(1)—%¢2(0) Z%

2 )dx
K2z If()1(¢2> dx_%
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EXAMPLE1 cont.

* Matrix equation

2
[K]:1[3 3] {F}:%{Z} — {c}—[KN{F}—{_}

3|3 4 7
« Approximate solution

2

N X
—2x —

u(x) X 5
— Approximate solution is also the exact solution because the linear

combination of the trial functions can represent the exact solution

13




EXAMPLEZ2

 Differential equation Trial functions
@er:o, 0<x<1 P1(X) = X P1(x) =1
o) — H)=X2  6h(x) = 2X
d_u(1) 4 - Boundary conditions
i ’ 1 (16

« Coefficient matrix is same, force vector: {F} = ﬁ{1 5}

19 2

12 19
(c} = KT 1{F}—{ 2%1 —D () = x - X

 Exact solution

3 X3
u(x) = §X 5

— The trial functions cannot express the exact solution; thus,
approximate solution is different from the exact one




EXAMPLEZ2 cont.

« Approximation is good for u(x), but not good for du/dx

0 0.2 0.4 0.6 0.8 1

X

—6— u-exact —8— u-approx. —&— du/dx (exact) —— du/dx (approx.)
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2.3 HHIGHER-ORDER
EQUATIONS
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HIGHER-ORDER DIFFERENTIAL EQUATIONS

: : : w(0)=0
* Fourth-order differential equation dw | Essential BC
dw ax )0
——p(x)=0, 0<x<L ! :
dx* AW 1y m
— Beam bending under pressure load d;<2 L Natural BC
« Approximate solution (;TV;I(L) = -V

N
W(x) = > Ci¢r(x)
=1
« Weighted residual equation (Galerkin method)
L( d*w
fo [d7 — p(X)

— In order to make the order of differentiation same, integration-by-parts
must be done twice

¢ (X)dx =0, 1 =1...,N

17




HIGHER-ORDER DE cont.

« After integration-by-parts twice

L L
d>w dw do, W d2e, L -
_¢IO 0 0+f0 7 g2 O _fo p(X) (X)dx, i=1,...,N
Ld2A¥ d24 ] dw . |° dAwde |
= [,z e X = [, PO (x)dx ¢.0 a7 dx | e
» Substitute approximate solution
L N dqudqu L 3~ L 2qub'L
_ J | _ _ L |
Jo 20 5 a2 & Ji P00 (x)x 00| tae o
— Do not substitute the approx. solution in the boundary terms
« Matrix form f 42 dzcb,
[[K] (c) = {F}} b o
NXN Nx1  Nx1 L L
dw d¢

- j;Lp<x>¢.<x>dx——¢

dx2 dx

0
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EXMAPLE

* Fourth-order DE w(0)=0 c:1—\’)‘('(0)
d*w 2 3
——1=0, O 1 d“w d°w
dx* =X= d7(1) = 2 d?(")

 Two trial functions
o =X, ¢y =X ¢ =2, ¢5=06X

o Coefficient matrix

1
K11 :L (¢1,/)2dX:4
1
Kig =Ky = fo (¢ )dx =6 —>  [K]= [

K22 — 1;1 (¢é/>2 dX — 12

=0

— 1

4 6
6 12

1
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EXAMPLE cont.
« RHS

; 2
F = f01X2dX +V (1) + Wi #(0) +Mgy(1) — T #1(0) = ?

3 2
Fo =[x +Va,(1) + Tdg0) + Mos(r) - TRl

« Approximate solution
41

0 =2

{c}=[K]1{F}=[2_41} —> W)= dxe 143

4
 Exact solution

1 1 /
W(X) = ﬂx“ —§x3 +ZX2
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EXAMPLE cont.

4

3 |

2 |

1 |

O |

'1 N e — — — —
¢ . ¢ o _e —+ —¢ T . . ¢

_2 s w— —_—

-3
0 0.2 0.4 X 0.6 0.8 1
w" (exact) =  w"(approx.) — — wW" (exact) e W" (approx.)
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2.4 FINITE ELEMENT
APPROXIMATION
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FINITE ELEMENT APPROXIMATION

e Domain Discretization

— Weighted residual method is still difficult to obtain the trial functions
that satisfy the essential BC

— FEM is to divide the entire domain into a set of simple sub-domains
(finite element) and share nodes with adjacent elements
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FINITE ELEMENT APPROXIMATION

e Domain Discretization

— Within a finite element, the solution is approximated in a simple
polynomial form

Tu() ~—=TEETNC Nodes :
Pl N Approximate
i n } B v / sglutiog
\/ S
Finite T Exact
elements solution

— When more number of finite elements are used, the approximated
piecewise linear solution may converge to the analytical solution

uA
Exact solution

Two elements
Four elements

Eight elements

[
»




FINITE ELEMENT METHOD cont.

« Types of finite elements

H/_\EID@

« Variational equation is imposed on each element.

fie = Do [ [ Tl
N

One element




Galerkin vs. Finite Element Method

Finite element method

Galerkin method

u(x) = N; (X)uj + Nj1(X)Uj 1

N
(x) = > ci#(x)
=

Coefficients are nodal value

Coefficients don’t have physical
meaning

Defined only within an element

Defined in entire domain

Easy to satisfy BC

Difficult to find weight function to satisfy
BC

Equilibrium in element by element

Equilibrium in entire domain

Need assembly

No need to assembly

26




TRIAL SOLUTION

— Solution within an element is approximated using simple polynomials.

ONONOUCRORE

E ﬂ £
OEEEEEEETO

LO
<
T,

”~
Xit1

VYV V

— I-th element is composed of two nodes: x; and x,,,. Since two
unknowns are involved, linear polynomial can be used:

U(X) =ag +aX, Xj <X < X,

— The unknown coefficients, a, and a,, will be expressed in terms of
nodal solutions u(x;) and u(x;, ).
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TRIAL SOLUTION cont.

Substitute two nodal values
[ U(xi) = Ui =ag +aX;
U(Xi 1) = Ui g = 8y + X1

Express a; and a, in terms of u; and u,, ;. Then, the solution is
approximated by

. Xi 11— X X — Xi
U(x) = - Ui, 4
(1) ! (i) It

L L7

N; (X) Ni4(X)

Solution for i-th element:
u(x) = Nij(X)u; + Nj 4(X)Uiq, X < X < Xjpq

N.(x) and N.,.,(x): Shape Function or Interpolation Function

28




TRIAL SOLUTION cont.

Observations
Solution u(x) is interpolated using its nodal values u; and u;,,.
N;(x) = 1 at node x;, and =0 at node Xx;,,.

Niv1(X

N;(X)

X

Xi+1

[
»

The solution is approximated by piecewise linear polynomial and its
gradient is constant within an element.

u A

U;
Ui+

Uit+o

Xj Xi+1

Xi+2

>

d_u
dx

A

J

\

Xj

Xi+1

Xi+2

>

Stress and strain (derivative) are often averaged at the node.
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GALERKIN METHOD

Relation between interpolation functions and trial functions
— 1D problem with linear interpolation

Np
G(x) =Y ug(x) A=
=1

0,

Xip1 <X < Xy,

— Difference: the interpolation function does not exist in the entire
domain, but it exists only in elements connected to the node

Derivative
0, 0 < X< X_4
dgi(x) |_(i1—1)’ Xj_q < X <X
dx _%, Xj < X < X1
0, X1 < X < Xy,

1/ LD

_1/L(i)

y

-—= ¢z($)
I I
N Tio T ?% ;$i+1 g
I_ _ |
dx
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EXAMPLE

* Solve using two equal-length elements

24 ui0)=0
—+1=0,0<x <1 du - Boundary conditions

 Three nodes at x =0, 0.5, 1.0; displ at nodes = u,, uU,, U,
« Approximate solution U(x) = upy(X) + Uapo(X) + UzPz(X)

1—2x, 0<x<0.5 2x, 0<x<0.5
P1(X) = p(X) =
0, 0.5 <x<1 2—-2x, 0.5 <x <1

0, 0<x<0.5
¢3(X)—{ T

“142x, 05<x<1

¢ 05- X —02
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EXAMPLE cont.

« Derivatives of interpolation functions

dg(x) [-2, 0<x<05 dgp(x) [2, 0<x<0.5
dx {o, 0.5<x<1 dx {—2,0.5<x§1
dgs(x) [0, 0<x<0.5
d—x{2, 0.5<x<1

* Coefficient matrix

1 doy do 0.5 1 B
Kip = [ o 2dx = j; (—2)(2)dx - j; _ (0)(—2)dx = —2

1 dg, deb, 0.5 1 B
R R fo 4dx + | 4dx =4
« RHS

0.5
F1 :L
0.5 1 du du
F2 = . 2XdX+L-5(2—2X)dX+M—W:

1—2x)dx+f 1><(0)dx+x/qs1 1)——0)¢1 0)_025——(0)

32




EXAMPLE cont.

Matrix equation

2 -2
—2 4

0 -2
Striking t
l 4 -2

0 [[ug)
—2<u2>:<
2 ||uz |

. F1 <

[fuz] [0.5
—2 2 ||luy] [1.25

Solve for u, = 0.875,u; = 1.5

1.25)

|

Approximate solution

u(x) :{

1.75X,
0.25 +1.25x,

0.5 ;

0<x

<

0.5<x

— Piecewise linear solution

0.5

<

1

Consider it as unknown

ne 1st row and striking the 1st column (BC)
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EXAMPLE cont.

Solution comparison 16

Approx. solution has about | ,,.
8% error
X 0.8 -

Derivative shows a large | =

discrepancy 04 | — wexact
. . . —>& U-approx.

Approx. derivative is .

constant as the solution is 0 02 04 , 06 08 :

piecewise linear

15 \l\~

—du/dx (exact)

du/dx
/x

0.5 -

—>du/dx (approx.)




2.5 FORMAL PROCEDURE
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FORMAL PROCEDURE

Galerkin method is still not general enough for computer code
Apply Galerkin method to one element (e) at a time

Introduce a local coordinate

X—Xj X=X

X:Xi(1_§)+xj§ €:Xj—Xi_ L(e)

Approximate solution within the element
G(x) = u;N;(X) + U;No(x) Ni(§)  Na(¢

N1(€):<1_€) Element e
Np(€) = ¢ ._5

Z; T

RARSLES

Ny (x) = [ 1= 2= dNy _ dhNqde . 1
1 Q) dx  dé dx L

X — X dN2_dN2d§_+i
L(e) dx  d¢ dx e

No(X) =

36




FORMAL PROCEDURE cont.

* Interpolation property
Ni(xi) =1 Ny(x;)=0 u(x;) =
No(%;) =0, Ny(x;)="1 u(x;j) = uj
« Derivative of approx. solution

dx ' dx I dx

dl]_ dN1 dN2 U 1 <[U1}>
u, | L Us

dx | dx dx
* Apply Galerkin method in the element level

dN, dN,
de d¢

adNidd U 60— Y N ),
fxi d_xd_xdx_fxi POON; ()X + == (¢ N; () = = OGN (%), =12

37




[k

FORMAL PROCEDURE cont.

« Change variable from x to &

dN, |

1dN; | dN,
L(e) f [ d¢

— Do not use approximate solution for boundary terms
« Element-level matrix equation

Nq®)} =

{fe)} 4

d¢

oy \
—d—X(Xi) |

du
Fax i)

k(e) L (€) f

2><2

| [dN1
d¢

R

+d—X(Xj )Ni(1)—d—X(X|

]2

dN,, dN,

INL(0), | = 1,2

dN, dN,

| d¢§

d¢

de d¢
[QN;

d¢

i}

{fe)} = Ue)]: p(x)Jl N;(g)}df

N2 (¢)

d¢ =

T
L (€)

1

—1

—1
1

38




FORMAL PROCEDURE cont.

* Need to derive the element-level equation for all elements
« Consider Elements 1 and 2 (connected at Node 2)

du ’
1 il
Kis ki (){u1}:{f1}(1)+4 dX(X1)>
Koy Koo Uy s du
FTax %)
Cdu :
2 -
Kir K ( ){UZ]}:{fZ}(Z)_'_* dX(Xz)>
Koy Kk u f du
21 22 3 3 _|_d_x(x3)
 Assembly
du Vanished
1 (1 1 P ) -
k(D k(D 0 |fu, £V dX(x1) unknown term
R P S TR Gl
2 2 2
0 k7 kéz)_ sl | f5* J 3—u(x3)
X

39




FORMAL PROCEDURE cont.

* Assembly of N¢ elements (N = N¢ + 1)

1 1 )
kKD kD) 0 0 [y,

1 1 2 2
ké1) kéz) + k1(1) k1(2) 0 ||u,

0 k¥ kP +k? Us [ =

(Ng) (Ne) || U
0 0 0 K> K>, | (MNDI\>I< 3
(NpxNp )

KKQ.} = .}

» Coefficient matrix [K] is singular; it will become non-singular

after applying boundary conditions

ﬁ“)

i)+ 12

1142 4189

f(NE)
N
(Npx1)

40




EXAMPLE

Use three equal-length elements

d?u
d7+x:0, 0<x<1 u0)=0, u(m=20

All elements have the same coefficient matrix
1 1‘ _[ 3 -3

K| _ 1
-1 1 -3 3

2x2 | (e)

], (e =12,3)

Change variable of p(x) = x to p(&): P(&) = % (1-8) + X;¢&
RHS

e &) [ N4(£) &) [ 1-¢
(fy =19 [ p(X){N;(O}dfz 8 >f0[xi(1—£>+x,-d{ : }d&
XX
_e@]3 6 (e =12.3)
Xi | X
53
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EXAMPLE cont.

* RHS cont. (1™ 11 1:2<2>‘_i 4 £ 1
(| 54[2) (2| 54(5] (3| 54
* Assembl
y 1 _du(o)
" : O T el s Element 1
3:8 0 ¢ 0y 2| [4 Element 2
:_3_'__%_?3__2__—_;%‘ ___________ 0 ||u, | _|[5al"5a] | TN
0 A3 33 i Ylu| [ 7]|s o
07 0 | 43 3|{u,] |54 54
d
B o)
» Apply boundary conditions ‘ X

— Deleting 1st and 4th rows and columns

5 el =

—3 0 ||uy




EXAMPLE cont.

« Approximate solution

4 1
27x, 0_x_3
) 4 1 1 1 2
UX)=1g7t271X 3 35X=3
5 5 2) 2
Z _Zlx-2| fZ<x<
g1 27" 3]’ 3SX=T

Exact solution

u(x):%x(1—x2)

— Three element solutions are poor
— Need more elements

0.08

0.06
x i
<0.04

0.02

— — U-approx.

u-exact

43




2.6 ENERGY METHODS
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Virtual Displacement

Virtual displacement is not experienced but only assumed to
exist so that various possible equilibrium positions may be
compared to determine the correct one

Mass m and springs are in equilibrium at the current position

Then, a small arbitrary perturbation, or, can be assumed
— Since dr is so small, the member forces are assumed unchanged

The work done by virtual displacement is
(SVV :F1-6I'—|—F2-5r—|—F3-5r—I—F4-6r :(F1 —I—F2 —|—F3 —I—F4)6r
If the current position is in force equilibrium, oW =0 |

45




Principle of Virtual Work

Powerful alternative method to obtain FE equations

Principle of virtual work for a particle
— for a particle in equilibrium the virtual work is identically equal to zero

— Virtual work: work done by the (real) external forces through the virtual
displacements

— Virtual displacement: small arbitrary (imaginary, not real) displacement
that is consistent with the kinematic constraints of the particle

Force equilibrium

> F=0,>F =0 )>F =0

Virtual displacements: éu, ov, and ow
Virtual work
W =68ud Fy+6v) F,+6wy F, =0

If the virtual work is zero for arbitrary virtual displacements,
then the particle is in equilibrium under the applied forces

46




PVW of 1DOF System

« Static equilibrium of a mass-sprint system
— At equilibrium, the spring force, F, is equal to applied load, mg
F(A)—mg =0
— If the position is perturbed by A*
F(A)-A" =mg-A’
— External work done by the external forces mg during the application of

a small virtual displacement is equal to the internal work done by the
spring force during the application of that small virtual displacement

Equilibrium Virtual displacement
Sprin% force
F Internal
xl 4 77 virtual work
A A i :
F v i..l;::l" »
" & A A
9 A Spring extension

S 47




PRINCIPLE OF VIRTUAL WORK

Deformable body (uniaxial bar under body force and tip force)

> X

E, A(X)

—_

—_ D D D S — —> —>

X

"y

€

L >

T : d
Equilibrium equation: =*+B, =0  <«—This is force equilibrium

PVW

L

ff[dax

0 A
Integrate over the area, axial force P(x) = Aa(X)

f

0

dx

X)dAdx =0

(;—P—l— by ]6u(x)dx =0

48




PVW cont.
. Integration by parts

Péu‘ fP

— Atx =0, u(O) O Thus, 5u(0)

— the virtual displacement should be consistent with the displacement
constraints of the body

— Atx=L,P(L)=F
 Virtual strain s¢(x) =
« PVW:

L
F(Su(L)+be6u(x)dx — fP(Ss(x)dx
0 0

dx +fb ou(x)dx =

d(éu)
dx

49




PVW cont.

In equilibrium, the sum of external and internal virtual work is
zero for every virtual displacement field

3D PVW has the same form with different expressions
With distributed forces and concentrated forces

W, = f(txéu 1,6V + 10w )dS + 3 (Fdu; + Fyidv; + Fyow; )
S |

Internal virtual work

W, = —f(ax&:x +oybey + o+ TyyOvxy )dV
Vv

50




Variation of a Function

* Virtual displacements in the previous section can be
considered as a variation of real displacements

« Perturbation of displ u(x) by arbitrary virtual displ ou(x)
u_(X) = u(x) -+ 7ou(x)
« Variation of displacement

du_(x)
dr

= 0U(X) «<——Displacement variation
=0

« Variation of a function f(u)

df (u..)
dr

— ﬂ(5u
7=0 du

of =

« The order of variation & differentiation can be interchangeable

e, 6[du] d(éu)

dx dx

51




Variation of a Function

Displacement Variation
— Need to satisfy homogeneous essential BC
— Both u_(x) and u(x) are solution

u_(X) = u(x) -+ 7ou(x)

— Let assume that u(1) = 1 (essential BC)

— Then
u_(1) =u(1)+ 7éu(1) =1

— Therefore,

ou(h =20 Homogeneous (i.e., = 0) BC

ou(x) can be treated as u(x)




PRINCIPLE OF MINIMUM POTENTIAL ENERGY

« Strain energy density of 1D body

1 1
UO = EO'XEX = EEE)%

« Variation in the strain energy density by ou(x)

Uy = Ee,bey, = 0,0e,
« Variation of strain energy
L L L
U = f f SUodAdX = f f o, 6, dAdX = f PS¢, dx
0 A 0 A 0

—=> [ 6U = —ow; |
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PMPE cont.

« Potential energy of external forces

— Force F is applied at x = L with corresponding virtual displ ou(L)
— Work done by the force = Fou(L)
— The potential is reduced by the amount of work

F is constant
oV = —Fdu(L = —
(L) == & = -6(Fu(L)) virtual displacement

— With distributed forces and concentrated force
L
V= —Fu(L) - [ Bt == (o = -ow,
e PVW

MU+ =0 o §(U+V)=0

— Define total potential energy I1=U +V

—>| 611 = 0|




PMPE cont.

* Principle of minimum potential energy

Of all displacement configurations of a solid consistent with its
displacement (kinematic) constraints, the actual one that satisfies
the equilibrium equations is given by the minimum value of total

potential energy

 Variation is similar to differentiation

{611 — d—Héu — O}
du
Variation = 0 —> Derivative = 0

N
- Ingeneral, u(x)=> c#(x) = II(u)=TI(c;)
=

oll=0 = d—H:O,i:1,...,N
dc;

95




EXAMPLE: PMPE TO DISCRETE SYSTEMS

 Express U and V in terms of
displacements, and then
differential IT w.r.t displacements

e k=100 N/mm, k(2 =200 N/mm

) =150 N/mm, F, = 1,000 N
-, =500 N

U,

« Strain energy of elements (springs)

2 2
0@ = Ju u) K T
—20 k@ k@ ||y, ]
1 kG k(U
(3) — _ 172
U 2[“2 USJ _k(3) k(3) Uy

% " @ﬁf@
ol
(2:2) (2x1)
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EXAMPLE cont.

3
- Strain energy of the system U =) "U®
e=1

K k@

U=3lu up ug] —kO
_k(2)

kM

k(D 4 k®)
_ k)

{u _ %{Q}WK]{Q}}

* Potential energy of applied forces

V =—(FRu;y +FRu; +Fuz ) = —[u; Uy Usl

« Total potential energy

I1=U +V = {Q)TKKQ) — {Q)T {F}

—k@ J{uy?
_k® . Us |
k(2) 4 k() Us |

{Q} = {u, up, Uz}’

F 1 = —{Q} {F)
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EXAMPLE cont.

« Total potential energy is minimized with respect to the DOFs

oIl o1l

— =0, ——=0

8U1 ’ 5’u2 ,
U1 Fy

= Klfu | = || = [ K@} = |

* Global FE equations

—100 250 —150{;iu,

300 —100 —200|( 0 |

—200 —150 350 ||us |

oIl
—=0
OUs

or a—H—O
- o{Q}

Finite element equations

F

= 11,000}
| 500

—

 Forces in the springs P®) =k®)(u; —u;)

PU =k (u, —uy) = 654N

P®) = k@ (uy —u,) = —346N

U, = 6.538mm
Uz = 4.231mm
F, = —1,500N

P(Z) — k(2) (U3 - U1) — 846N
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RAYLEIGH-RITZ METHOD

PMPE is easy to apply to discrete systems (exact solution)
— Unknown DOFs are finite

Continuous system (DOFs are infinite)

— Use Rayleigh-Ritz method to approximate a continuous system as a
discrete system with finite number of DOFs

— Approximate the displacements by a function containing finite number
of coefficients

Total potential energy is evaluated in terms of the unknown
coefficients

Apply PMPE to determine the coefficients that minimizes the
total potential energy

Solution thus obtained may not be exact

— It is the best solution from among the family of solutions that can be
obtained from the assumed displacement functions
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RAYLEIGH-RITZ METHOD cont.

Assumed displacement (must satisfy the essential BC)
u(x) = c4f4(x) + -+ + Cufn (X)
Determine the strain energy: U
Find the potential of external forces: V
Total potential energy in terms of unknown coefficients
II(c4,C5,...c,) =U +V
PMPE to determine coefficients

o

— = I =1...
9c 0, I ....Nn

After finding coefficients, determine displacement and stress
u(X) = C4f4(X) 4 --- + Cpf (X)

P(x)= AE;!—)L(I (for 1D bar)

60




EXAMPLE

> —> —> —> —> —> —> F

L=1m, A=100mm2, E = 100 GPa, F = 10kN, bx = 10kN/m
Approximate solution u(x) = ¢ + cox?

. L
Strain energy y zj; UL(x)dx_j; %AEsfdx—j; %AE{EE] dx

1 L 1 4
U(cq,Cp) = EAEJ; (Cq + 2C,% )°dx = EAE[LC12 + 2L%c,c, +§L3c§]
Potential energy of forces

V (cq,Cy) fb x)dx — (—F )u(L) = fb CiX + CX? JdX + F (G4l 4 c,L? )

2 3
:01[FL—bXL7]+02[FL2 b L—]
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EXAMPLE cont.
« PMPE II(c,cy)=U+V

oIl 12
e = AELc, + AEL?c, +FL — b, - =0
oIl 2 ﬂ 3 2 |—_3_
ac, = AEL"c; + 7 AEL’C, + FL® —b, = =0
10"cy +10"¢c, = —5,000 — &=0
! _ -3
107 ¢,y + 4><310 c, = —6,667 c, =—0.5x10

« Approximate solution u(x)=—-0.5x10"°x?
« Axial force P(x)= AEdu/dx = —10,000x

 Reaction force R=-P(0)=0




