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Recent developments in meshfree method and its application to shape 
optimization are presented. The approximation theory of the Reproducing 
Kernel Particle Method is first introduced. The computational issues in domain 
integration and imposition of boundary conditions are discussed. A stabilization 
of nodal integration in meshfree discretization of boundary value problems is 
presented. Shape optimization based on meshfree method is presented, and the 
treatment of essential boundary conditions as well as the dependence of the 
shape function on the design variation is discussed. The proposed meshfree 
based shape design optimization yields a significantly reduced number of design 
iterations due to the meshfree approximation of sensitivity information without 
the need of remeshing. It is shown through numerical examples that the mesh 
distortion difficulty exists in the finite element–based design approach for 
design problems with large shape changes is effectively resolved. 

1. Introduction 

Meshfree methods developed in recent years introduced new approximation 
methods that are less restrictive in meeting the regularity requirement in the 
approximation and discretization of partial differential equations.1-10 These 
methods are more flexible in embedding special enrichment functions in the 
approximation for solving problems with known characteristics, such as fracture 
problems,11 more straightforward in constructing h– or p–adaptive refinement,12-14 
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and less sensitive to large geometry changes such as those in large deformation 
problems5,15 and shape optimization problems.16,17  

Primary computational challenges involved in shape optimization using finite 
element methods (FEM) arise from the excessive mesh distortion that occurs 
during large shape changes and mesh–dependent solution accuracy. Numerous 
difficulties were encountered in finite element analysis, such as those involving 
mesh distortion, mesh adaptation, and those with the need for a large number of 
re-meshing during shape optimization.18,19 Meshfree method is ideal for shape 
optimization because it allows field variables to be interpolated at the global 
level, therefore avoiding the use of a mesh. The main purpose of this chapter is to 
introduce special features of the meshfree method from a design sensitivity 
analysis (DSA) and optimization viewpoint, as well as the associated numerical 
aspects. Mesh distortion and re-meshing problems encountered in FEM-based 
shape optimization can be avoided and the design costs can be significantly 
reduced as a result of the accurate and efficient computation of design sensitivity. 
An important aspect to be considered in the shape optimization using meshfree 
method is the design derivation of meshfree shape functions. Unlike the finite 
element shape functions which are independent to the design variation due to the 
local construction of shape functions using natural coordinates, the meshfree 
shape functions depend on a global coordinate of material points that are related 
to the design parameters in shape DSA. Thus, the design derivative of the 
meshfree shape functions needs to be considered in DSA. 

This Chapter is organized as follows. In section 2, the reproducing kernel 
approximation for solving boundary value problems under the framework of 
reproducing kernel particle method (RKPM) is first introduced. Methods to 
impose boundary conditions and issues associated with the domain integration of 
Galerkin approximation are discussed, and an example demonstrating the 
accuracy and convergence property of RKPM is presented. In section 3, shape 
design parameterization and design velocity are first defined. The shape 
sensitivity derivation is then introduced, and design derivation of meshfree shape 
functions and RKPM discretization of sensitivity equation are discussed. Two 
shape design optimization problems solved using the proposed methods are 
presented in Section 4. Concluding remarks are given in Section 5. 

2. Reproducing Kernel Particle Method 

In meshfree methods, the approximation of unknowns in the partial differential 
equations are constructed entirely based on a set of discrete points without using 
a structured mesh topology. Approximation methods such as moving least-
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squares,20 reproducing kernel approximation,4 partition of unity,7 radial basis 
functions,21 among others, have been introduced in formulating meshfree discrete 
equations. For demonstration purposes, the reproducing kernel approximation is 
presented herein. Other methods can also be employed under this framework. 

2.1 Reproducing Kernel Approximation 

The reproducing kernel approximation of a function ( )u x , denoted by ( )hu x , is 
expressed as 

 
1

( ) ( )
NP

h
I I

I

u d
=

= Ψ∑x x , (1) 

where NP  is the number of points used in the discretization of the problem 
domain Ω , Id  is the coefficient of the approximation at point I , and ( )IΨ x  is 
called the reproducing kernel shape function. The reproducing kernel shape 
function is formed by a multiplication of two functions 
 ( ) ( ) ( );I I a ICΨ = − Φ −x x x x x x , (2) 

where ( )a IΦ −x x  is a kernel function that defines the continuity (smoothness) 
and the locality of the approximation with compact support (cover) IΩ  measured 
by the parameter a . The order of continuity in this approximation can be 
introduced without complexity. For example, the box function gives 1C−  
continuity, the hat function leads to 0C  continuity, the quadratic spline function 
results in 1C  continuity, and the cubic B-spline function yields 2C  continuity, 
etc. A commonly used kernel function is the cubic B-spline function given as 

 ( )

2 32 1
3 2

2 34 4 1
3 3 2

4 4

4 4 1

0 1

a I

z z for z

x x z z z for z

for z

⎧ − + ≤⎪⎪⎪⎪⎪Φ − = − + − < ≤⎨⎪⎪⎪ >⎪⎪⎩

, (3) 

where /Iz x x a= − . In multi-dimension, the kernel function can be 
constructed by using the distance function to yield an isotropic kernel function,  
 ( ) ( ), /a I a Iz z aΦ − = Φ = −x x x x , (4) 

or by the tensor product of the one-dimensional kernel functions to yield a 
anisotropic kernel 
 ( ) ( ) ( )

1 21 1 2 2a I a I a Ix x x xΦ − = Φ − Φ −x x . (5) 

The union of all the kernel supports (covers) should cover the entire problem 
domain, i.e., I

I
∪Ω ⊃ Ω  as shown in Figure 1. The term ( ), IC −x x x  in Eq. (2) is 

the correction function or enrichment function. This function determines the  
completeness of the approximation and the order of consistency in solving PDE’s. 
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(a) Isotropic kernel supports (covers)          (b) Anisotropic kernel supports (covers) 
Figure 1 Domain discretization and kernel supports 
 

In general, ( ), IC −x x x is constructed by the monomial bases: 

 
( ) ( ) ( ) ( )

( ) ( )

1 1 2 2
0

;

, , 0

n
i j

I I I ij
i j

T
I

C x x x x b

i j

+ =
− = − −

= − ≥

∑x x x x

H x x b x
 (6) 

 ( ) ( )1 1 2 2 2 21 nT
I I I Ix x x x x x⎡ ⎤− = − − −⎢ ⎥⎣ ⎦H x x "  (7) 

 ( ) 00 10 01 0nb b b b⎡ ⎤= ⎢ ⎥⎣ ⎦b x " , (8) 

where n  is the order of the complete monomial bases, and this number defines 
the completeness of the approximation. The unknown coefficients ( )b x  can be 
determined by imposing the n-th order reproducing conditions 

 ( ) 1 1 22
1

0, ,
NP

j ji i
I I I

I

x x x x i j n
=

Ψ = + =∑ x " , (9) 

or equivalently in the following form: 

 ( ) ( )1 1 2 2 0 0
1

( ) 0, ,
NP

i j
I I I i j

I

x x x x i j nδ δ
=

Ψ − − = + =∑ x " . (10) 

Substituting Eqs. (6) and (2) into Eq. (10) results in 
 ( ) ( ) ( )=M x b x H 0 , (11) 

where ( )M x  is the moment matrix of the kernel function ( )a IΦ −x x  

 ( ) ( ) ( ) ( )
1

NP
T

I I a I
I=

= − − Φ −∑M x H x x H x x x x . (12) 
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      (a)  (b)  
Figure 2. (a) 2-dimensional meshfree shape function IΨ      (b) Shape function derivative ,I xΨ  
 
 
Therefore, the coefficient function ( )b x  is solved by 
 ( )1( ) ( )−=b x M x H 0 . (13) 

Notice that for the moment matrix ( )M x  to be non-singular, any spatial position 
x  should be covered at least by n linearly independent kernel functions such that 
the n reproducing equations are solvable. Subsequently, the correction function 
and the discrete reproducing kernel shape function can be obtained as 
 ( ) ( ) ( ) ( )1; T

I IC −− = −x x x H 0 M x H x x  (14) 

 ( ) ( ) ( ) ( ) ( )1T
I I a I

−Ψ = − Φ −x H 0 M x H x x x x . (15) 

The plots of the shape function and its derivatives are given in Figure 2, where 
linear basis and cubic B-spline kernel functions are employed. The meshfree 
shape function ( )IΨ x  does not possess the Kronecker delta property; therefore, 
additional treatments are required to enforce the essential boundary conditions. 

2.2 Galerkin Approximation and Discretization 

For demonstration purposes, consider the following elastostatic problem: 
 ,( ) 0ij j ib inσ + = Ω  (16) 

 g
i iu g on= ∂Ω  (17) 

 h
ij j in h onσ = ∂Ω  (18) 

where 1
, ,2, ( ) ( ) inS

ij ijkl kl ij i j j i ijC u uσ ε ε= = + ≡ ∇ Ωu , Ω  is the problem domain 

with essential boundary g∂Ω  and natural boundary h∂Ω , iu  is displacement, ijσ  
is stress, ijε  is strain, ijklC  is the elasticity tensor, ih  is the surface traction, and 

ib  is the body force. The weak form of the above problem is 

( ) ( ) ( ) 0
gh

S S
ij ijkl kl i i i i i i iC d u b d u h d u g dδ δ δ δ λ

Ω Ω ∂Ω∂Ω

∇ ∇ Ω − Ω − Γ − − Γ =∫ ∫ ∫ ∫u u  (19) 
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where iλ  is the Lagrange multiplier to impose the essential boundary conditions. 
By employing the displacement approximation in Eq. (1), and introducing 
approximation function { } 1( ) NgI I=φ x  for the approximation of iλ  on g∂Ω , where 
Ng  is number of points on g∂Ω , the following discrete equation is obtained 

 
T⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

dK fG
qG 0 λ

 (20) 

T
IJ I Jd

Ω

= Ω∫K B CB , 
g

IJ I Jd
∂Ω

= Ψ Γ∫ φG I , 
h

I I Id d
Ω ∂Ω

= Ψ Ω + Ψ Γ∫ ∫f b h , 

I I d
∂Ω

= Γ∫
γ

φq g , 
0

0

I

I I

I I

⎡ ⎤Ψ⎢ ⎥
⎢ ⎥= Ψ⎢ ⎥
⎢ ⎥
⎢ ⎥Ψ Ψ⎣ ⎦

,1

,2

,2 ,1

B   (21) 

Compared with the standard finite element Galerkin approximation, two 
major disadvantages in computational efficiency are observed. First, additional 
degrees of freedom for Lagrange multiplier for imposition of essential boundary 
conditions are needed. Second, domain integration requires a background grid if 
Gauss integration is to be employed. It has been observed by Belytschko et al.22 
that very high order quadrature rule and very fine integration grids are required to 
reduce the integration error, and thus yields poor efficiency. 

2.3 Two Alternative Methods for Imposition of Essential Boundary Conditions 

2.3.1 Transformation Method 

Recall reproducing kernel approximation of displacement 

 
1

( ) ( )
NP

h
i I iI

I

u d
=

= Ψ∑x x . (22) 

The nodal value of h
iu  at node J, îJd , is obtained by 

 
1

ˆ ( ) ( )
NP

h
iJ i J I J iI

I

d u d
=

= = Ψ∑x x , or ˆ =d dΛ , (23) 

where  

 
1 1

22

ˆ ( ) 0
ˆ , , ( )

ˆ 0 ( )

I I J I

I I IJ J I
I J II

d d

dd

⎡ ⎤ ⎡ Ψ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= = = = Ψ⎢ ⎥ ⎢ ⎥⎢ ⎥ Ψ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

x
d d x I

x
Λ  (24) 

and Λ  is the transformation matrix between generalized displacement vector d  
and nodal displacement vector d̂ . 
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For computational efficiency, only the degrees of freedom associated with the 
essential boundaries are expressed in the nodal coordinate. Following Chen and 
Wang23, the discrete points are first partitioned into two groups: a boundary 
group BG  containing all points on g∂Ω , and an interior group IG  containing the 
rest of the points. Further partitioning the displacement vectors into boundary and 
interior components, B⎡ ⎤= ⎢ ⎥⎣ ⎦

T TT Id d d , 늿 B⎡ ⎤= ⎢ ⎥⎣ ⎦
T TT Id d d , we rewrite Eq. (23) as: 

 
ˆ

늿
ˆ

B BB BI B

IB II II

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

d d
d d

dd

Λ Λ
Λ

Λ Λ
. (25) 

Next, define a mixed displacement vector *d  

 * *
ˆ BB BB BI

II

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

dd
d d

0 I dd

Λ Λ
Λ  (26) 

or 

 1
1 1

* * * 1,
BB BB BI

−
− −

−
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

d = dΛ
0 I

Λ −Λ Λ
Λ . (27) 

The displacement approximation can now be approximated as 

 *1*( ) ( ) ( )h −
= =u x x d x dΨ Ψ Λ , (28) 

where 

 
( )

( ) ( ) ( ) ( ) , ( )
( )

I

NP I
I

⎡ ⎤
⎢ ⎥⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

"1 2

Ψ 0

0 Ψ

x
x x x x x

x
Ψ Ψ Ψ Ψ Ψ . (29) 

With Eq. (28), kinematically admissible approximation of 1h
i gu H∈  and 

1
0

h
iu Hδ ∈  can be constructed, and the Galerkin approximation of weak form can 

be stated as: Find 1h
i gu H∈ , 1

0
h
iu Hδ∀ ∈ , such that the following equation is 

satisfied: 

 ( ) ( ) 0
h

S S h h
ij ijkl kl i i i iC d u b d u h dδ δ δ

Ω Ω ∂Ω

∇ ∇ Ω − Ω − Γ =∫ ∫ ∫h hu u . (30) 

Consider taking *1*( ) ( )hδ δ
−

=u x x dΨ Λ  and ( ) ( )h =u x x dΨ  in Eq. (30) to yield 

 * * * *T T T T
δ δ

− −
=d Kd d fΛ Λ    or   ( )* * * 0

T
δ =d K d - f , (31) 

where  

 
** *

* * * *

* * *
,

BBB

T T

I

− −
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

BI

IB II

fK K
K K = f f

K K f
= Λ Λ . (32) 
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Let Nb be the total number of degrees of freedom associated with essential 
boundary conditions on g∂Ω . By considering the essential boundary conditions, 
we have ˆB =d g , ˆBδ =d 0 , and *T T TIδ ⎡ ⎤= ⎢ ⎥⎣ ⎦d 0 d . By examining the discrete 
weak form, ( )* * * 0

T
δ =d K d - f , it is apparent that the first Nb equations of 

* * =K d - f 0  become redundant and can be replaced by the Nb equations of 
essential boundary conditions BB BI⎡ ⎤

⎢ ⎥⎣ ⎦ d = gΛ Λ  (Eq. (26)) to yield 

 ** *
IIB II

BB BI B

I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

gd

fdK K

Λ Λ
. (33) 

2.3.2 Modified Reproducing Kernel with Nodal Interpolation Properties 

In this section we introduce an alternative method to construct a reproducing 
kernel approximation with Kronecker delta properties so that the essential 
boundary conditions can be imposed directly. Chen et al.24 proposed a general 
formulation for developing reproducing kernel approximation with nodal 
interpolation properties.  

Consider a modified reproducing kernel approximation of ( )u x  as follows: 
 ( )( ) ( ) ( ) + ( )Ψ Ψ Ψx x x xˆh

i I iI I I iI
I I

u d d= =∑ ∑ . (34) 

In Eq. (34), ( )ˆ
IΨ x  is a primitive function used to introduce discrete Kronecker 

delta properties, and ( )IΨ x  is an enrichment function for imposing n-th order 
reproducing conditions. Consider the following construction of ( )ˆ

IΨ x : 

 
( - )

( )
( )

ˆ

ˆ

ˆ
ˆ

ˆ
I

I

a
I

a

= IΦ
Ψ

Φ

x x
x

0
,       ˆ min{ , }I I Ja J I< − ∀ ≠x x . (35) 

The support size Îa  of ˆ
ˆ ( )
Ia I−x xΦ  is so chosen that it does not cover any 

neighbor points, and thus Kronecker delta conditions are satisfied in ( )ˆ
IΨ x . The 

enrichment function is taken as the standard reproducing kernel form as 
 ( ) = ( - ) ( ) ( - )

I

T
I aI IΨ Φx H x x a x x x . (36) 

The coefficients ( )a x  in ( )IΨ x  are obtained by the following reproducing 
conditions: 

( - )
[ ( - ) ( ) ( - )]

( )
ˆ

ˆ

ˆ
, 0

ˆ
I

I

I

a T i i
a

I a

x x x x i j n+ = ≤ + ≤∑ I j j
I I 1I 12I 2

Φ
Φ

Φ

x x
H x x a x x x

0
. (37) 

Equation (37) can be rewritten as: 
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( - )
[ ( - ) ( ) ( - )( - ) ( - ) ]

( )
ˆ

0 0
ˆ

ˆ
,

ˆ

0

I

I

I

a T
a i j

I a

i j n

δ δ+ =

≤ + ≤

∑ I i j
I I 1 1I 2 2Ix x x x

Φ
Φ

Φ

x x
H x x a x x x

0  (38) 

or 

 
( - )

[ ( - ) ( ) ( - ) ( - )] ( )
( )

ˆ

ˆ

ˆ

ˆ
I

I

I

a T
a

I a

+ =∑ I
I I I

Φ
Φ

Φ

x x
H x x a x x x H x x H 0

0
. (39) 

The coefficient vector ( )a x  is obtained from Eq. (39) by 
 ( ) ( )[ ( ) - ( )]1 ˆ−=a x Q x H 0 F x  (40) 

 
( - )

( ) ( - )
( )

ˆ

ˆ

ˆ
ˆ

ˆ
I

I

a

I a

= ∑ I
I

Φ

Φ

x x
F x H x x

0
 (41) 

Finally, the reproducing kernel interpolation function is obtained: 

 
( - )

( ) ( - ) ( )[ ( ) - ( )] ( - )
( )

ˆ 1

ˆ

ˆ
ˆ

ˆ
I

I

I

a T
I a

a

−= +I
I I

Φ
Ψ Φ

Φ

x x
x H x x Q x H 0 F x x x

0
 (42) 

The Kronecker delta properties can be easily shown: 

 
( - )

( ) ( - ) ( )[ ( ) - ( )] ( - )
( )

( - ) ( )[ ( ) - ( )] ( - )

ˆ 1

ˆ

1

ˆ
ˆ

ˆ

ˆ

I

I

I

I

a T
I a

a

T
IJ a IJδ δ

−

−

= +

= + =

J I
J J I J J J I

J I J J J I

x x
x H x x Q x H 0 F x x x

0

H x x Q x H 0 F x x x

Φ
Ψ Φ

Φ

Φ

 (43) 

Note that in Eq. (43) the property { }ˆ min ,I I Ja J I< − ∀ ≠x x  has been 
used. The RK interpolation function in Eq. (42) bares the following properties: 
(i) ( ( )) ˆmax( , )I I ISupp a a=Ψ x  

(ii) If 
I

m
a C∈Φ , ˆ

ˆ
ˆ
I

m
a C∈Φ , then k

I C∈Ψ , ˆmin( , )k m m=  
(iii) The singularity of ( )Q x  is only dependent on Ia  and the order of basis 

function in ( - )IG x x , and is independent to Îa . 
(iv) For better accuracy in solving PDE’s, the primitive functions are included 

only in the shape functions associated with the nodes on the essential 
boundary. Following Chen et al.24, it can be shown that the coefficients of 
shape functions with primitive functions included are nodal values and 
essential boundary conditions can be imposed directly.  

2.4 Stabilized Conformation Nodal Integration (SCNI) 

2.4.1 Integration Constraints 

The traditional approach to perform domain integration is Gauss integration. 
However, if Gauss quadrature is employed for integrating the weak form, an 



J. S. Chen and N. H. Kim 
 

10 

additional background grid is required, and higher order quadrature rule is 
required to reduce the integration error. Another drawback of Gauss integration 
for the meshfree weak form is that it does not satisfy the integration constraints,25 
therefore the first order accuracy is not guaranteed even if the approximation of 
test and trial functions is linearly complete. Integration constraints are necessary 
conditions for linear exactness in the Galerkin approximation as identified by 
Chen et al.25 There are two requirements for linear exactness in the 2nd order 
differential equations. The first condition, related to the approximation, requires 
the shape function to satisfy the linear consistency conditions given by 

 
( )

( )

1

1

1
NP

I
I
NP

I I
I

=

=

⎧⎪⎪ Ψ =⎪⎪⎪⎪⎨⎪⎪⎪ Ψ =⎪⎪⎪⎩

∑

∑

x

x x x

. (44) 

Note that x  and Ix  are vectors. These conditions are automatically satisfied in 
the reproducing kernel shape functions if complete linear basis functions are used. 
The second condition requires the integration of the gradient of the shape function 
to vanish if the shape function does not intersect with the boundary,25 i.e.,  

 ( ) ( )if
1

supp
NIT

I L L
L

w
=

∇Ψ = Ψ ∂Ω = ∅∑ x 0 ∩I , (45) 

where NIT  is the number of integration points. If Gauss integration is employed, 
Lx  are the spatial coordinates of the Gauss points and Lw  are the weights of 

integration. If nodal integration is applied, Lx  are the coordinates of the discrete 
integration points and Lw  are the associated weights at the discrete points. 

For shape function that intersects with the natural boundary, the integration of 
the gradient of the shape function should satisfy the divergence equation 

 ( ) ( ) ( )if
1 1

supp
NIT NITB

h
I L L I K K I

L K

w s
= =

Ψ = Ψ Ψ Ω ≠ ∅∑ ∑x n x ∩∇ , (46) 

where NITB  is the number of integration points on the natural boundary that are 
covered by the support of node I , n  is the outward normal of the natural 
boundary, and Ks  are the weights of boundary integration. 

2.4.2 Strain Smoothing 

To satisfy the integration constraints as stated in Eqs. (45) and (46), a strain 
smoothing25 is introduced 
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L
LΩ

LΓ

 

 Figure 3. Nodal representative domain for SCNI 
 
 

 
( ) ( ) ( )

( ) ( )

, ,
1 1
2 2
1
[ ]
2

L L

h h h h h
ij L i j j i i j j i

L L

iI L jI jI L iI

u u d u n u n d
A A

b d b d

ε
Ω Γ

= + Ω = + Γ

= +

∫ ∫x

x x
 (47) 

 ( ) ( )
1

L
iI L I i

L
b n d

A Γ
= Ψ Γ∫x x . (48) 

Here LΩ  is the nodal representative domain for node L  as shown in Fig. 3, LΓ  is 
the boundary of the representative domain, and LA  is the volume (for 3D) or area 
(for 2D) of the representative domain. A Voronoi diagram at particle L  as shown 
in Fig. 3 can be employed to generate the nodal representative domain.  

The smoothed strain approximation can be expressed as 

 ( ) ( )
1

NP
h

L I L I
I=

= ∑x B x dε  (49) 

 ( )

( )

( )

( ) ( )

1

2

2 1

0

0

I L

I L I L

I L I L

b

b

b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

B x x

x x

, (50) 

where NP  is the number of nodes whose support covers node Lx . It has been 
shown that the smoothed gradient matrix B  satisfies the integration constraints.25 

To introduce the smoothed strain into strain approximation, consider the 
following assumed strain variational equation: 

 0
x h

ij ijkl kl i i i iC d u b d u h dδε ε δ δ
Ω

Ω ∂Ω

Ω − Ω − Γ =∫ ∫ ∫ . (51) 

By employing the smoothed strain approximation in Eq. (49) and the 
displacement approximation in Eq. (1), we have the discrete equation: 
 =Kd f  (52) 
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( ) ( )
1

NP
T

IJ I M J M M
M

A
=

= ∑K B x CB x , ( ) ( )
1 1

NP Nh

I I M M I L L
M L

A s
= =

= Ψ + Ψ∑ ∑f x b x h  (53) 

2.5 Numerical Examples 

2.5.1 Beam Subjected to a Shear Load 

The problem statement and boundary conditions of the beam problem are given 
in Fig. 4 (a). The numerical solution obtained from SCNI is compared with the 
solutions obtained by Gauss integration with 5x5 quadrature rule and the direct 
nodal integration. Linear basis functions and a normalized support size of 2.01 
are used in all three uniform discretizations. The comparison of displacement L2 
error norm is shown in Fig. 4 (b). The solution of the direct nodal integration 
presents lower accuracy than that obtained from Gauss integration. SCNI not 

F=20kN, L=10.0 m, D=2.0 m 
E=21.1 MPa, ν = 0 3.  

F 

L 

D x

y 

Half beam non-uniform discretization
(a) (b)

(c) (d)
Figure 4. (a) Problem statement and discretization, (5) displacement L2 error norm, (c) shear stress 
distribution along x=0.5 L obtained by a direct nodal integration, (d) shear stress distribution along 
x=0.5 L obtained by the SCNI and 5x5 Gauss integration 
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only enhances accuracy of the direct nodal integration, the method performs 
better than the Gauss integration method. Shear stress distributions along regular 
nodes at 0.5x L=  in Figs. 4(c) and 4(d) clearly demonstrate the superior 
performance of SCNI. A very non uniform 124-node model as shown in Fig. 4 
(a) is created to test the performance of three methods under highly non uniform 
discretization. The tip displacement solution of the direct nodal integration 
method deteriorates significantly in this case as shown in Table 1. On the 
contrary, SCNI still maintains a 99.25 % accuracy in the tip displacement; much 
better than direct nodal and Gauss integration methods.  

3. Structural Shape Optimization 

Structural design problems can be categorized based on the type of design 
variables. While the sizing design is related to parameters of the structure, the 
shape design is related to the structure’s geometry. In the shape design problem, 
the structural domain or its boundary is defined as design variables. Since the 
domain itself is part of a design, the structural geometry appears implicitly as the 
design parameter. This fact makes the shape design problem more difficult than 
the conventional sizing design problem. 

3.1 Shape Design Parameterization and Design Velocity 

Shape design parameterization, which describes the boundary shape of a 
structure as a function of the design variables, is an essential step in the shape 
design process. Inappropriate parameterization can lead to unacceptable shapes. 
To parameterize the structural boundaries and to achieve optimum shape design, 
boundary shape can be described in three ways: (1) by using boundary nodal 
coordinates, (2) by using polynomials,26-28 and (3) by using spline blending 
functions.19,29-32 All these methods describe how the design variable changes the 
shape of the boundary. 

In the meshfree method, the structural domain is discretized by a set of 
particles. When the boundary of the structure is changed according to the shape 
design variable, the location of meshfree particles is changed accordingly. The 
direction that each particle moves with respect to the shape design variable is 
called the design velocity. Let x  be the location of a particle in the domain and 
the location at the perturbed design be given as 

Table 1 Tip displacement accuracy (%) using highly irregular discretization 

Discrete Model 5x5 Gauss Int. Direct Nodal Int. SC Nodal Int. 
124 nodes 94.99 192.82 99.25 
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 ( )τ τ= +x x V x , (54) 

where ( )V x  is the design velocity and the parameter τ  controls the magnitude of 
design change. The process is similar to the dynamic process by considering τ  as 
time. Because of this analogy, the direction ( )V x  is called the design velocity. 

In order to illustrate the shape design change, we consider a simple geometric 
representation as an example. In many geometric modelers, the location of 
particles is often represented using a parametric technique. For example, the 
location x  in two–dimensional space can be represented using two parameters as 
 ( , ) ( ) ( )T Tξ η ξ η=x U MGM W , (55) 

where 3 2( ) [ 1]Tξ ξ ξ ξ=U  and 3 2( ) [ 1]Tη η η η=W  are vectors in the 
parametric coordinates, and M  is a constant matrix defined as 

 

2 2 1 1

3 3 2 1

0 0 1 0

1 0 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥− − −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M  (56) 

and G  is the geometric matrix defined as 

 

00 01 00 01

10 11 10 11

00 0001 01

10 11 10 11 4 4 3

η η

η η

ξη ξηξ ξ

ξη ξηξ ξ
× ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

p p p p

p p p p
G

p p p p

p p p p

 (57) 

where ijp  are coordinates of the corner points on the surface, andij ij
ηξp p  are the 

tangent vectors in ξ  and η  directions, respectively, and ij
ξηp  is the twist vectors. 

Figure 5. Parametric representation of a surface geometry. Corner points and their tangent vectors 
can be served as shape design variables. The parametric coordinates remain constant. 

ξ p00
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p11
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All components or combination of them can be served as shape design variables. 
Figure 5 shows the geometry and its transformation into the parametric 
coordinate. 

 The computation of ( ) ( , )ξ η=V x V  is directly related to the parametric 
representation of the neutral surface, as given in Eq. (55).  For the purpose of 
explanation, let us consider one design variable b . Equation (55) is rewritten 
with design dependence as 
 ( ; , ) ( ) ( ) ( )T Tb bξ η ξ η=x U MG M W . (58) 

Since geometric matrix ( )bG  is a function of the design, the design velocity 
( , )ξ ηV  can be obtained by perturbing b  to b bτδ+ , and then differentiating with 

respect to τ  as 

 
0

( ; , )
( , ) ( ) ( ) ( )T Td b b

b
d bτ

τδ ξ η
ξ η ξ δ η

τ =

+ ∂
= =

∂
x G

V U M M W . (59) 

For example, when the x–component of 00p  is chosen as the design variable, 
matrix / b∂ ∂G  has all zero components except for the component at (1,1) that 
has a value of [1, 0, 0]. The design velocity field must be obtained per each shape 
design variable. 

An advantage of the design velocity computation in Eq. (59) is that it is 
unnecessary to store design velocity for all particles.  It is sufficient to simply 
store matrix / b∂ ∂G  for each design variable. Note that ( , )ξ ηV  remains constant 
during the optimization process. 

3.2 Shape Sensitivity Analysis 

Design sensitivity analysis computes the rate of performance measure change 
with respect to design variable changes.33 With the structural analysis, the design 
sensitivity analysis generates a critical information, gradient, for optimization. In 
this text, performance measures are presumed to be differentiable with respect to 
design, at least in the neighborhood of the current design point. For complex 
engineering applications, however, it is not simple to prove the differentiability.34 

In general, a structural performance measure depends on the design parameters.  
For example, a change in the cross-sectional area of a beam would affect the 
structural weight. This type of dependence is simple if the expression of weight 
in terms of the design variables is known. This type of function is explicitly 
dependent on the design. Consequently, only algebraic calculation is involved to 
obtain the design sensitivity of an explicitly dependent performance measure. 

However, in many cases, performance measures implicitly depend on the 
design. For example, there is no explicit way to express the stress of a structure 
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explicitly in terms of the design variable b . Consider the general performance 
measure ( )( ),b bψ ψ= u  that depends on the design explicitly and implicitly. The 
sensitivity of ψ  can be expressed as 

 
const const

( ( ), ) T

b

d b b d
db b db

ψ ψ ψ

= =

∂ ∂
= +

∂ ∂u

u u
u

. (60) 

From the expression of ( )( ),b bψ u , the explicitly dependent term, /d dbψ , and 
the derivative, /d dψ u , can easily be obtained. The only unknown term in Eq. 
(60) is /d dbu , which is the sensitivity of the state variable with respect to the 
design variable. The key procedure of design sensitivity analysis is to calculate 
the sensitivity of the state variable by differentiating the structural equation. For a 
given shape design velocity field ( )V x , the shape sensitivity formulation 
expresses the sensitivity of state variable in terms of the design velocity. In this 
text, only linear problem is considered. The nonlinear sensitivity analysis is 
presented in Chapter 8. 

Four approaches are used to obtain design sensitivity: the finite difference, 
discrete, continuum, and computational derivatives. In the finite difference 
approach, design sensitivity is obtained by either the forward or central finite 
difference method. In the discrete method, design sensitivity is obtained by taking 
design derivatives of the discrete governing equation. In the continuum approach, 
the design derivative of the variational equation is taken before discretization. 
Finally, computational or automatic differentiation refers to a differentiation of 
the computer code itself. The continuum approach is employed in this text 
because this formulation is independent of discretization methods. The particular 
discretization using the meshfree method will be discussed in the next section. 

First, the sensitivity of the state variable is defined using the material 
derivative concept in continuum mechanics, as 

 

0

0 0

( ( )) ( )
( ) lim

( ) ( ) ( ( )) ( )
lim lim

( ) ( ),

τ

τ

τ τ τ

τ τ

τ
τ

τ
τ τ

→

→ →

⎡ + − ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ − ⎤ ⎡ + − ⎤

= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

′= + ∇ ⋅

u x V x u x
u x

u x u x u x V x u x

u x u V x

�

, (61) 

where ′u  is the partial derivative. The above material derivative can be applied 
to general functions. The order of differentiation can be changed between the 
partial derivative and the spatial derivative, such that ( ) ( )′ ′∇ = ∇u u . However, it 
is not true for the material derivative in Eq. (61). In such a case,  
 ( )∇ = ∇ − ∇ ⋅ ∇u u u Vi � . (62) 
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Since the structural equation is expressed in terms of functionals, the 
following two formulas are useful for deriving the sensitivity equation: 

 1 ( ) [ ( ) ( ) ]f d f f div dψ
Ω Ω

′⎡ ⎤
⎢ ⎥′ = Ω = + Ω⎢ ⎥⎢ ⎥⎣ ⎦
∫ ∫x x x V�  (63) 

 2 ( ) [ ( ) ( ) ]ng d g g V dψ κ
∂Ω ∂Ω

′⎡ ⎤
⎢ ⎥′ = Γ = + Γ⎢ ⎥⎢ ⎥⎣ ⎦
∫ ∫x x x� . (64) 

In Eq. (64), κ  is the curvature of the boundary and nV  is the normal component 
of the design velocity on the boundary. 

The variational equation in Eq. (30) is used for deriving the sensitivity 
equation. For the illustration, Eq. (30) is rewritten in the following form: 

 
( , ) : ( ) ( )

: ( )
h

h h S S
ij ijkl kl

h h h
i i i i

a C d

u b d u h d

δ δ

δ δ δ

Ω
Ω

Ω
Ω ∂Ω

= ∇ ∇ Ω

= Ω + Γ =

∫

∫ ∫

u u

uA

h hu u

. (65) 

The notation is selected such that ( , )a δΩ u u  is bilinear with respect to its two 
arguments, while ( )δΩ uA  is linear. The above variational equation must satisfy 
for all kinematically admissible fields  1h

i gu H∈  and 1
0

h
iu Hδ ∈ .  

Using the formulas in Eqs. (63) and (64), the above variational equation is 
differentiated to obtain the sensitivity equation: 
 ( , ) ( ) ( , )h h h h ha aδ δ δΩ ′ ′= −V Vu u u u u� A , (66) 

for all 1
0

h
iu Hδ ∈ . In Eq. (66), the left-hand side is identical with that of Eq. (65) 

if hu  is substituted with its sensitivity hu� , and two terms on the right-hand side 
are defined as 

 
( ) [ ( ) ]

[ ( ) ]
h

h h h
i ij j i i

h h
i ij j i i n

u b V u b div d

u h V u hV d

δ δ δ

δ κδ

Ω

∂Ω

′ = ∇ + Ω

+ ∇ + Γ

∫

∫

V u VA

 (67) 

and 

 
( , ) [ ( ) ( ) ( ) ( )

( ) ( ) ]

h h h S S h
ij ijkl kl ij ijkl kl

S S
ij ijkl kl

a C C

C div d

δ ε δ δ ε

δ
Ω

′ = ∇ + ∇

+ ∇ ∇ Ω

∫ V V
V u u u u

V

h h

h h

u u

u u
, (68) 

where /i idiv V x= ∂ ∂V , and 
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 1
( )

2

hh
ji k kh

ij
k j k i

uu V V
x x x x

ε
⎛ ⎞∂∂ ∂ ∂ ⎟⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜ ∂ ∂ ∂ ∂⎝ ⎠

V u . (69) 

The detailed derivations can be found in Choi and Seong.35 
It is well known that the adjoint variable method is more efficient than 

solving the design sensitivity equation (66) when the number of design variables 
is greater than the number of performance functions. However, since this paper 
aims to address the dependence between shape design variables and the meshfree 
approximation function, the discussion will be limited to the direct differentiation 
method as in Eq. (66). 

The shape sensitivity equation (66) is independent of discretization method. 
Either finite element36 or meshfree method37 can be used for numerically 
calculating the sensitivity of the state variable. In the following section, the 
implementation using the meshfree method is discussed. 

3.3 Meshfree Discretization of Sensitivity Equation 

3.3.1 Material Derivative of Meshfree Shape Function 

Since the main unknown variable of the meshfree method is generalized 
displacement iId , the design sensitivity equation (66) in the continuum form, 
which is written in terms of h

iu� , has to be discretized using iId� . Since h
iu  is 

approximated using the meshfree shape function in Eq. (22), h
iu�  can be 

approximated by differentiating Eq. (22), as 

 
1

( ) ( ( ) ( ) )
NP

h
i I iI I iI

I

u d d
=

= Ψ + Ψ∑x x x� �� . (70) 

This decomposition is quite different from the finite element method in which the 
shape function is independent of the design. The first term constitutes the main 
unknown iId�  of the sensitivity equation, while the second represents the 
dependence of the shape function on design, which is explicit in ( )V x . 

From the observation that h
iu  and h

iu�  belong to the same space,† h
iu�  can be 

approximated directly using the meshfree shape function38 as 

 
1

( ) ( )
NP

h
i I iI

I

u d
=

= Ψ∑x x �� . (71) 

By comparing Eq. (70) with Eq. (71), the latter seems to provide simpler 
approximation than the former. However, the former will yield numerical results 
that are more consistent than the latter. In addition, since iId�  is not the material 
                                                      
† This can be observed by comparing Eq. (65) with Eq. (66). 
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derivative of iId , the penalty function must be used for imposing the essential 
boundary conditions. In this text, the approximation in Eq. (70) will be used. 

A numerical method to compute ( )IΨ x�  will now be introduced. From the 
relation ( )τ τ= +x x V x , the derivative of the material point x  is nothing but the 
design velocity ( )V x . Consider the material derivative of the kernel function in 
Eq. (3) for a one–dimensional problem, 

 

2 1
2

2 1
2

2 3 ,
4( )

( ) (1 ) , 1

0, otherwise

I
aa I

z z z
V V

x x z z
a

⎧ − ≤⎪⎪⎪− ⎪⎪Φ − = − < ≤⎨⎪⎪⎪⎪⎪⎩

�  (72) 

where IV  is the design velocity at Ix , and V  is the design velocity at x . For a 
multi–dimensional problem, the product rule in Eq. (5) can be used. 

To compute ( )IΨ x� , the material derivative of the reproducing condition in 
Eq. (11) has to be taken, to obtain 
 1( ) ( ) ( ) ( )−= −b x M x M x b x� � , (73) 

where, 

 
1

( ) [ ]
NP

T T T
a a a

I=
= Φ + Φ + Φ∑M x HH HH HH� � � �  (74) 

 1
1 1 2 2 2 2 2 2( ) 0 ( ) ( )

Tn
I I I I IV V V V n x x V V−⎡ ⎤− = − − − −⎢ ⎥⎣ ⎦H x x� " . (75) 

Thus, from the definition of the meshfree shape function in Eq. (15), we have 
 ( ) T T T

I a a aΨ = Φ + Φ + Φx b H b H b H� � � � . (76) 

For given design velocity ( )V x , Eq. (76) can be explicitly calculated even before 
any sensitivity analysis. The material derivative of /Id dΨ x  can also be 
calculated using a similar procedure. 

3.3.2 Discrete Form of Sensitivity Equation 

In developing sensitivity formulation, it is necessary to take the material 
derivative of strain or, equivalently, the gradient of displacement, 
, /h h
i j i ju u x= ∂ ∂ . Choi and Kim33 uses the concept of a partial derivative that is 

commutable to a spatial gradient. By using Eqs. (62) and (70), a meshfree 
approximation of the material derivative of ,

h
i ju  can be expressed as 

 ( ), , , , ,
1

( )
NP

h
i j I j iI I j iI I k iI k j

I

u d d d V
=

= Ψ + Ψ − Ψ∑i � � . (77) 
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Note that the last two terms are explicitly dependent on the design velocity. The 
only unknown term is iId�  which will be computed from the sensitivity equation. 
To simplify the approximation of Eq. (77), the following relation can be used: 
 ( ), , , ,I j I j I k k jVΨ = Ψ − Ψi � . (78) 

Thus, the last two terms of Eq. (77) can be combined to represent an explicitly 
dependent term on ( )V x  through ,( )I iΨ i . Using Eq. (78), Eq. (77) is simplified to 

 ( ) ( ), , ,
1 1

NP NP
h
i j I j iI I j iI

I I

u d d
= =

= Ψ + Ψ∑ ∑i i� . (79) 

Note that the two summations of Eq. (79) have a similar format. The first term on 
the right–hand side has to be solved using a design sensitivity equation, and the 
second term can be computed explicitly using the design velocity. 

In sensitivity analysis, it is often assumed that the space 1
0H  of kinematically 

admissible displacements is independent of shape design, i.e., 0h
iuδ =� . Even if 

the assumption of 0h
iuδ =�  is not used, since 1

0
h
iu Hδ ∈� , the following relation is 

satisfied 
 ( , ) ( )h h ha δ δΩ Ω=u u u� �A . (80) 

Because of Eq. (80), the contribution of h
iuδ �  will be ignored in the derivation of 

sensitivity equation. In addition, from the relation in Eq. (77), 

 ( ), , , , ,
1

NP
h h
i j i k k j I k iI k j

I

u u V d Vδ δ δ
=

= − = − Ψ∑i . (81) 

The approximation of the sensitivity equation (66) follows the same method 
as meshfree analysis. For a given meshfree shape function, using its material 
derivatives from Eq. (76), as well as using the relation in Eq. (79), the following 
approximation can be obtained: 

 
1

( )
NP

h
I I

I=
= ∑V u B dε � , (82) 

where IB�  is the material derivative of IB , defined by 

 
( ) ( )

( ) ( )

,1 ,2

,1 ,2

0

0

T
I I

I
I I

⎡ ⎤Ψ Ψ⎢ ⎥= ⎢ ⎥
Ψ Ψ⎢ ⎥⎣ ⎦

B

i i

i i
�  (83) 

In contrast, the approximation of ( )V hδuε  has a different expression because 
of Eq. (81), 

 
1

( )
NP

h
I I

I

δ δ
=

= ∑V Vu B dε  (84) 



Meshfree Method and Application to Shape Optimization 
 

21 

 
, ,1 , ,2

, ,1 , ,2

0

0

T
I k k I k k

I
I k k I k k

V V

V V

Ψ Ψ⎡ ⎤
⎢ ⎥= − ⎢ ⎥Ψ Ψ⎢ ⎥⎣ ⎦

VB . (85) 

Now, the right-hand sides of sensitivity equation, Eqs. (67) and (68), can be 
approximated by 

 1

1

( ) [( ) )]

[( ) )]
h

NP
h

V iI I ij j i
I

NP
T

iI I ij j i n
I

d b V b div d

d h V hV d

δ δ

δ κ δ

=Ω

=∂Ω

′ ≈ Ψ ∇ + Ω

+ Ψ ∇ + Ω ≡

∑∫

∑∫

u V

d FA

A

 (86) 

 
1

( , ) [ ( ) ]
T

NP
h h T V T h T T a

V I I I I
I

a div dδ δ δ
=Ω

′ ≈ + + Ω ≡∑∫ Vu u d B B C u B V d Fσ ε σ . (87) 

Thus, the discrete form of the sensitivity equation becomes 
 ( )T T aδ δ= −d Kd d F FA� , (88) 

for all δd  whose counterparts δu  belong to the space 1
0H  of kinematically 

admissible displacements. 

3.3.3 Imposing Essential Boundary Conditions 

The discrete sensitivity equation (88) cannot be solved directly because it is not 
trivial to construct the kinematically admissible δd  from Eq. (88). As discussed 
in Section 2, the Lagrange multiplier method in Eq. (20) can be used for the 
purpose of sensitivity analysis. In such a case, the sensitivity of the Lagrange 
multiplier also needs to be calculated. In addition, the coefficient matrix becomes 
positive semi-definite, which requires a special treatment in solving the matrix 
equation. When the modified reproducing kernel approximation is used, Eq. (88) 
can directly be used because the modified meshfree shape functions for the 
boundary particles satisfy the interpolation property. Thus, the transformation 
method will be discussed in the following. 

By following the same response analysis procedure to construct kinematically 
admissible displacements, the following linear matrix equation is solved: 
 * * ( )T a−= −K d F FΛ A� , (89) 

where *K  represents the same stiffness matrix with meshfree analysis as in Eq. 
(32), which is already factorized. Thus, it is very efficient to solve (89) with 
different right-hand sides. 

Consideration of the essential boundary conditions is somewhat different 
from that of the analysis undertaken in Eq. (33), since the transformation matrix 
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*Λ , which is composed of a meshfree shape function, depends on the shape 
design. Let the prescribed displacement g  at g∈ ∂Ωx  be independent of design, 
which is true in most cases. Then, from ˆB =d g  and Eq. (26), we have 
 B B= −d dΛ Λ�� , (90) 
where [ ]B BB BI=Λ Λ Λ  and ( )B

IJ I J= Ψ xΛ� �  is obtained from Eq. (70) with 
g

J ∈ ∂Ωx . Equation (90) is substituted into Eq. (89) for those rows that 
correspond to the particles on the essential boundary, and by the use of Eq. (33), 
we have 

  
( )* * * ( )

IB II

BBB BI B

II T a−

⎡ ⎤⎡ ⎤ ⎡ ⎤ −⎢ ⎥⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

d

F F

Λ

Λ A

��

�

Λ Λ d

dK K
. (91) 

Equation (91) is solved for each design parameter with the same coefficient 
matrix with the meshfree analysis. After solving d� , the material derivative of 
physical displacement can be calculated from the relation in Eq. (70). 

4. Numerical Examples 

4.1 Torque-Arm Model 

The shape of the torque-arm model in Fig. 6 is optimized according to the eight 
shape design variables that control the boundary curves. In each design variable, 
the design velocity is calculated using Eq. (59). The torque-arm is modeled using 
239 meshfree particles. Figure 6(a) shows meshfree particles and analysis results. 
The sensitivity computation requires only 10% of meshfree analysis computation 
per design variable due to the use of the same tangent operator as shown in Eqs. 
(33) and (91).  

The design optimization problem is formulated to minimize the structural 
mass, with the effective stress constraint, as 

 
minimize mass

subject to 800 MPaMAXσ ≤
. (92) 

The sequential quadratic programming method is used in a commercially 
available optimization program.39 Figure 6(b) shows the meshfree analysis results 
at optimum design where the stress constraints along the upper side of torque arm 
is active. No re-modeling is used during the design optimization procedure. 
Through optimization, the structural mass is reduced by 48%. A total of 41 
meshfree analyses and 20 sensitivity analyses are carried out during 20 
optimization iterations. When finite element analysis is used with a re-meshing 
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process,40 the optimization process converged at 45 iterations with eight re-
meshing processes. Thus, this approach reduces the cost of design optimization 
more than 50%, leaves along the cost related to the re-meshing process. 

Since the initial particle distribution is used throughout the optimization 
process, a very non uniform particle distribution is resulted in the optimum 
design. The analysis result from evenly distributed particles at the optimum 
design confirms that the solution accuracy is insensitive to the particle 
distribution. 

 

 

(a)           (b) 
Figure 6. Design parameterization and meshfree analysis results of a torque-arm: (a) Initial design 
and (b) optimum design. 

4.2 Road-Arm Model 

The advantage of meshfree analysis for structural optimization is more 
significant in the case of three-dimensional problem. Figure 7 shows a road arm 
model that is discretized with 1,455 meshfree particles. Eight shape design 
variables are defined to optimize the shape of the boundary. Since the geometries 
in the corner are so complicated, it is challenging to construct a regular-shaped 
finite element mesh. In addition to the complicated initial geometry, the 
structural shape further changes during design optimization process, which will 
cause a mesh distortion problem if a finite element method is used. 

As is illustrated in Figure 7, the stress concentration appears in the left corner 
of the road arm. If the highest stress level in the left corner is considered as a 
reference value, then the dimension of the right corner cross-section can be 
reduced, because this region has a large amount of safety margin. 
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The design optimization is carried out to minimize the structural weight of the 
road arm, while maintaining the maximum stress level. Design optimization 
problem converges after eight iterations. Figure 7 also compares the meshfree 
analysis result at the initial and optimum designs. The structural weight at the 
optimum design is reduced by 23% compared to the initial weight. Since the 
stress concentration appears at the left corner in the initial design, the 
optimization algorithm intends to reduce the cross-sectional area of the right 
corner so that both parts may have the same level of stress values. Because of the 
significant geometry changes at the right corner, the mesh distortion problem 
may occur if the finite element-based analysis method is employed. 

 
 

 

Figure 7. Meshfree discretization and analysis results of a road arm. 

5. Summary and Conclusions 

Design sensitivity analysis (DSA) and optimization based on meshfree method 
have been proposed. Unlike finite element and boundary element methods, in 
meshfree approach the shape function of the meshfree approximation depends on 
shape design parameterization, and this effect has been discussed in detail. DSA 
based on stabilized conforming nodal integration completely removes 
background mesh, and the integration of the shape DSA and optimization 
capability has been effectively carried out. It has also been shown that shape 
design optimization of structures undergoing large shape changes can be 
effectively carried out using meshfree methods without re-meshing. Fast 
convergence of the design optimization algorithm has been accomplished using 
the accurate sensitivity information. 

Initial design 

Optimum design
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