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A model is constructed. to analyze the stress and to determine the yield surface for cracked
layer which is perfectly bonded to the substrate. It is assumed that the layer and substrate are
isotropic.and crack surface is subjected 1o a constant pressure. Mixed boundary value problem

. is formulated by Fourier integral _transfqrm method, and governing equations are reduced to a
Fredholm 'imegral equation. From the numerical analysis, stress components including Mises
-stress are evaluated. Finally, using the Mises yield criterion, the yleld surfaoe is dcu:rmmcd for

various layer-substrate oombmauons
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1. Introduction

One of important reasons for using layered
materials is to improve the range of lead toler-
ance. These layered materials may have defects
and some load endurance degradations are
expected. It is, therefore, of great practical impor-
tance to develop a rational and preferably simple
method to evaluate the stress field for cracked
layered materials. Sneddon(Sneddon, 1946) stud-
ied the stress distribution in the neighbourhood of
a crack in an elastic solid. Later, Hilton and
Sih(Hilton and Sih, 1970, 1971) considered the
plane extension - of a crack parallel to the inter-
face. Recently, Kim and Oh(Kim et al., 1991 ; Oh
et al.; 1992) extended their models by introducing
additional layer. between cracked layer and half
space, and evaluated stress intensity factors under
uniaxial loading, in-plane and anti-plane loading,
respectively. However, the above mentioned
models concentrated only on dcl.emumng the
stress intensity factors.

In this analysis, H_llton and Sik’s model is
repeated to thoroughly evaluate stress compo-
‘nents in the layer and the substrate including
Mises stress:thereby analyzing the effect of layer
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thickness and shear modulus ratio between the
layer and the substrate.

:2. Equations and Derivations

. Consider a cracked. elastic layer sandwiched

between. two substrates.. The coordinate system
and the geometry are shown in Fig. 1. It is
assumed that the layer is petfectly bonded to the
sl_.l_hsirnte. Using the Fourier integral transforma-
tion method, mixed boundary value problem in
the plane theory of elasticity is fomulated as
follows(Sneddon,1951),

Oustr =7 f :W’-e"“dé )
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Fig. 1 Geometry and conﬁghration of the problem
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where,

Gi=[A(&)+&yBi(&)]cosh(&y)
+[Ci(&)+ &yD\(&)]sinh(&y) (6a)
Go=[A &)+ &yBs(&)]le™® (6b)
where, ; is the shear modulus, y; is the Poisson’
s ratio with subscript indices j=0 and | represent-
ing the substrate and layer, respectively. The
coefficents A,(&), Bi(&), Ci(&), Di(é). Ad$) and
Bo(£) are to be determined.
- 21 Boundary conditions
When a plane strain type constant pressure is
applied at the crack surface as studied by Hilton
and Sih(Hilton and Sih, 1971), considerations of
the upper half plane are necessary due to the
1 ztanhz
6 tanhz z+tanhz
1 2(1—y)+ ztanhz
—tanhz (1—2p)tanhz—2

[Ai(8)]

[F(a)]
Bi(&) R
G| | -1 | MG
D®)|~|aa | «a (14e)
Al8)| |adla)
| Bo(8)] [ bola)]
where,
I'=m/m, z=a(H/a),
R=e¢?*/coshz, £=a/a (144d)

The method of Copson(Copson, 1961) is utilized
as, s

M(&)= fcs(:)fo(end: (15)

where, Jo(£¢) is Bessel function of first kind of
order zero. Then, the following equation is der-
ived.
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geometrical symmetry. The boundary conditions
are as follows,

Own=—p y=0 —ag<x<a (7a)
vy=0 y=0 x>gorx<—a (7b)
Oom=0" y=0 —oco<x<o (8)
Oxy)=0Oxy0) Y=H —o0o<x<® [¢)]
O =0y ¥y=H —co<x<o (10)

U= U y=H —co<x<
vy=tg - Y=H —0<{x<®
22 Fredholm integral equation
By applying the boundary conditions to the
elasticity equations, following pair of dual inte-
gral equations are obtained. o

(1)
(12)

[ M@costrde=0  1xl>a (13a)
JLF@M@costrde=mm Ixl<a (13b)
Here, F(£) is defined as
F(a) tanhz— 2
d.(a) _ — ztanhz
a@|~ 9] —z—(1—2ytannz| 4D
bo() ztanhz—2(1—1,)
where,
-R 2R
R ~(1-2)R
“IR [21—w)—zI[R (14b)
—I'R —[(1-2w)+2zI[R

#s)+ [&(:)Ku, $)dt=1pus (16)

Using the following non-dimensional parameters,

t=ar s=ac x=aX y=ay (l7a)
#(s)=ra/o po®(a) (17b)

Equation (16) is reduced to a Fredholm integral
equation of a second kind.

0(0)+ j; '‘O(0)K(r, o)dr=4/5  (18a)

where,

K(z, 0)=J10 f " d F(@)—1)Jar)Jolac)da
(18b)

To solve the Fredholm integral equation, Simp-
son’s integration technique is utilized as
(Abramowitz and Stegun, 1970),
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- 0o+ B 0K (s o) W) =10

(n=1, N§) (18c)
where, ’
K(zw 0)=V7a0n 3 alFa)—1]
Jlarta)Jolaxas) W(aw)  (18d)
Here, : )

Tm» O : integration point

ow - collocation point

W(as), W(za) : Simpson’s weight factor
N=, N, : number of integration point

By introducing re=ou(m=1, Nr), Eq. (18a)

becomes .

ﬁlla’“"'x(fm fs)]@(l’n)=ﬁ (19)
(n=lv NP)

and finally @(r,) can be determined numerically.
2.3 Stress distributions

At once ()(r,) is numerically determined, the-

stress distributions for the layer and substrate can
be evaluated from Egs. (1)~(5) and Eqs (13)
~(15) as follows,

Ono (s F)=—10 [ar(a)ou(a. F)cosazda
Ooul %, if)=l}h'[.a‘f‘(a)0u(m ¥F)sinaxda
Oxxn( % ?)=§b[qﬂa)(?u(a. ¥)cosazda

(20)
Here,
T(a)= [ V7 0()Jar)dr @1)
Qu(a. 7)=[F(a)+ ayb(a))coshay

+[ci(a)+ aydi(a)]sinhay
Qula, 7)=[F(a)+ayb(a)+di(a)]sinhay
+[bi(a)+ c{@)+aydi(a)]coshay
Qila. 7)=[F(a)+ayb(a)+2d(a))coshay
: +[2b:(a) + cil @)+ aydi(a)]sinhay
Qula. 7)=[ada)+ ayb(a)le ™
Qula, 7)=[—ala)+(1—a7)bla)le ™
Qs(a, 7)=[ala)+ (a7 —2)b(a)]e " (22)
Numerical evaluation of the (20) can be made as
follows, )

(s y)=—mgm‘r(m)ou(a..' y)

- .‘/‘_2[{(0‘101 Oxn)*+(0an—

; ~ cosanW(aw)
O % y)—'!poEaaT(ds)in(mr ¥)
sinasZW(as)
N;
Ol T, 7) =B anT(an)Qula 7)
cosan X Wias) : (23)
Here, N, is the number of integration poini with
W(a,) being the Simpson’s weight factor.
24 Mises stress

Tl_le' Mises stresses for the plane strain case,
a'.;a;_ for layer and substrate' are as follows,

Ceqli) =

o3+ (03— 01»)?}
(24)
where,

1 o
an=7{Gew+ Omn)
1
+ \/;’m": +7{Gextn — Onin)’
1
Gas =.-2-( Oxxti) + Oyi)

- war+%{§um - o)
= vi{oun+ Gn)

25 Yield surface determination
Mises yield criterion for layer and substrate is
as follows,

Teq(1)= Ow1)r Oeg(0)= Ox(0) (25)
where, g, and dyo are yield strengthes for layer
and substrate, respectively.

.Then, the yield surfaces for layer and substrate
can be determined for given crack face pressure, po.

3. Numerical Results

Numerical analysis is performed for various
layer-substrate combinations. The shear modulus
ratio (I"= u/ ), crack length vs. layer thickness
ratio(a/H), and Poisson’s ratio(y,) are parameters
for the analysis. First, the normal and shear
stresses for the case of homogeneous material are
calculated at several locations and showed good
agreement with the results of Sneddon(Sneddon,
1946) as in Table. 1.
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Table 1 Stress components comparison between sneddon(Sneddon, 1946) and,cuprent results for homogeneous

case :
x=11 x=1.0 x=11 x=15 x=1.0 x=15_
| y=00 y=0.1 y=0.1 y=00 | y=05 y=15
Gt Sneddon 1.4004 1.4299 l..’t.043 .'034l6 - 0.1882 ~0.0491
. P | Cumenmt | 14005 | 14299 1.5045 0.3416 0.1883 0.0491
Sneddon | 1.4004 | 400257 0.3338 03416 | -0.1996 | -0.0848
Po Current 14005 | -0.0256 0.3338 03417 | -0.199 -0.0848
" Sneddon 0.0 -0.8460 01948 .| 00 | . -04367 | -0.1360
Oxy(yy - . _
Po Current 0.0 -0.8459 0.1949 | ‘00 -0.4367 | -0.1360
. Sneddon 0.5602 _ fl_.9_532 11299 0.1367 0.8275 0.2626
Po Current 0.5602 1 .9536 1.1301 0.1367 0.8276 0.2626
Figure 2 is the normal stresses in y direction at .
the mid-plane for various shear modulus ratios "
and crack length vs. layer thickness ratios. The o
stress is most concentrated near crack tip for thin g
stiff layer case (a/H=4.0, I'=4.). Figure 3 is the .:_
normal and shear interfacial stresses between the e
layer and the substrate. It is noted that normal “
stress in x direction is discontinuous at the layer- “1

substrate interface due to the material mis-match.
The maximum m:s-mal;:h occurred above the
crack location for thin stiff layer case(a/H= 40
I'=4.0).

Figure 4 is the normal stress contours and Fig,
5 is the shear stress contours for various layer-
substrate combinations. The maximum contour
level is 1.3 p, with each contour interval being 0.1
. When the layer is thin(a/H=4.0), the- stréss

distributions are influenced by the shear modulus.

ratios ; For stiff layer case(J"=4.0), the resultant
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Fig. 2 Normal sress distributions at mid-plane for
various I" and a/H
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Fig. 3 Interfacial stress distribution for various |

and a/H
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Fig. 4 Normal stress contours for various I" and a/H (g,,¢»/Pe)

stresses in the layer are higher than those of soft
layer case(]"=0.25) while the substrate stress is
slightly lower than that of soft layer case(]"=
0.25). When the layer is relatively thick(a/H=1.0),
however, the stress distributions are nearly in-
fluenced by the shear modulus ratios because in
that case the inhomogeneity between the layer and
the substrate is remotely* localized and therefore
does not influence the stress fields as stated in the
Saint-Venant’s pnnclple C e
Smhrmultsueobtainedon!heMnmstress
contour as shewn.in Fig. 6. It is also noted that

the Mises stress is discontinuous at the layer-
substrate interface due to the material mis-match.
Figure 7 is the yield surface deterimined from the
Mises yield criterion for various crack surface
pressure fy. Two cases of layer-substrate combina-
tions are considered ; The tungsten layer bonded
to steel substrate and copper layer bonded to steel
substrate represent the case of hard layer and the
case of soft layer, respectively with the- material
properties as in Table. 2. When the crack surface
pressurg is 300MPa, the hard layer case resulted
in smaller yield region confined in the layer
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Table. 2 Material properties for hard layer case
(tungsten layer bonded to steel substrate)
and soft layer case(copper layer bonded to

steel substrate)
Shear modulus | Yield strength
() )]
Steel 80 GPa 300 MPa
Tungsten 160 GPa 1,000 MPa
Copper 45 GPa 70 MPa

whereas the soft layer case resulted in larger yield
region extended to the layer-substrate interface.

4. Conclusions

The stress distributions and yield surface for
cracked layer perfectly bonded to the substrate are
analyzed. By following the theory of linear elastic-
ity, a Fredholm integral equation is derived in
matrix form which may enable the future analysis
for multiple layer case, and solved numerically.
The stress components as well as the Mises stres-
ses are evaluated for various layer-substrate com-
binations. When the layer is thin, the stress distri-
butions are clearly influenced by the shear
modulus ratios between the layer and the sub-
strate. Finally, using the Mises yield criterion, the
yield region is determined for hard layer case and
soft layer case. The hard layer case resulted in
smaller yield region confined in the layer whereas
the soft layer case resulted in larger yield region
extended to the layer-substrate interface.
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