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Abstract

Computer-aided engineering (CAE) is now an essential instrument that aids in engineering decision-making. Statistical model
calibration and validation has recently drawn great attention in the engineering community for its applications in practical CAE
models. The objective of this paper is to review the state-of-the-art and trends in statistical model calibration and validation, based
on the available extensive literature, from the perspective of uncertainty structures. After a brief discussion about uncertainties,
this paper examines three problem categories—the forward problem, the inverse problem, and the validation problem—in the
context of techniques and applications for statistical model calibration and validation.

Keywords Forward problem - Inverse problem - Validation problem - Uncertainty quantification - Statistical model calibration -

Validity check

1 Introduction

With the growth of computing power, computer-aided engi-
neering (CAE) has become an essential instrument for engi-
neering decision-making in various fields of study (e.g., air-
crafts, vehicles, electronics, buildings, among others) (Benek
et al. 1998; Zhan et al. 2011b; Shi et al. 2012; Fender et al.
2014; Lee and Gard 2014; Silva and Ghisi 2014; Zhu et al.
2016; Jung et al. 2016). However, the credibility of the use of
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CAE models in real-world applications is a growing concern.
To this end, there is an increasing interest in improving and
certifying the credibility of computational models (Babuska
and Oden 2004; Hills et al. 2008; Oberkampf and Trucano
2008; Kwasniewski 2009; Roy and Oberkampf 2010;
Sargent 2013; Oden et al. 2013; Mousaviraad et al. 2013;
Borg et al. 2014; Sankararaman and Mahadevan 2015). For
example, the presence of unknown input variables causes
credibility concerns in computational model predictions.
However, model calibration can improve the credibility of a
computational model by estimating the unknown input vari-
ables (Kennedy and O’Hagan 2001; Campbell 2006; Higdon
et al. 2008; Youn et al. 2011; Zhan et al. 2011b; Arendt et al.
2012b) if sufficient identifiability exists for the unknown input
variables (Anderson and Bates 2001). To check the credibility
of a computational model, model validation determines the
degree to which a model is an accurate representation of the
real phenomenon, from the perspective of the model’s
intended uses (Babuska and Oden 2004; Hills et al. 2008;
Oberkampf and Trucano 2008; American Society of
Mechanical Engineers 2009). Model validation can be exe-
cuted at the completion of model calibration to check
the predictive robustness of the calibrated model. It
should be noted that model validation not only assesses
the accuracy of a computational model but also helps
the process of improving the model based on the vali-
dation results.
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For improving and certifying the credibility of computation-
al models, deterministic approaches have been traditionally
adopted, except in the fields of intensive research in statistical
model calibration and validation. It may have come from igno-
rance that does not know the importance of considering various
uncertainties or what to do for improving and certifying the
credibility of computational models. Although deterministic
approaches may be convenient for reducing the disagreement
between experimental and computational responses, determin-
istic approaches not only may incorrectly validate a computa-
tional model, but they also may significantly degrade the pre-
dictive capability of the computational model (Mousaviraad
et al. 2013; Ling and Mahadevan 2013). For this reason, statis-
tical approaches have received significant attention. However,
conducting model calibration and validation in a statistical
sense is not easy, due to several challenges. Among others,
challenges include (1) how to efficiently and accurately conduct
uncertainty quantification, (2) how to reduce the degree of un-
certainty in the epistemic variables, and (3) how to statistically
check the validity of a model. Statistical approaches are bene-
ficial because they attempt to enhance the model’s predictive
capability by thoroughly addressing uncertainty issues that arise
in the experiments and computational models (Oberkampf et al.
2004a; Babuska and Oden 2004; Helton et al. 2004;
Oberkampf and Barone 2006; Zhu et al. 2016).
Understanding the nature of uncertainties is thus of crucial im-
portance for statistical model calibration and validation.

In general, sources of uncertainties can be defined in three
categories: (1) physical, (2) modeling, and (3) statistical (Hills
2006; Urbina et al. 2011; Sankararaman et al. 2011; Zhang
et al. 2013; Jung et al. 2014; Zhu et al. 2016). Physical uncer-
tainty arises from the inherent variability in physical quanti-
ties. Modeling uncertainty comes from inadequate or errone-
ous physics models and their numerical implementation and
solution. Statistical uncertainty arises from a lack of data as-
sociated with uncertainties. In principle, the existence of these
uncertainties in engineering systems can be either recognized
(accounted for), unrecognized (unaccounted for), or a combi-
nation of both. (The terminology “recognized/unrecognized”
uncertainty refers to whether the existence of uncertainties is
recognized by an engineer, and the terminology “accounted
for/unaccounted for” uncertainty refers to whether the uncer-
tainty is addressed by an engineering activity.) Numerous
studies have attempted to effectively incorporate various as-
pects of uncertainty in statistical model calibration and vali-
dation (Oberkampf et al. 2002; Chen et al. 2004; Helton and
Davis 2003; Ferson et al. 2004; Bayarri et al. 2007). To ad-
dress the entire spectrum of statistical model calibration and
validation problems, this paper presents a preliminary over-
view of the uncertainty structure. From the perspective of the
uncertainty structure, the paper examines three problems in
statistical model calibration and validation, specifically, the
(1) forward, (2) inverse, and (3) validation problems.
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Several review papers related to statistical model calibration
and validation can be found in the literature. Kutluay and Winner
(2014) presented a literature survey on philosophical model val-
idation concepts and different model validation techniques used
in vehicle dynamics simulation models. Earlier, Oberkampf et al.
(2004b) presented a state-of-the-art conceptual framework for
verification and validation, including code verification, software
quality assurance, numerical error estimation, hierarchical
experiments for validation, and validation metrics. Later,
Trucano et al. (2006) clarified the terminology used in calibra-
tion, validation, and sensitivity analysis. Significant new findings
in statistical model calibration and validation have been reported
since these three prior review papers appeared in the literature.
Also, there are a number of new contributions to the literature
that have been developed from other societies, such as reliability
assessment and reliability-based design optimization, that are
worth reviewing in the context of statistical model calibration
and validation. Therefore, this paper summarizes the previous
literature related to achieving successful statistical model calibra-
tion and validation in conjunction with uncertainties. For a sys-
tematic review, this paper presents an uncertainty structure for
formulating three problems in statistical model calibration and
validation. The review includes not only the literature directly
related to statistical model calibration and validation but also
other related papers deemed necessary for statistical model cali-
bration and validation.

The remainder of the paper is organized as follows.
Section 2 gives an overview of uncertainty structure and the
framework for statistical model calibration and validation.
Section 3 presents the forward problem in the presence of rec-
ognized (accounted for) uncertainty. It consists of the uncertain-
ty characterization and the uncertainty propagation process.
The inverse problem, in the presence of recognized (accounted
for) epistemic uncertainty, is described in Section 4. This review
also revisits relevant papers related to model calibration.
Section 5 summarizes the validation problem in the presence
of unrecognized (unaccounted for) uncertainty and discusses
validation metrics for evaluation of model validity. The review
paper concludes with suggestions for future work in Section 6.

2 Overview of uncertainty and statistical
model calibration and validation

The objective of Section 2 is to provide an overview of
uncertainty structure and statistical model calibration and
validation. Section 2.1 describes system responses from ob-
servation and prediction in a probabilistic sense. The struc-
ture of uncertainty is detailed in Section 2.2 from the model
calibration and validation point of view. Conceptual defini-
tions and details of three problems—forward, inverse, and
validation problem, are presented in Section 2.3, in con-
junction with the uncertainty structure.
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2.1 Overview of a probabilistic description of system
responses

The uncertain nature of randomly varying experimental ob-
servation (Y,ps) is caused by various sources of physical
uncertainties (X), including material properties,
manufacturing tolerances, applied loadings, and boundary
conditions, among other factors (Oberkampf et al. 2004a;
Buranathiti et al. 2006; Xie et al. 2007; Jung et al. 2011,
Jung et al. 2016). In addition to physical uncertainty, errors
in measurement (¢) also cause variability in experimental
observation (Hills 2006; Harmel et al. 2010; da Silva Hack
and Schwengber ten Caten 2012; Ling and Mahadevan
2013; Uusitalo et al. 2015). Measurement errors can be di-
vided into two components: random errors and systematic
errors (Ferson and Ginzburg 1996; Liang and Mahadevan
2011; Kim et al. 2018). Random errors are errors in mea-
surement that lead to the measured values being inconsis-
tent when repeated. Often, random errors are neither pre-
dictable nor correctable. Systematic errors cause measured
values to vary from a true value in a consistent/highly cor-
related manner from test to test; these errors can often be
identified and corrected. An observed response can be
expressed in a probabilistic form as

Yous (X, 6) = Y(X) +¢ (1)

where Y, represents all observed system responses from
experiments, Y without any subscript represents the true
system responses, X represents system variables subject to
uncertainty, and € represents a measurement error, which
can have both random and systematic components.

It is assumed that simulation is inherently deterministic;
when a single set of deterministic inputs is given, a determin-
istic response is obtained. To compute uncertainty in predicted
responses (Ypr), the uncertainty quantification has been de-
veloped by incorporating the physical uncertainties (X) into a
computational model (Bae et al. 2003; Pettit 2004; Eldred
et al. 2011; Roy and Oberkampf 2011; Mousaviraad et al.
2013). Nonetheless, computational models suffer from the
effect of model form uncertainty (e), which embodies the er-
rors from improper assumptions and discretization related nu-
merical solution convergence errors (Sankararaman and
Mahadevan 2011b; Roy and Oberkampf 2011; Thacker and
Paez 2014) (Voyles and Roy 2015). Generally, depending on
the level of expertise of the model developers, model form
uncertainty is unrecognized or imprecisely recognized (unac-
counted for). Using the model form uncertainty, a predicted
response model can be presented in a probabilistic form as

Yo (X, e) =Y(X) +e (2)

where e represents the model form error and Y, represents all
predicted system responses from simulations.

When characterizing physical and modeling uncertainties,
statistical uncertainty arises when related data are insufficient.
A certain level of data sufficiency can effectively eliminate any
epistemic uncertainty associated with the characterization of the
aleatory uncertainty (Oberkampf et al. 2004a; Choi et al.
2010a; Eldred et al. 2011; Urbina et al. 2011; Sankararaman
and Mahadevan 2013). Given the sources of uncertainty (i.e.,
physical, modeling, and statistical) in a computational model,
uncertainty structures must be well understood to properly for-
mulate statistical model calibration and validation problems.
Thus, the following section discusses the structure of uncertain-
ty for statistical model calibration and validation.

2.2 Uncertainty structure for statistical model
calibration and validation

A proper understanding of uncertainty structure is of paramount
importance for statistical model calibration and validation.
Uncertainties can be classified into recognized and unrecognized
uncertainty (Ferson et al. 2004; Oberkampf et al. 2004b; Oliver
et al. 2015; Oh et al. 2016), depending on whether the source of
uncertainty is recognized or not. Recognized uncertainty, also
known as acknowledged uncertainty, comes from conscious in-
vestigations by model analysts. Recognized uncertainty is also
known as acknowledged uncertainty; it is uncertainty for which a
conscious decision has been made to either characterize or deal
with it in some way. For instance, when determining the com-
plexity of the physics used to emulate phenomena, modelers
often ignore some phenomena and choose a simpler option.
Modelers often have good reasons to ignore some phenomena.
Unrecognized uncertainty originates from not having the knowl-
edge needed to accurately construct a computational model. In
this case, modelers could inadvertently make wrong assumptions
in constructing the model. For example, the computational model
of a rubber bushing component should be developed with a
hyper-elasticity model; however, it could be mistakenly devel-
oped using a linear elastic model, leading to unrecognized uncer-
tainty. The predictive capability of the model can be degraded if
unrecognized uncertainty is not properly addressed. (The termi-
nology “accounted for/unaccounted for” uncertainty refers to the
uncertainties that are recognized but are ignored and not ad-
dressed by a proper engineering activity.)

Recognized (accounted for) uncertainties are further classi-
fied into aleatory and epistemic uncertainties, depending on
whether the uncertainty can be reduced through additional data
or information (Parry 1996; Winkler 1996; Youn and Wang
2008; Urbina et al. 2011; Sankararaman and Mahadevan
2011b; Sankararaman and Mahadevan 2011a; Thacker and
Paez 2014; Sankararaman et al. 2013; Shah et al. 2015; Liang
et al. 2015). Aleatory uncertainty, also referred to as irreducible
uncertainty or type A uncertainty, is used to describe the inher-
ent variability associated with a physical system (e.g., material
properties) or environment (e.g., operating conditions,
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manufacturing tolerances) under consideration. On the other
hand, epistemic uncertainty, also referred to as reducible uncer-
tainty or type-B uncertainty, is the uncertainty that arises from a
lack of knowledge. For example, epistemic uncertainty that
obscures the true random or aleatory type A uncertainty can
arise when a model input that has considerable degree of un-
certainty has a small sample size.

Studies on aleatory uncertainty have focused on how to effec-
tively quantify uncertainty in the form of statistical distributions.
Efforts to represent epistemic uncertainty have been developed in
two different branches. The first branch starts from the notion that
the variable has a true value, but because of the lack of informa-
tion, the true value is unknown. Since the true value is determin-
istic in nature, the variable cannot be represented in a statistical
distribution. Interval analysis and fuzzy set theory (Moore and
Lodwick 2003; Bae et al. 2004; Helton and Oberkampf 2004;
Bae et al. 2006; Jiang and Mahadevan 2008; Park et al. 2010;
Hanss and Turrin 2010; Liang et al. 2015) belong to this branch.
The second branch starts with the idea that the probability distri-
bution in epistemic uncertainty does not represent randomness of a
variable, but instead, it represents the shape of knowledge regard-
ing the variable. For example, a uniform distribution can be used if
there is no knowledge of the true value. In this approach, well-
developed probability theories can easily be adopted to represent
the epistemic uncertainty. The Bayesian method (Kennedy and
O’Hagan 2001; Jiang and Mahadevan 2007; Babuska et al.
2008; Higdon et al. 2008; Jiang and Mahadevan 2009a; Zhan
etal. 2011c; Park and Grandhi 2014) is one of the leading methods
of this approach. Both approaches have pros and cons, and this
paper considers both approaches as they relate to statistical model
calibration and validation.

Epistemic uncertainty is challenging to address by any
method. In this paper, system variables (X) of a computational
model subject to aleatory and epistemic uncertainties are de-
noted as X, and X, respectively.

2.3 Key problems in statistical model calibration
and validation

Based on an understanding of uncertainty structures, statistical
model calibration and validation can be formulated in three
problem categories: (1) the forward problem in the presence of
recognized (accounted for) uncertainty (described in Section
2.3.1), (2) the inverse problem in the presence of recognized
(accounted for) epistemic uncertainty (see Section 2.3.2), and
(3) the validation problem in the presence of unrecognized
(unaccounted for) epistemic uncertainty (Section 2.3.3).

2.3.1 Forward problem in the presence of recognized
uncertainty

System responses are random due to various sources of uncer-
tainty. However, system responses from computational
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prediction are inherently deterministic. Uncertainty propaga-
tion is thus incorporated into a computational model for un-
certainty description of system responses (Helton and Davis
2003; Bae et al. 2003; Pettit 2004; Najm 2009; Eldred et al.
2011; Roy and Oberkampf 2011; Mousaviraad et al. 2013).
When all uncertainties of the inputs of a computational model
are well recognized, uncertainty propagation can be conduct-
ed to estimate the uncertainty of system responses.
Uncertainty propagation is defined as a forward problem and
is described in the following equation:

Y(X) = Y(X) = Ype(Xa) (3)

where the caret symbol in Y(X) represents that the predicted
system responses may vary from the true system response (Y)
in situations where not all variables are accurately character-
ized with probability distributions and where there exist po-
tential sources of model form errors (e).

Recognized (accounted for) uncertainty should be identified
and quantitatively modeled with care, based on the idea of the
uncertainty structure discussed in Section 2.2. Probability
distribution is a useful way to describe the inherent variability
of aleatory uncertainty. When available data are limited, char-
acterizing corresponding uncertainty sources through probabil-
ity distribution may introduce statistical uncertainty (Moon
et al. 2017, 2018). If not ignorable, these sources of statistical
uncertainty are thus treated as recognized (accounted for) epi-
stemic uncertainty. A critical review of the forward problem for
statistical model calibration and validation is presented in
Section 3.

2.3.2 Inverse problem in the presence of recognized epistemic
uncertainty

Among recognized (accounted for) uncertainties, often, some
are found to be epistemic (X,) in a computational model be-
cause of insufficient information. In situations when epistemic
uncertainty is believed to considerably affect the prediction of
system responses, uncertainty reduction in epistemic variables
is a prerequisite for building a valid computational model.
One basic way to achieve uncertainty reduction in epistemic
variables is to acquire additional data from experiments. This
approach is the most reliable, but it is time consuming and
expensive. Another way is the bias correction approach,
which defines the inherent difference between experimental
observations and computational predictions by a degree of
bias (Jiang et al. 2013b; Xi et al. 2013).

A better option is to formulate an inverse problem to iden-
tify the epistemic uncertainties. (5), which is the inverse of (4),
represents the inverse problem.

Ypre (Xea Xa) = Yobs (4)
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X Xe| = Y (Yo (5)

Formulating the mathematical expression of the inverse
problem is based on two assumptions. First, experiments are
presumed to be conducted with care, thereby the measurement
error ¢ is negligible. Second, Y,,s can be considered as a
reference, and then the predicted system response (Y,,.) with
calibrated epistemic variables (Xe) should be equivalent to
the observed system response (Y,ps). Further review and dis-
cussion of the inverse problem are found in Section 4.

2.3.3 Validation problem in the presence of unrecognized
uncertainty

If the inverse problem can successfully reduce the uncertainty of
recognized (accounted for) epistemic variables in a computation-
al model, it is not necessarily valid for its intended use unless the
intended use is at the calibration scenario conditions. Calibration
can hide the existence of model-form error if no disagreement
exists with the calibration data at the calibration point, so it is not
unusual for the model validity check to fail. This usually happens
when unrecognized (unaccounted for) uncertainty still exists in
the model and the effect of the uncertainty is not ignorable.
Examples include misconceptions related to model idealization
and assumptions, unrecognized mistakes in mathematical model-
ing, and ignorance of key physical uncertainties (see (2))
(Trucano et al. 2006; Farajpour and Atamturktur 2012;
Atamturktur et al. 2014). The existence of unrecognized (unac-
counted for) uncertainty can lead to imprecise or biased predic-
tion of system responses from a computational model. As a
consequence of the error due to unrecognized (unaccounted
for) uncertainty, the inverse problem in (5) wrongfully calibrates
the epistemic variables (Xe) , and thus, the prediction capability
of the model deteriorates at untested points. To eliminate the
effect of unrecognized (unaccounted for) uncertainty, it must be
carefully identified and addressed by refining the computational
model. Existence of unrecognized (unaccounted for) uncertainty
can be revealed through a validation problem.

The validation problem consists of two processes. First, the
system response data set, Yy, predicted from computer sim-
ulations, is statistically compared to the one from the physical
experiments, Y,,s. The comparison is deemed statistically sig-
nificant if the relationship between the two data sets would be
an unlikely realization of the null hypothesis (Hy) according to
a threshold probability—the significance level. Second, a de-
cision is made whether or not the prediction of the computa-
tional model is acceptable based on the evaluation of a vali-
dation metric, which is used as a hypothesis test statistic in the
validation problem. The validation metric quantitatively eval-
uates the statistical difference between the prediction (Yp.)
from computer simulations and the observations (Yyps) from
physical experiments. The hypothesis test is widely used as a

decision-making tool for validation problems (Chen et al.
2004; Kokkolaras et al. 2013; Jung et al. 2014).

When the null hypothesis is rejected, sources of unrecog-
nized (unaccounted for) uncertainty still exist and are statisti-
cally significant. Potential sources of unrecognized (unac-
counted for) uncertainties include model form uncertainty
(e), errors in measurement (¢), and erroneous results (Xe) n
the inverse problem. If the null hypothesis is accepted, the
computational model is acceptable for its intended use.
Section 5 addresses the validation problem.

3 Review of the forward problem

Section 3.1 begins with a discussion of contemporary issues
related to the forward problem in conjunction with recognized
(accounted for) uncertainty. After that, Sections. 3.2, 3.3, and
3.4 review issues of uncertainty characterization, variable
screening, and uncertainty propagation, respectively. (Note
that this paper considers the forward problem as a
propagation of scalar data, though the propagation of
random function and field data are an important issue. The
brief discussion of random function and field data are
included in Section 6.)

3.1 Contemporary issues of the forward problem

The first step of the forward problem is to identify and char-
acterize all sources of input uncertainties, which can affect the
prediction results. In statistical model calibration and valida-
tion, the input uncertainties are represented using different
types of probability density functions (PDFs). The forward
problem can be solved after confirming that the PDFs are
sufficient to represent the uncertainties in the populated data.
The most frequently addressed issues in uncertainty character-
ization are (1) how to decide the appropriate types of PDFs to
represent the uncertainty of an input, (2) how to handle uncer-
tainty with a limited or nonexistent data to build a PDF for an
input, and (3) how to deal with statistical dependency among
input uncertainties. The details related to the identification and
characterization of uncertainty are covered in Section 3.2.
The second step of the forward problem is a process called
variable screening. Variable screening determines which in-
puts exhibit the most effect on the system responses. Model
calibration and validation with a large number of inputs can be
conducted more efficiently by focusing on a small number of
important inputs. The crucial issue to be considered is that
selecting important inputs should be based on uncertainty
analysis. Variance-based methods are recommended among
various techniques. Several points should be addressed to im-
plement variance-based methods, including (1) how to rank
the effectiveness of inputs on system response and (2) how to
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make good use of uncertainty characterization and propaga-
tion techniques. The details related to variable screening are
covered in Section 3.3.

The last step of the forward problem is uncertainty propa-
gation, which examines how to effectively understand the
effect of input uncertainties on the uncertainty in the system
responses. Extensive studies have been conducted and differ-
ent methods for uncertainty propagation have been discov-
ered. Each category exhibited different computational perfor-
mances (i.e., efficiency, accuracy, and convergence) depend-
ing on the nature of the computational model. One of the
major issues is selecting the most suitable method for uncer-
tainty propagation, which requires a study of the tradeoffs
between accuracy and computational expense. Other issues
in uncertainty propagation include (1) how to effectively ful-
fill uncertainty quantification, (2) how to account for statistical
correlation among input uncertainties, (3) what statistical
models are suitable for characterizing system responses, and
(4) how to manage uncertainty in highly nonlinear system
responses (e.g., multimodal probability density functions).

3.2 Uncertainty characterization
3.2.1 Methods of uncertainty characterization

The most effective way to quantify the uncertainties in an
engineered system is to represent the uncertainty in the form
of a probability density function (PDF). It is common for a
PDF to be parameterized or characterized by statistical param-
eters, for example, the mean and the variance of a normal
distribution (parametric methods). Various types of probabili-
ty density functions (PDFs) can be applied to express uncer-
tainty. In practice, however, some distributions (e.g., multi-
modal, mixed distribution) do not follow a parameterized
PDF. Unlike parametric methods, nonparametric methods
make no assumptions about the PDFs of the inputs. Since
nonparametric methods are not involved in population param-
eters, these can be advantageous when characterizing various
shapes of a PDF.

Parametric methods consist of (1) selecting a proper type of
PDF to describe the uncertainty in inputs and (2) estimating
values for statistical parameters of the selected PDF. First, to
decide an appropriate type of PDF, graphical methods and
goodness-of-fit (GOF) tests can be used. Graphical methods,
such as probability plots, provide strong indications of a prop-
er probability distribution function for the input data. GOF
tests verify an assumed PDF by measuring the discrepancy
and hypothesis testing (Yates 1934; Smirnov 1948; Massey
1951; Anderson and Darling 1952; Anderson and Darling
1954; Stephens 1974; Plackett 1983). Measures of GOF tests
provide the discrepancy between the given data and the values
expected under the assumed PDF. Statistical hypothesis tests,
such as the chi-squared test, the Anderson—Darling test, and
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the Kolmogorov—Smirnov test, use such measures to test
whether the data follow the assumed PDF. After an appropri-
ate PDF is determined, statistical parameters can be estimated
by several methods, including the method of moments, max-
imum likelihood estimation (MLE), least square methods,
Bayesian estimation, and others (Charnes et al. 1976; Scholz
1985; Newey and West 1987; Myung 2003). As long as a
parametric PDF for an input can be clearly specified, paramet-
ric methods are without doubt powerful tools for characteriz-
ing uncertainties.

One important challenge in characterizing uncertainty is
that data with nonstandard distributions often appear in un-
usual shapes, such as a multimodal or mixed shape
(Epanechnikov 1969; Adamowski 1985; Bianchi 1997).
Extensive studies have been conducted to describe various
kinds of PDFs in parametric ways. However, it would be
impractical to test all types of PDFs. An alternative way is
needed to build a robust framework, regardless of a specific
type of PDF. A histogram is the simplest nonparametric esti-
mate of a PDF. An important challenge to using a histogram is
its low robustness; different bin sizes can reveal different fea-
tures of the data. Kernel density estimation (KDE) is widely
used to estimate PDF inputs in a nonparametric way
(Adamowski 1985; Cao et al. 1994; Pradlwarter and
Schuéller 2008; Zambom and Dias 2012). The KDE method
uses kernel functions, also called kernel widths (e.g., uniform,
triangle, quadratic, tricube, Gaussian, quadratic) to estimate a
PDF of inputs (Park and Turlach 1992). In order to estimate
PDF by KDE, first, a kernel function is constructed for each
sample. Second, those constructed kernel functions are added
up and divided by the number of samples. Compared to the
discrete histogram method, KDE gets a smooth PDF by
substituting each sample into a kernel function. In this way,
the smoothness and continuity of the estimated PDF are de-
termined based on suitable usage of the kernel functions. As
fewer assumptions (e.g., types of PDF) are made, nonparamet-
ric methods have become more widely applicable and more
robust than parametric methods. However, in nonparametric
methods, a larger number of data are required to achieve the
same degree of confidence for estimating a PDF of an input.

3.2.2 Uncertainty characterization under epistemic
uncertainty

To accomplish statistical model calibration and validation,
uncertainty characterization is used for two purposes
(Oberkampf et al. 2004b; Helton et al. 2010; Roy and
Oberkampf 2011). First, the physical uncertainties are
modeled as a PDF to be incorporated as an input in a compu-
tational model. Second, the degrees of uncertainty in the sys-
tem responses, from both observation and prediction, are
modeled as a PDF to be statistically compared. For either
purpose, characterizing the aleatory uncertainty in the inputs
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and the system response is no longer a crucial problem due to
the previously introduced methods, provided there is suffi-
cient data. In real-world applications, however, the dearth of
data for physical uncertainties and system response is often a
concern, resulting in epistemic uncertainty or sampling uncer-
tainty. In the presence of epistemic uncertainty, a special pro-
cess should be undertaken.

For this process, engineers are requested to identify all
uncertainty sources, whether aleatory or epistemic. Although
there have been many studies on statistical model calibration
and validation, there is at present still no perfect way to split
uncertainty sources into aleatory or epistemic. Some studies
define inputs without experimental data as epistemic; some
studies define inputs with limited experimental data as episte-
mic (Hoffman and Hammonds 1994; Helton and Burmaster
1996; Winkler 1996; Helton 1997; Oberkampf et al. 2004a;
Moon et al. 2017, 2018). Splitting uncertainty sources into
aleatory or epistemic remains a controversial topic (Mullins
et al. 2016). At present, an efficient way is still needed to
classify uncertainty sources into aleatory and epistemic.

Once an uncertainty source is identified as epistemic, sev-
eral approaches are available. The need to characterize uncer-
tainties even with scarce data has led to several studies (Helton
et al. 2004). Using an empirical probability box (p-box) is one
possible way, although it can result in large under-estimation
or over-estimation (Wu et al. 1990; Helton et al. 2010;
Sankararaman and Mahadevan 2011a). An interval is recog-
nized as a simple way to represent epistemic uncertainty; how-
ever, it is impossible to be specified with a PDF
(Sankararaman and Mahadevan 2011a; Eldred et al. 2011;
Urbina et al. 2011). Due to their ease and applicability when
only a small amount of data is available, interval-based ap-
proaches have garnered attention in many studies (Pradlwarter
and Schuéller 2008; Voyles and Roy 2015; Zhu et al. 2016).
The evidence theory (Bae et al. 2004; Swiler et al. 2009;
Eldred et al. 2011; Salehghaffari and Rais-Rohani 2013;
Shah et al. 2015), also referred to as the Dempster-Shafer
theory, can be used for interval analysis by aggregating infor-
mation (e.g., interval data) obtained from different sources and
arriving at a degree of belief (i.e., confidence in an interval
(Pan et al. 2016)). Similarly, the fuzzy set theory (Moore and
Lodwick 2003; Hanss and Turrin 2010; Lima Azevedo et al.
2015) can be used to estimate the interval by combining evi-
dence of different credibility. However, the primary defect of
the interval approach is that interval-characterized uncer-
tainties for inputs in computational models need interval ar-
ithmetic for statistical model calibration and validation. For
instance, the interval-characterized result of uncertainty prop-
agation is produced by the interval-characterized uncer-
tainties. Accordingly, the variations in system response from
observation and prediction should be compared by interval.
Model calibration and validation based on interval, however,
has poor credibility when compared to methods based on

expensive PDFs, as the latter methods compare the entire
shape of the variation in the system responses (Rebba et al.
2005; Ferson et al. 2008).

In conclusion, representing epistemic uncertainty is still
challenging. With existing techniques, constructing an accept-
able PDF with scarce data is inherently difficult, unless addi-
tional experiments produce more data. In this study, we adopt
the statistical model calibration and validation framework
(Govers and Link 2010; Youn et al. 2011; Fang et al. 2012;
Jung et al. 2014; Bao and Wang 2015). Here, PDFs of inputs
that cause epistemic uncertainties are assumed in the forward
problem and those epistemic uncertainties are reduced by cal-
ibrating the assumed PDFs in the inverse problem. Since next
steps of the forward problem can occur after confirming that
all PDFs of inputs are acceptable, a PDF for an input causing
epistemic uncertainty can be assumed by previously intro-
duced methods, using limited data, knowledge of experts, lit-
erature reports, or a mix of these.

3.2.3 Uncertainty characterization with statistical correlation
between inputs

Ignoring statistical correlation among inputs of a model may
cause unreliable prediction (Li et al. 2014). A variety of sta-
tistical methods are available for identifying statistical corre-
lation, such as correlation coefficient (Pearson product mo-
ment correlation), Kendall’s tau, and Spearman’s rho rank
correlation. If it turns out to be contributing to the system
response, statistical correlation among inputs can be addressed
by techniques described in the literature (Jung et al. 2011;
Mara and Tarantola 2012; Wei et al. 2015).

A multivariate probability distribution is able to incorporate
marginal probability distributions of inputs and statistical cor-
relation between inputs. A copula is a popular way to build a
multivariate probability distribution that describes the correla-
tion between inputs (Panchenko 2005; McNeil and Neslehova
2009). According to Sklar’s Theorem (Carley and Taylor 2002;
Riischendorf 2009), any multivariate probability distribution
can be written in terms of univariate marginal PDF and a copula
function. Two representative families of copulas are (1)
Gaussian copulas and (2) Archimedean copulas. A Gaussian
copula, also called a Nataf model, is constructed from a multi-
variate normal distribution and is capable of describing a wider
range of correlation coefficients. However, it exhibits undesir-
able behavior if inputs are highly nonnormal, for example, if
marginal PDFs of inputs do not follow a normal PDF.
Archimedean copulas are capable of describing multivariate
probability distributions; this is not possible with a Gaussian
copula. The principal issue in constructing a multivariate distri-
bution model with an Archimedean copula is that only a small
range of correlation coefficients can be described. For example,
the Morgenstern model, which belongs to the Archimedean
family, is only applicable to inputs with low correlation within
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arange from — 0.3 to 0.3. To exhibit various nonnormal multi-
variate distributions, as well as a wider range of correlation
coefficients, various copula functions, including Clayton,
Frank, and Gumbel, have been developed (Genest and Rivest
1993; McNeil 2008; Savu and Trede 2010). The work by
Nelson and Joe (Joe 1990; Joe and Hu 1996; Nelsen 2002)
provides a clear and detailed introduction to copulas and multi-
variate probability distribution that considers the relationships
between inputs.

3.3 Variable screening
3.3.1 Variable screening in the presence of uncertainty

Variable screening is the study of how the uncertainty in the
outputs (system responses) of a model can be apportioned to
different sources of uncertainty in its inputs (Helton 1997; Wu
and Mohanty 2006; Helton et al. 2006a; Cho et al. 2014; Gan
et al. 2014; Wei et al. 2015). The primary purpose of variable
screening is to identify inputs that cause significant uncertain-
ty in the system response.

Numerous variable screening methods have been pro-
posed. The easiest way is to prioritize the importance of un-
certainty sources based on experts’ experience or belief.
However, these subjective decisions can lead to adverse ef-
fects. Thus, systematic screening studies need to be performed
to identify the important inputs that significantly affect the
prediction results. A systematic screening analysis should pro-
vide evidence to rank the inputs. Typically, a sensitivity anal-
ysis, also called a local method, is used by taking the partial
derivative of the system response at the design point for the
purpose of the design optimization process (Pianosi et al.
2016). For the purpose of variable screening, however, it is
important to consider the variation of the system response due
to the variations of inputs over a wide range; this is subject to
various sources of uncertainty (Chen et al. 2005).

The most applicable approach for considering uncertainty
is the variance-based method, a form of global sensitivity
analysis (Liang and Mahadevan 2014; Helton 1997; Helton
et al. 2006b; Pianosi et al. 2016; Shields and Zhang 2016;
Liang et al. 2015; Zhang and Pandey 2014; Gan et al. 2014;
Baroni and Tarantola 2014; Sankararaman et al. 2013;
Sankararaman and Mahadevan 2013; Plischke et al. 2013).
Variance-based methods are based on probabilistic ap-
proaches. First, PDFs of inputs and outputs are quantified.
To quantify uncertainties in the inputs and outputs, uncertainty
characterization (Section 3.2) and uncertainty propagation
(Section 3.4) can be used. Next, the importance rank is mea-
sured by the amount of variance in the output caused by a
single input (main effect index) or by interactions with other
inputs (total effect index). The main effect index, also called
the first-order index or the Sobol sensitivity index, measures
the contribution of the input by itself to the variance in the
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output (Sobol” 1990; Sobol 2001). On the other hand, the total
effect index, also called the global sensitivity index, gives not
only the effect on the system response from a single input but
also its interaction with other inputs. A more extended expla-
nation of variable screening can be found in the literature
(Cacuci and Ionescu-Bujor 2004; Christopher Frey and Patil
2002; Helton et al. 2006b; Pianosi et al. 2016; Gan et al.
2014).

3.3.2 Remarks on variable screening

For variable screening, the variance-based method is recom-
mended to rank the importance of inputs. The variance-based
method is carried out using the following procedures. First,
the uncertainty in each input is identified and characterized by
a PDF. Second, the variation of the system responses is ob-
tained by propagating the input uncertainties through the sys-
tem model. Last, important inputs are listed in the order of
their contribution to system uncertainty, based on the first
and second procedure.

Issues related to the first procedure are discussed in Section
3.2. The importance of uncertainty characterization cannot be
stressed enough, as it lays the groundwork for statistical model
validation. Otherwise, inaccurate characterization of input
PDFs can ruin all following procedures. Variable screening
commonly assumes independence between inputs; correlation
between inputs is often disregarded. However, this assump-
tion can be a serious problem when inputs are strongly corre-
lated (Park et al. 2015).

The second procedure is called uncertainty propagation;
this is discussed in Section 3.4. As is always the case in anal-
ysis with uncertainty, computational cost is one important
problem in variable screening. Various methods have been
proposed to reduce the cost of measuring variance-based in-
dices (Chen et al. 2005; Homma and Saltelli 1996; Sobol
2001; Sudret 2008; Zhang and Pandey 2014; Zhang and
Pandey 2014). In general, the variance-based method com-
putes sensitivity indices using Monte Carlo simulation.
When the number of inputs is large, measuring the index is
computationally demanding. A point to notice is that accurate
uncertainty propagation is not necessary for variable screen-
ing. It is important to recognize that variable screening is a tool
to simplify other procedures, not another burden. Sampling-
based uncertainty propagation based on surrogate models is an
affordable method for variable screening (Helton and Davis
2003). Computationally cheap random designs, such as frac-
tional factorials (Box and Meyer 1986) or Plackett-Burman
designs (Tyssedal 2008; Plackett and Burman 1946), can be
used, although at the expense of accuracy. Also, dimensional
reduction can be used to approximately compute the variance-
based indices (Zhang and Pandey 2014).

A complete priority list of inputs provides an order of im-
portance and a quantitative effectiveness on output. Based on
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this list, the question is how to select inputs for further analy-
sis. The smaller the number of selected inputs, the smaller the
computational cost, but with decreased accuracy. After screen-
ing out insignificant inputs, they are fixed to the mean value as
a deterministic variable, not a random variable. This results in
a reduction of the total output variability. If the amount of
reduction in the total output variability is large, a loss of ac-
curacy is unavoidable. A recent study proposed hypothesis
testing as a way to determine the important variables to ad-
dress the accuracy problem (Cho et al. 2014).

3.4 Uncertainty propagation

Uncertainty propagation is the study of quantifying uncer-
tainties in the system response. Assuming that model input
uncertainties are adequately characterized with a PDF, the
uncertainty of the system response is acquired by propagating
model input uncertainties through the computational model.
Extensive studies have been conducted and different methods
developed for uncertainty propagation. These methods are
broadly categorized as (1) sampling-based simulation
methods and (2) approximate methods. When selecting an
uncertainty propagation method, the primary consideration is
the tradeoff between accuracy and computational cost.

3.4.1 Sampling-based simulation methods

Sampling-based simulation methods, such as the Monte Carlo
method, are not only the most accurate but also the most
expensive methods (Bucher 1988; Hurtado and Barbat 1998,
Mosegaard and Sambridge 2002; Weathers et al. 2009; Bao
and Wang 2015). The basic idea of sampling-based methods is
to obtain samples of the system response by repeatedly run-
ning the system model with randomly generated input sam-
ples. In principle, sampling-based methods can be used to
solve any problem having a probabilistic interpretation. For
example, sampling-based methods are useful for evaluating
(1) multidimensional definite integrals with complicated
boundary conditions, (2) nonlinear problems, or (3) simulat-
ing systems with many coupled degrees of freedom.
However, sampling-based methods require a large amount
of computation time (Fang et al. 2012; Shields et al. 2015).
Since the result is deficient if only a few samples are generat-
ed, a large number of input samples are needed, which in-
creases the computation time dramatically. Also, the number
of function evaluations grows exponentially as the number of
dimension increases. For real-world problems, a single simu-
lation can take hours or days to complete. Especially when
sampling methods are applied to calibration with optimization
techniques in which numerous iteration steps are required, the
computational cost burden is too large. To deal with this issue,
importance sampling (Melchers 1989; Dubourg et al. 2013;
Echard et al. 2013), or adaptive sampling (Bucher 1988; Au

and Beck 1999; Gorissen et al. 2010), has been studied to
ensure more samples fall within the region of interest, thereby
reducing the total number of samples needed for analysis.
However, prior knowledge of integrals is needed to do precise
importance sampling. Latin hypercube sampling also can help
to reduce the total number of samples needed for stable mul-
tidimensional distribution (Stein 1987; Huntington and
Lyrintzis 1998; Helton and Davis 2003; Helton et al. 2004,
2005; Mousaviraad et al. 2013; Shields et al. 2015; Shields
and Zhang 2016). Latin hypercube sampling differs from gen-
eral random sampling in its consideration of previously gen-
erated sample points. Nonetheless, the method still needs a
large number of samples.

For sampling-based methods, a computationally expensive
model can be replaced with a fast-running surrogate model
(Hill and Hunter 1966; Simpson et al. 2001b; Pettit 2004;
Giunta et al. 2006; Goel et al. 2007; Viana et al. 2009)
(Shan and Wang 2010; Shi et al. 2012; Roussouly et al.
2013; Viana et al. 2014; Tabatabaei et al. 2015; Park et al.
2016b). A surrogate model (also called metamodel, response
surface model, or an emulator) is one way to alleviate the
burden of expensive computational time by constructing an
approximation model. Popular surrogate models include poly-
nomial response surface (Simpson et al. 2001b; Goel et al.
2007; Acar and Rais-Rohani 2009; Goel et al. 2009; Abbas
and Morgenthal 2016), the moving least square method
(Lancaster and Salkauskas 1981; Levin 1998; Choi et al.
2001; Kang et al. 2010), kriging (Simpson et al. 1998,
2001a; Kaymaz 2005; Goel et al. 2009; Lee et al. 2011;
Khodaparast et al. 2011; Zhang et al. 2013; Kleijnen and
Mehdad 2014), support vector machines (Hearst et al. 1998;
Smola and Schélkopf 2004; Clarke et al. 2005), polynomial
chaos expansion (Goel et al. 2009; Hu and Youn 2011;
Oladyshkin and Nowak 2012; Kersaudy et al. 2015), artificial
neural networks (Gomes and Awruch 2004), and others. For a
surrogate model, the challenge is how to build a model that is
accurate over the complete domain of interest, while minimiz-
ing the simulation cost. For statistical model validation, this
challenge is divided into two subissues: (1) design of experi-
ments (DOE) and (2) surrogate model validation.

For the first issue, a surrogate model is constructed based
on a computer simulation of intelligently chosen data points.
The method used to determine those data points is called de-
sign of experiments (DOE; Myers et al. 1995). The goal of
DOE is maximizing the amount of information gained from a
minimum number of sample points. Two categories of DOE
methods are available: classic and modern methods (Hill and
Hunter 1966; Steinberg and Hunter 1984; Simpson et al.
2001b). Classic methods, such as full-factorial design, central
composite design, Box—Behnken, and D-optimal design, are
widely used for designing laboratory experiments. On the oth-
er hand, modern methods, such as Latin Hypercube Sampling,
orthogonal array design, and uniform design, have been
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developed for designing computer experiments. Since many
software packages provide various kinds of DOE tools today,
implementing these methods is no longer difficult. For statis-
tical model validation, the important issue is that the design of
experiments should cover the calibration and validation do-
main. For example, in the calibration procedure, the surrogate
model region of interest moves as the input design variables
move toward the optimum point. If the DOE does not cover
the neighborhood of the optimum point, then the calibration
stops before the design variables arrive at the optimum point.
Therefore, when designing computational experiments, it is
important to clearly understand the calibration and validation
domain. A review by C. Viana et al. provides a comprehensive
discussion on current research trends of metamodeling (Viana
et al. 2014). Two textbooks by Montgomery and cowriters
provide comprehensive knowledge on response surface meth-
odology and design of experiments (Myers et al. 1995, 2016;
Montgomery 2008).

For the calibration and validation issue, a constructed sur-
rogate model cannot perfectly describe the physical model
when considering the true response function is unknown or
nonexistent. An overfitting problem arises when the surrogate
model has poor predictive performance as it overreacts to
minor fluctuations in the training data due to the model’s ex-
cessive complexity. Thus, validation of the surrogate model is
needed. The field of response surface methodology often uses
cross-validation (Goel et al. 2007; Viana et al. 2009, 2010;
Gorissen et al. 2010). Cross-validation is a model validation
technique that assesses how the performance of a constructed
surrogate model will generalize to an independent data set.
Various ways of cross-validation are available to partition a
set of data and to validate a model, including leave-p-out,
leave-one-out, and k-fold (Viana et al. 2009; Arlot and
Celisse 2010). For cross-validation, first, a set of data is
partitioned into complementary subsets. A surrogate model
is constructed on one subset and is validated on the other
subsets. This procedure is repeatedly performed using differ-
ent partition ways to separate a set of data. In the end, the
validation results from multiple surrogate models are averaged
over the repeated processes. Compared with conventional val-
idation, for example, the data set is separated into two sets:
70% for constructing the model and 30% for validating the
model. Cross-validation shows better performance with a lim-
ited data set. However, cross-validation is computationally
more expensive than conventional validation.

3.4.2 Approximate methods

For computationally demanding CAE models, sampling
methods quickly become impractical (Fender et al. 2014).
This concern can be solved by obtaining an approximate
PDF of the system response. To obtain the PDF of the system
response, a multidimensional integral is calculated. However,
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direct integration of multidimensional joint PDF is mathemat-
ically infeasible. Numerous studies have thus been conducted
to approximately solve the math problem through expansion
methods (Lee et al. 2008b; Zhang and Du 2010; Lee et al.
2010), polynomial chaos expansion methods (Wei et al.
2008; Crestaux et al. 2009; Oladyshkin and Nowak 2012),
dimension reduction methods (Rahman and Xu 2004; Xu
and Rahman 2004; Lee et al. 2008a; Youn et al. 2008; Youn
and Wang 2008; Lee et al. 2010), and others.

Approximate methods are much more efficient, but less
accurate than sampling-based simulation methods. The expan-
sion methods, including Taylor expansion, the first-order and
second-order reliability methods (FORM, SORM), or the per-
turbation method, approximate statistical moments are calcu-
lated (Zhao and Ono 2000; Wojtkiewicz et al. 2001; Youn and
Choi 2004; Hua et al. 2008; Khodaparast et al. 2008). In
engineering applications, since calculating high-order partial
derivatives requires expensive calculations, low-order partial
derivatives are predominantly used. Thus, expansion-based
methods have difficulties with expressing nonlinearity.
Furthermore, when statistical correlations exist between in-
puts, expansions must be not truncated in low-order partial
derivatives. In other words, expansion-based methods cannot
consider the statistical correlation that exists in many practical
problems. Alternatively, numerical integration-based
methods, such as Quadrature formulas (Eldred and Burkardt
2009; Eldred et al. 2011; Mousaviraad et al. 2013), the uni-
variate dimension reduction method (Rahman and Xu 2004;
Lee and Chen 2009; Cho et al. 2014), and the eigenvector
dimension reduction method (Youn et al. 2008; Jung et al.
2009, 2011), have been proposed to accurately compute mul-
tidimensional integrals and simultaneously reduce the compu-
tational expense. Specifically, the eigenvector dimension re-
duction method shows a reasonable accuracy when statistical
correlation exists. For situations invloving highly nonlinear
function, however, integration-based methods still give mis-
leading results. For example, for the function including a sim-
ple product of two inputs, the univariate dimension reduction
method and the eigenvector dimension reduction method ex-
hibit a low ability to calculate the statistical moments.

One reason why approximate methods are less accurate than
sampling-based simulation methods is that the uncertainty prop-
agation results are statistical moments. Using sampling-based
simulation methods, the results of uncertainty propagation are a
complete PDF of the system response. For statistical model val-
idation, a complete probability distribution is recommended, as it
allows a comparison between experiments and the computational
model. On the other hand, approximate methods give the result
of uncertainty propagation in the form of statistical moments of
the system response (e.g., mean and variance). The basis of the
idea is that a sufficient number of statistical moments can provide
a good representation of the distribution of the system response.
This pertains to the method of moments, which is an uncertainty
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characterization technique. Devised by Karl Pearson, the Pearson
distribution is a family of PDFs that can be specified based upon
the first four moments: mean, variance, skewness (normalized
third central moment), and kurtosis (normalized fourth central
moment; Solomon and Stephens 1978; Lee and Chen 2009;
Youn and Wang 2009; Youn and Xi 2009; Youn et al. 2008).
The method that selects a parametric PDF for system response
based on the Pearson distribution is called the Pearson system.
The Pearson system, instead of obtaining entire probability dis-
tributions of the system response, obtains only the moments of
the distributions. Interestingly, the Pearson system was devised in
1895, just a year after the method of moments was proposed by
the same researcher. Later, a similar method called the Johnson
system was developed in 1949 (Johnson 1949). A limitation of
these methods is that only information regarding the central mo-
ments is considered. Thus, selection of a PDF based on the
central moments of system responses may not properly capture
the entire characteristics of the PDF, such as its tails.
Additionally, if the PDF of the system response does not belong
to the certain family of parametric PDF, for example a multimod-
al distribution, the selected PDF might have a lower reliability
than the actual one.

4 Review of the inverse problem

The inverse problem in statistical model calibration and vali-
dation is to estimate the value of epistemic variables in con-
junction with experimental observations. In Section 4.1, con-
temporary issues related to the inverse problem are discussed.
Two main approaches are used to solve the inverse problem:
(1) calibration using optimization techniques (Section 4.2) and
(2) Bayesian updating (Section 4.3).

4.1 Contemporary issues in the inverse problem

The objective of the inverse problem is to statistically calibrate
epistemic variables (X.) of a computational model
(Mosegaard and Sambridge 2002; Warner et al. 2015).
Issues related to the inverse problem include (1) how to solve
the implicit inverse function, (2) how to calibrate epistemic
variables given a dearth of data, and (3) how to calibrate mul-
tiple epistemic variables.

First, the inverse problem can be solved by taking the in-
verse of the function (Y,.), as explained in (4) and (5).
However, for most computational models that emulate the
behavior of engineered systems, it is infeasible to obtain a
closed form (explicit form) of the inverse function (Ylpm).
To address this difficulty, two approaches have been pro-
posed: (1) optimization-based model calibration and (2)
Bayesian-based model calibration. The following subsections
(Sections 4.2 and 4.3) provide details on optimization-based
model calibration and Bayesian-based model calibration.

Second, epistemic variables (X,) are calibrated with ob-
served system responses (Y,,s) because measuring the system
response may be more feasible than directly measuring the
quantity of interest, when considering cost and time.
However, there is still the problem of performing a sufficient
number of experiments on system responses (Yps) to consider
all uncertainty sources. Thus, it is necessary to contrive a way
to calibrate epistemic variables (X) in a dearth of data.

Third, multiple epistemic variables can arise in the inverse
problem. In a large-scale computational model, lack of infor-
mation on more than two inputs of a computational model is
more likely to occur (Zhan et al. 2011b; Fender et al. 2014;
Egeberg 2014; Sankararaman and Mahadevan 2015; Jung
et al. 2016). When the number of epistemic variables is larger
than the number of equations, it leads to an undetermined
problem. When an undetermined problem is formulated, var-
ious combinations of calibrated epistemic variables may yield
comparable fits to observation data (Y,s); this is called the
multiple solution problem (Zarate and Caicedo 2008; Manfren
et al. 2013). In other words, calibration can produce several
models that match experimental data (Y,ys), when in fact only
one model matches the physical reality.

4.2 Optimization-based model calibration

Optimization techniques provide straightforward calibration
methods for solving the inverse problem (Jung et al. 2011,
2016; Youn et al. 2011; Fender et al. 2014; Warner et al.
2015). Section 4.2.1 provides the mathematical formulation
of optimization-based model calibration. Section 4.2.2 dis-
cusses the calibration metric, which is the objective function
for optimization-based model calibration.

4.2.1 Formulation of optimization-based model calibration

The objective of optimization-based model calibration is to
inversely estimate epistemic variables so that the prediction
is consistent with the observation data. Two ways of achieving
this goal are to (1) maximize the agreement or (2) minimize
the disagreement between the two probability distributions
that were found from the computational prediction and the
experimental observation. In this manner, the mathematical
statement for the optimization-based calibration can be de-
fined as

Max)%mize or Min)i(mize f (Yobs, Yore (Xa, Xe)) (6)

where f denotes the objective function of the optimization
problem. Experimental observation (Y,,s) and computational
prediction (Yp) of the system response are given as the
frequentist PDF under the presence of various uncertainties
(i.e., physical, modeling, and statistical uncertainties). If the
degree of uncertainty due to measurement error (¢) is

@ Springer



1630

Guesuk Lee et al.

negligible, the PDF of the experimental observation (Yp,) is
considered to be a true system response (Y). For computation-
al prediction, all recognized (accounted for) uncertainty
sources either from aleatory (X,) or from epistemic (X) var-
iables are incorporated as the inputs (X) to the computational
model. In the presence of epistemic variables (X.), the com-
putational prediction (Yp,.) has an error. An objective function
(f) in (6) is then formulated to carry the meaning of the agree-
ment or disagreement between true (Yops) and false (Y,,). By
maximizing or minimizing the objective function over the
variables, the epistemic variables (X,) are calibrated.

4.2.2 Calibration metric: objective function
for the optimization problem

Establishing a relevant objective function (f) (also simply
called a measure or calibration metric) is the key for success
of calibration using optimization techniques (Mares et al.
2006; Jung et al. 2011; Fender et al. 2014; Lee et al. 2018).
There are a substantial number of similarity or dissimilarity
measures encountered in many different fields, such as pattern
classification and clustering. Among them, the measures used
for optimization-based model calibration are classified into
two types: (1) measures that quantify the agreement and (2)
measures that quantify the disagreement. For the first type,
optimization-based model calibration is performed with the
goal of maximizing the value of the measure; for the second
type, calibration is performed to minimize the measure. One
characteristic that a calibration metric should have is that the
function should be globally convex or concave; therefore, it
always has an extremum. In addition, it is important to exam-
ine how each calibration metric deals with statistical uncer-
tainty due to a lack of data. Basically, a calibrated value that
has epistemic uncertainty due to insufficient data cannot be the
ultimate answer. However, the important element in solving
an inverse problem is that calibrated results with sufficient
data should converge to an identical result no matter which
approach or method is used.

The likelihood function is the most common measure used
to quantify the agreement between two probability distribu-
tions (Fonseca et al. 2005; Jung et al. 2011, 2014, 2016; Youn
etal. 2011; Xietal. 2013; Lee et al. 2018). Practically, the log
likelihood is commonly incorporated; its probability is esti-
mated in the exponential scale. To evaluate the likelihood
function, an assumption needs to be made on the type of
PDF (p,.) for computational prediction (Y,.). Note that the
type of statistical parameter (Ox) is determined based on the
selected type of PDF. In other words, uncertainty characteri-
zation for computational prediction (Y,) is required; this
yields another source for statistical uncertainty. However, it
is advantageous that uncertainty characterization is not re-
quired for experimental observation (Y,p). Instead, all
frequentist information on discrete points are used. Thus, a
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probability distribution of any shape can be facilitated and
directly compared. This results in a low computational cost
for evaluation of the likelihood function.

In addition to measures quantifying the agreement, a variety
of measures for quantifying the disagreement are available for
optimization-based model calibration. Recent studies (Govers
and Link 2010; Rui et al. 2013; Bao and Wang 2015) estimated
the calibration variables by minimizing the weighted sum of the
spatial distance between the statistical moments (e.g., mean,
standard deviation, covariance) of observation data and that of
prediction data. Because statistical parameters represent a PDF,
the distance between the two statistical parameters derived from
observation and prediction is acceptable for specifying the dif-
ference between prediction and observation. However, with
only a few statistical parameters, fully describing the distribu-
tion of the system response is difficult, especially when the
distribution does not follow a common type of PDF (e.g., nor-
mal, lognormal). This method has shown good performance
when the PDF of the system response follows a specific PDF,
such as a normal, lognormal, and others. In many practical
cases, the distributions of system responses are not in a specific
type of probability density function (Pradlwarter and Schuéller
2008); for example, they may be a multimodal distribution as a
mixture of several distributions. In such a case, there are certain
limits to the use of the distance between statistical parameters as
an objective function. A subjective assumption that a system
response follows a particular PDF could be applied in practical
settings; however, an erroneous assumption about the type of
PDF is a problem. In this respect, a measure must be developed
that can directly compare two PDFs. A comprehensive survey
by Cha and Choi (Cha 2007; Choi et al. 2010b) provides var-
ious categories of measures that are applicable to compare two
PDFs. The survey categorized measures into various families:
(1) the L, Minkowski family, which are developed on the basis
of Euclidean distance; (2) the L; family, which facilitates the
absolute difference; (3) the intersection family, which are in the
form of similarity; (4) the inner product family, which incorpo-
rates the inner product; (5) the squared-chord family, which are
based on the sum of geometric means; (6) the squared Z; fam-
ily, which are based upon the squared Euclidean distance; (7)
the Shannon’s entropy family, which are developed from the
relative entropy, also called Kullback—Leibler (Oden et al.
2013); and (8) combinations, which utilize multiple ideas or
measures. These measures can be used in future work examin-
ing optimization-based model calibration. Detailed explana-
tions for each measure are beyond the scope of this paper.
Measures based on Euclidean distance are straightforward.
However, a hindrance of this measure is the need to characterize
the PDF (pg,s(v;)) of the experiments. The process of character-
izing the uncertainty in experimental data may lead to statistical
uncertainty, especially with a dearth of data. As a limitation, an
accurate calibration using the optimization-based model cali-
bration highly depends on both the quantity and quality of the
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given experimental data. Also, if the assumption on the distri-
bution type of unknown input variable is wrong, it may lead
inaccurate calibrated results.

4.3 Bayesian-based model calibration

The basic principle of Bayesian inference is to derive the
posterior probability using a prior probability and likelihood
function derived from a statistical model for the observed data
(Mahadevan and Rebba 2005; Xiong et al. 2009; Arendt et al.
2012a; Park et al. 2016a). The review of this technique begins
by explaining the purpose-built formulation of Bayesian-
based model calibration (Section 4.3.1). The following section
summarizes research on model calibration using Bayesian in-
ference (Section 4.3.2).

4.3.1 Formulation of Bayesian-based model calibration

Bayesian inference updates the probability of unknown pa-
rameters (calibration variables) as more observational data
become available. The prior information of the unknown pa-
rameters vector (0) is given in the form of joint PDF (pe(0)),
and the experimental data (y) are given with variability. The
posterior distribution (pey(0]y)) of the parameter (0) can
then be expressed as

Pe\Y(G|Y)“PV\e(Y|9)P®(9) (7)

where pyje(y|©) is the likelihood function that elucidates the
probability of observing data (y), given parameters (6). The
Bayesian update in (7) can be applicable when the values of
parameters (0) are observable. In the case of model calibra-
tion, the epistemic variables (X.), which replace parameter
vector (0) in (7), of the model are not directly observable;
however, the model responses (Y,,s) are. Therefore, the
Bayesian calibration requires the relationship between the
model and experimental observations. (In statistical sense,
the inverse problem estimates the statistical parameters of
the calibration variables.) For Bayesian-based model calibra-
tion, the Bayesian formulation can be expressed as

PGXE\Y(9X|Y = YobS)“PY\(ax (Y= Yob5|eX)P®x(9X) (8)

where the posterior distribution (pe;y(0x|Y = You)) of statis-
tical parameters (Ox.) of calibration variables (X,) is propor-
tional to the likelihood (pye(Y = Yops|@x)) times the prior
distribution (pg(6x)). In Bayesian statistics, a state of knowl-
edge or belief of an unknown parameter is expressed in terms
of PDF (p()). That is, if the value of an unknown parameter is
well known, the distribution will have small uncertainty, and
vice versa. In other words, Bayesian-based model calibration
uses Bayesian inference to reduce epistemic uncertainty in
calibration variables. As experimental data set (Y,,s) becomes
larger, the variation in the posterior distribution becomes

narrower, which means the degree of uncertainty decreases.

The major benefit of the Bayesian approach is the ability to
incorporate prior information. Using prior knowledge of un-
certainties, the Bayesian approach has strength in calibration
compared to frequentist probability (Liu et al. 2011). One
crucial issue in the inverse problem is how to estimate the
value of calibration variables with limited observation data
(Hemez et al. 2010; Jiang and Mahadevan 2009b).
Optimization-based model calibration is based on a frequentist
approach, which exclusively relies on the sample data to esti-
mate calibration variables. For optimization-based model cal-
ibration, a small number of experimental data can lead to
incorrect estimation of the calibration variables. On the other
hand, the Bayesian approach utilizes the prior information in
conjunction with newly available data to obtain the posterior
knowledge for calibration variables. Thus, Bayesian-based
model calibration is capable of continuously updating the pri-
or information with evolving experimental data to obtain the
posterior information (Higdon et al. 2008; McFarland et al.
2008; Manfren et al. 2013). The major argument encountered
against using the Bayesian approach is that it typically re-
quires using expert knowledge or information from previous
experiments (Cooke and Goossens 2004; McKay and Meyer
2000; Thorne and Williams 1992; Liu et al. 2011). Improper
prior knowledge can lead to improper posteriors (Higdon et al.
2008). When the prior distribution is inconsistent with ob-
served physical data, the process can be either slow to con-
verge or converge to wrong results. Rarely, a prior distribution
can be chosen from a conjugated distribution family. When
there is no information regarding the prior distribution, unin-
formative prior or uniform prior can be used (Park and
Grandhi 2014). In most cases, the data for both calibration
and validation are limited (different data sets should be used
for each process); thus, the Bayesian approach seems to be the
one that must be studied and developed.

4.3.2 Review of literature on Bayesian-based model
calibration

Systematic model calibration using Bayesian inference is
mostly based on the seminal publication by Kennedy and
O’Hagan (2001), followed by others (Li and Mahadevan
2016; Bayarri et al. 2007; Higdon et al. 2008; McFarland
and Mahadevan 2008b; Rebba et al. 2006; Bayarri et al.
2007; Chen et al. 2008; Liu et al. 2008; Qian and Wu
2008; Xi et al. 2013; Lee et al. 2014). The original paper
by Kennedy and O’Hagan used the Gaussian process model
for Bayesian calibration frameworks, which found the cali-
bration variables that were the most statistically consistent
with data from experiments or high-fidelity simulation. An
important difference in the approach by Kennedy and
O’Hagan is to include not only calibration variables but also
a discrepancy function, which represents the effect of
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model-form error as well as numerical error. In this frame-
work, the relationship between the prediction model and
observation can be represented by

Yobs (X) = Ypre(X; 8c) + 8(X) + ¢ ©)

where X is the vector of inputs; O, is a set of epistemic
variables (unknown model parameters); 6(X) is the model
error (discrepancy function), which is defined as the differ-
ence between model prediction and reality; and ¢ is the
measurement error, which is usually assumed to be a
Gaussian distribution (¢ ~ N(0, 0.%)). The result from this
framework provides a calibrated value of epistemic vari-
ables (0.), corrected hyperparameters (05) of quantity of
model error (5(X)), and the variance (0.?) of the measure-
ment error. The prior distributions (f'(8)) for each parameter
(0,, 05, 0.%) are predefined. Using the experimental data,
the posterior distribution (f”(0)) is updated as

L(8|Yons)f ()

f”<e|Yobs) = IL(8|Y0bs)f'(6)d6 (10)

where L(0) is the likelihood function, and the prior distri-
bution (#(0)) and the posterior distribution (f"(0)) are the
joint PDF. Markov chain Monte Carlo (MCMC) methods
are often used for calculating numerical approximations of
multidimensional integrals (Li and Mahadevan 2016; Oden
et al. 2013). MCMC requires millions of samples to guar-
antee convergence and is time consuming, although surro-
gate methods have been attempted (McFarland and
Mahadevan 2008a; Yuan et al. 2013; Bao and Wang 2015).

Studies using this approach emphasize that the advantage
of introducing the discrepancy function is that it can consider
the possible existence of unrecognized (unaccounted for) un-
certainty sources. This framework can deal with missing phys-
ics and other inaccuracies of the computer model or experi-
mental error, while updating calibration variables (Kennedy
and O’Hagan 2001; Bayarri et al. 2007; Chen et al. 2008; Qian
and Wu 2008; Xi et al. 2013). The first method by Kennedy
and O’Hagan suggests simultaneous estimation of calibration
variables and the discrepancy function (Kennedy and
O’Hagan 2001). However, a simultaneous process requires
high-dimensional integration. Since the roles of calibration
variables and the discrepancy function are different,
decomposed approaches are often employed, where the cali-
bration variables are identified first using unbiased estimation,
and then, the discrepancy function is determined based on the
local discrepancy between the observation and the prediction.
Arendt et al. developed a modular Bayesian approach, which
separates the estimation of the epistemic variables and the
discrepancy function into two modules (Arendt et al. 2012a).
A Gaussian process model by multiple response was proposed
for separating sources of uncertainty (Arendt et al. 2012b).
Later, Xi et al. presented a two-step calibration procedure in
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which first calibration variables were calibrated and then the
discrepancy function was identified by the likelihood function
(Xi et al. 2013). Park et al. showed that un-biased estimation
of calibration variables can lead to a complex discrepancy and
suggested that calibration variables be found that lead to the
simplest form of the discrepancy function (Park et al. 2017).

In most cases, the data for both calibration and validation
are limited (different data sets should be used for each pro-
cess); thus, the Bayesian approach seems to be the one that
must be studied and developed. To this end, many studies
follow the work developed by Kennedy and O’Hagan (Li
and Mahadevan 2016; Bayarri et al. 2007; Higdon et al.
2008; McFarland and Mahadevan 2008b; Park and Grandhi
2014). A dynamic model discrepancy framework was pro-
posed to correct a discrete time prediction model (Hu et al.
2019). Nevertheless, there are several limitations of using the
Bayesian approach accompanied by the discrepancy function,
including (1) a corrected model error can be different at dif-
ferent levels of a system, (2) a separate incorporation of the
model discrepancy term can lead to inaccurate bias in model
predictions, and (3) an increased number of unknown param-
eters, (including calibration variables, hyper parameters of the
discrepancy function, and measurement error) may cause the
overfitting problem or the undetermined problem.

5 Review of the validation problem

This section provides a review of the validation problem. Two
essential validation problems are the validation metric and the
decision problem, as discussed in Section 2.3.3. Section 5.1
begins with a discussion of contemporary issues surrounding
the validation problem in statistical model validation. Reviews
of the validation metric and the decision problem follow, in
Sections 5.2 and 5.3, respectively.

5.1 Contemporary issues related to the validation
problem

Previous studies present several issues that surround the vali-
dation problems of statistical model calibration and validation,
including (1) different types of system responses require dif-
ferent types validation metrics and (2) a criterion must be
established to be used to decide whether a computational
model is valid or not.

A validation metric is used to quantify the difference in the
two system responses that arise from observation and predic-
tion. System responses can be categorized into two types: (1)
stationary or steady-state system responses (univariate) and (2)
transient or dynamic system responses (multivariate). The first
type of system response has a stationary characteristic, for ex-
ample, a degree of beam deflection by external loading or from
the natural frequency of a system. The second type of system
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response has a periodic character or a complex mixture of many
frequencies, such as the velocity of a moving object or vibration
frequencies. The uncertainty of the two types of system re-
sponse appears in different ways. Thus, two distinct validation
metrics are required for the two types of system response.
Section 5.2 provides reviews of several validation metrics.

A validation metric is engaged to quantify the difference
between the observation and prediction system responses.
After quantitative comparison by a validation metric, a deci-
sion is made about whether to accept the validity of the com-
putational model. The issue disputed in the decision-making
process is how to establish a criterion by which the decision is
made. Hypothesis testing is a widely used method to make a
statistical decision. A review of decision-making in the vali-
dation problem is presented in Section 5.3.

5.2 Validation metric

Earlier studies by Oberkampf and Barone (2006), Ferson et al.
(2008), and Liu et al. (2011) summarized the desired features
of validation metrics. Based on these studies, the desired fea-
tures of a validation metric can be summarized as “objective”
or “stochastic or statistical.” It is remarkable that despite re-
search on constructing and utilizing CAE, the model still does
not use quantitative methods for validation; instead, qualita-
tive methods are used, such as visual assessment (Ling and
Mahadevan 2013). Qualitative validation can give insights
into differences between measured and predicted results; how-
ever, results from qualitative validation differ by user. In con-
trast, quantitative validation gives an objective measure (Jiang
and Mahadevan 2011; Zhan et al. 2011b, 2012a, b; Murmann
et al. 2016; Oberkampf and Barone 2006). Furthermore, in a
statistical sense, a system response is presented as a variation,
for example, by a probability distribution or a random process,
due to existence of various uncertainties. A “statistical or sto-
chastic” validation metric should be able to compare the sys-
tem responses from experiments and simulations in a variation
by considering uncertainties (Jiang and Mahadevan 2011;
Sarin et al. 2010; Schwer 2007).

The primary consideration in the selection of an effective
metric should be the type of system response. The system re-
sponse of interest can be (1) stationary, steady-state, or scalars
(random variables) or (2) transient, dynamic, or histories
(random processes; Murmann et al. 2016; Liu et al. 2011;
Teferra et al. 2014). Stationary responses have a determined
value regardless of time or space (e.g., natural frequency). On
the other hand, dynamic responses denote dynamic histories or
curves (e.g., acceleration; Oberkampf and Barone 2006;
Dowding et al. 2008; Teferra et al. 2014). For statistical com-
parison, the stationary response needs a distribution comparison
method since the scalar values build a distribution from differ-
ent conditions of prediction and observation (Halder and
Bhattacharya 2011; Mahadevan and Rebba 2005; Chen et al.

2004). However, the validation metrics developed for stationary
responses do not have an ability to capture the difference in
dynamic responses (Oberkampf and Barone 2006), such as
magnitude or phase difference in time-dependent system re-
sponses (e.g., fluid velocity in a pipe). In the case of dynamic
responses, responses are represented as random processes; ac-
cordingly, a validation metric is required that can capture the
difference in a dynamic path as well as consider stochastic
characteristics in random processes (Oberkampf and Barone
2006; Dowding et al. 2008; Kokkolaras et al. 2013; Sarin
et al. 2010; Zhan et al. 2011a, 2012a; Hills 2006; Hasselman
et al. 2005). In Sections 5.2.1 and 5.2.2, validation metrics for
stationary and dynamic responses are summarized and
discussed, respectively.

5.2.1 Validation metrics for stationary system responses

In a probabilistic context, the prediction of stationary responses
is represented as a probability distribution due to various uncer-
tainty factors (Kokkolaras et al. 2013). Therefore, a distribution
comparison method is used for statistical model validation of
stationary responses. Harmel et al. proposed a metric called the
degree of overlap for model validation motivated by the
methods in the statistics community (Harmel et al. 2010). The
basic idea of the degree of overlap is that the closer the mea-
sured and predicted results are, the more their probability dis-
tributions overlap. In the same manner, the calibration metrics
discussed in Section 4.2.2 also can play a role as a validation
metric for comparing two probability distributions (Fonseca
et al. 2005; Jung et al. 2014; Xiong et al. 2009; Youn et al.
2011). However, significant experimental results are required
to use the degree of overlapped area or the calibration metrics.
Since minimizing the number of experiments is always an im-
portant issue in model validation, the degree of overlapped area
and the calibration metrics have fewer practical applications.
As a powerful alternative, a number of works recently in
the model validation community show that the area metric
possesses most of the desirable features of a validation metric
for comparing experiment and simulation (Ferson and
Oberkampf 2009; Ferson et al. 2008; Liu et al. 2011; Voyles
and Roy 2015; Thacker and Paez 2014; Roy and Oberkampf
2011). To obtain the area metric value, propagated system
responses of simulation produce a probability box or p-box,
while experimental measurements are used to construct an
empirical CDF of system responses (Ferson et al. 2008).
Finally, the minimum area between these two structures is
referred to as the value of the area validation metric. The
comparative studies (Ferson et al. 2008; Oberkampf and
Barone 2006; Liu et al. 2011; Roy and Oberkampf 2011;
Thacker and Paez 2014) showed the area metric to be prom-
ising due to its favorable features compared to other methods.
First, the area metric is one of only a few developed distribu-
tion comparison metrics. It measures the entire distribution
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rather than statistical moments, thereby accounting for uncer-
tainties in both the simulation and the experiments. However,
the calculated value of the area metric can lead to highly bi-
ased validation conclusions. Second, sampling uncertainty
due to limited experimental data for the validity check is con-
sidered (Jung et al. 2014) in conjunction of the area metric.

U-pooling and T-pooling methods are proposed to assist
with usage of the area metric (Ferson et al. 2008; Li et al.
2014; Liu et al. 2011). While the area metric can validate the
prediction with a small number of data, conducting a few more
experiments could still be a burden to the analysts. The U-
pooling method can ease this burden by pooling all experimen-
tal observations at different validation sites into a u-value CDF
(Ferson et al. 2008; Li et al. 2014; Liu et al. 2011). Through the
u-pooling technique, the area metric takes advantage when mul-
tiple experiments at various validation sites are available. The
original u-pooling method is only applicable for a single-system
response at a single validation site. To extend the usage of the
area metric for validating correlated multiple responses, Li et al.
(2014) proposed the t-pooling method, accompanied by prob-
ability integral transformation (PIT). The multivariate PIT
method transforms the joint CDF of the system responses into
aunivariate CDF, and then, the t-pooling method integrates the
evidence from all relevant data of multiresponse quantities over
an intended validation domain into a single measure to assess
the overall disagreement. In general, the surveyed U-pooling
and T-pooling validation methods that employ the area metric
appear to be useful only when the model turns out to be highly
accurate over the set of validation points and the validation
uncertainty is small enough to establish this tightly. Then, the
model can be justified for prediction without adjusting or
correcting for prediction bias and uncertainty before predicting
at new conditions beyond the validation database. However, in
common where observed and predicted PDFs of system re-
sponses (outputs) do not closely overlie each other, then pres-
ently, unsolved difficulties exist with the above approach. One
very general methodology demonstrated to handle more diffi-
cult problem conditions with significant validation bias errors
approximately corrected for extrapolative predictions (with
extrapolation-scaled uncertainty on the correction) is the fol-
lowing (Romero 2019).

Even though the area metric is the promising method in the
current V&V field, there have also been attempts to develop
other metrics. A validation metric called a model reliability metric
for stationary system responses was proposed by Rebba and
Mahadevan (Mullins et al. 2016; Rebba and Mahadevan
2008). The model reliability metric is a direct measure of model
prediction quality and has a strength in its computational ease.
The metric may be meaningful in that it provides a statistical
result of the difference (bound between 0 and 1) between the
probability distribution from observation and prediction.
However, robustness can be a problem since the expertise or
experience of the user is required to determine the tolerance limit.
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Also, since the number of experiments is limited compared to the
number of simulations, the probability distribution of observation
cannot be estimated accurately. Therefore, there is a disadvantage
in that an accurate value of the model reliability metric cannot be
calculated unless a sufficient number of experiments are avail-
able. This means that the model reliability metric is still not a
better choice than the area metric that takes certain types of
epistemic uncertainty into account.

5.2.2 Validation metrics for dynamic system responses

For system responses in a time-dependent or frequency-
dependent domain, a validation metric requires an ability to
quantify the agreement or the disagreement between two dy-
namic responses. A validation metric should catch the differ-
ence in important features of dynamic response, for example,
magnitude or phase. Several validation metrics have been de-
veloped and these validation metrics are classified into two
categories: (1) single-value metrics and (2) comprehensive
metrics (Mongiardini et al. 2010).

Single-value metrics give a single numerical value that rep-
resents the agreement between the two dynamic responses.
Various types of single-value metrics have been proposed, in-
cluding relative error (Schwer 2007; Kat and Els 2012), vector
norms (Sarin et al. 2010), root mean square error (Mongiardini
etal. 2010), Theil’s equality (Murray smith 1998; Whang et al.
1994), Zilliacus Error and Whang’s inequality (Murmann et al.
2016; Whang et al. 1994), correlation coefficient (Mongiardini
etal. 2010), weight integrated factor (WIFac; Twisk et al. 2007;
Twisk et al. 2007), and index of agreement (Willmott et al.
2012). The main limitation of single-value metrics is that they
can measure the error in one aspect alone, such as magnitude or
phase, but not in multiple aspects. Comprehensive metrics, on
the other hand, treat the features of dynamic response separate-
ly, such as magnitude, phase, or slope. A single-value compre-
hensive metric is constructed by combining individual metrics.
One important characteristic that a comprehensive metric
should have is that each metric should be independent. For
example, the phase metric should be insensitive to difference
in magnitudes but sensitive to difference in phases. In an earlier
study by Geer, a comprehensive metric was proposed (Geers
1984; Kwasniewski 2009; Mongiardini et al. 2009, 2013;
Murmann et al. 2016), followed by various metrics including
Russell (Russell 1997), Sprague and Geer (Sprague and Geers
2004; Lee and Gard 2014; Schwer 2007), and Knowles and
Gear (Schwer 2007; Lee and Gard 2014; Sarin et al. 2010;
Mongiardini et al. 2010). Detailed explanations for each metric
are beyond the scope of this paper.

In terms of comprehensive metrics, Sarin et al. (2010) de-
veloped an objective rating metric, named Error Assessment of
Response Time Histories (EARTH). Similar to other compre-
hensive metrics, this metric separates the features of dynamic
responses into phase, magnitude, and slope. To separate the
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features into three, the EARTH metric implements dynamic
time warping (DTW). In later work by Zhan et al. (Zhan et al.
2012a; Fu et al. 2010), principal component analysis (PCA)
was used to quantitatively assess the agreements of important
features of multiple dynamic responses simultaneously. The
DTW and PCA align multiple points of the other time history
that lie in different temporal positions, so as to compensate for
temporal shifts. Similarly, for frequency-dependent system re-
sponse, Jiang and Mahadevan (2011) and McCusker et al.
(2010) used a wavelet transform (WT) that decomposes a dy-
namic system response into a set of time domain basis functions
with various frequency resolutions. Feature extraction is an
important element for model validation of a dynamic system;
however, this paper does not cover that in detail. Further infor-
mation about feature extraction is found in the literature; Jiang
and Mahadevan (2011) provide a good review.

Although each of these metrics has useful characteristics
(e.g., magnitude, phase, slope or mixed), the ultimate limita-
tion of them is that they ignore the uncertainties in the dynam-
ic responses from experiments and simulation (Kokkolaras
et al. 2013). Sarin and Kokkolaras (Sarin et al. 2010; Zhan
et al. 2011a, b) used average residual and its standard
deviation to compare time histories for validation of a
simulation model. Average residual has a disadvantage in
that positive and negative error at various points may cancel
each other. To compensate for this, its standard deviation is
adopted, which represents how much error is distributed from
the average residual. Xi et al. (2015) proposed a validation
metric for general dynamic system responses under uncertain-
ty which makes use of the U-pooling approach and extends it
for dynamic responses. A future validation metric for dynamic
system responses is expected to consider uncertainties in ex-
periments and simulation by adopting the above method.

5.3 Decision-making method

A validation metric is a stand-alone measure that indicates the
level of agreement or disagreement between computational
and experimental results. However, the acceptance criterion
for a yet-to-be-validated model is another important issue.
Suppose a desirable validation metric quantified the difference
between the experiment and the simulation. It is then necessary
to establish a method to determine the validity of the model
(Oberkampf and Trucano 2002). Statistical hypothesis testing
with a specified level of significance is widely used as a
decision-making tool for model validation (Kokkolaras et al.
2013; Chen et al. 2004; Jung et al. 2014). Hypothesis testing
aims to determine whether the acceptance or rejection of a
model is valid or not using quantitative measurements of the
discrepancy between the experiment and the simulation. Two
kinds of hypothesis testing have been studied: classical and
Bayesian (Oberkampf and Barone 2006). The significant dif-
ference between the two testing methods is that classical

testing focuses on model rejection in the validity check, where-
as the Bayesian method focuses on model acceptance by using
prior information (Liu et al. 2011). The following subsections
provide a brief discussion of both classical hypothesis testing
and Bayesian hypothesis testing.

5.3.1 Classical hypothesis testing

Classical hypothesis testing is a well-developed statistical
method for accepting or rejecting a model based on statistics
(Kat and Els 2012; Oberkampf and Barone 2006; Chen et al.
2004; Jung et al. 2014; Ling and Mahadevan 2013). First, the
null hypothesis (Ho: fipre = fexp =0) and the alternative hy-
pothesis (Hy: fipre = fexp 7 0) are defined. The former means
that the difference between the predicted and observed system
responses is not statistically significant; the latter means there
is a statistically significant difference. Hypothesis testing is
based on test statistics. If the observed value of the physical
observation test statistic falls outside of the critical region of
the test statistic, the null hypothesis is rejected, meaning that
the observations from experiments and the simulation predic-
tion are significantly different. The corresponding P value is
calculated as the probability that the test statistic will fall out-
side the range defined by the calculated value of the test sta-
tistic under the null hypothesis (Ling and Mahadevan 2013).
Classical hypothesis testing is a method to compare two dis-
tributions either by using the first two moments or the full statis-
tical distributions. To compare statistical moments, the ¢ test sta-
tistic and the F test statistic can be used to examine the consis-
tency of the mean and variance (Rebba and Mahadevan 2006).
To compare the full distribution, commonly, the differences be-
tween the empirical and prediction CDFs are measured. For this
purpose, the Anderson—Darling test, the Kolmogorov—Smirnov
(K=S) test, and the Cramer—von Mises test were introduced and
are found in the literature (Rebba and Mahadevan 2008).
‘Wrong decisions, or statistical errors, can be made in statisti-
cal hypothesis testing (i.e., type 1 and 2 errors). Type 1 error
denotes an incorrect rejection of a true null hypothesis (Hy) that
the system response from a computational model follows the
system response from experiments; an alternative hypothesis
(H,) stands for the opposite (Jung et al. 2014). Type 2 error is
the failure to reject a false null hypothesis. By adjusting the
criteria, the rate of type 1 or 2 error is determined. As type 1
error (or significance level, o) increases, type 2 error decreases.
Therefore, a high type 1 error should be used for validity checks.
According to Liu et al. (2011), classical hypothesis testing
seldom rejects a better model. A problem arises when a small
amount of physical experiment data is available; this is com-
mon in many fields. Comparing full distribution data is im-
possible, but with a small number of data, there is possibility
that the result is not trustworthy. In this situation, the confi-
dence interval of prediction distribution can be used by
checking if the observed data fall inside the interval (Halder
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and Bhattacharya 2011; Ghanem et al. 2008; Buranathiti et al.
2006; Chen et al. 2004). However, this strategy can tend not to
reject an incorrect model, since a small number of data fall
inside the confidence interval of prediction with high possibil-
ity (Liu et al. 2011). Furthermore, specifying the confidence
level creates another problem, since a small perturbation of the
confidence level largely affects the results of acceptance or
rejection. On the other hand, a large number of samples can
give misleading results, because as the number of samples
increases, the null hypothesis tends to be rejected at a given
significance level (Ling and Mahadevan 2013). Above all, it
should be noted that failing to reject the null hypothesis does
not prove that null hypothesis is true.

5.3.2 Bayesian hypothesis testing

Bayesian estimation has been developed for updating statisti-
cal models of uncertain parameters in the computational mod-
el, especially when there is not enough data for statistical
modeling of the input parameter, as discussed in Section 4.3.
The goal of the validation problem, however, is to assess the
predictive capability of the model, not to optimize the agree-
ment between the model and the measurement. For the pur-
pose of validation, the Bayesian hypothesis is to utilize
Bayesian analysis or Bayesian statistical inference in hypoth-
esis testing. Oberkampf describes how Bayesian hypothesis
testing has advantages over classical hypothesis testing by
incorporating an analyst’s prior belief of model validity
(Oberkampf and Barone 2006; Li et al. 2014). Mahadevan
and coworkers used the Bayesian methodology to quantify
the agreement between the computer model prediction and
physical test results (Mahadevan and Rebba 2005). Rebba
and Mahadevan (2006) and Jiang and Mahadevan (2008) used
point Bayesian hypothesis testing to infer how strongly the
experimental data supports the null hypothesis (Ho: fipre —
Hexp=0) to accept the model as opposed to the alternative
hypothesis (H;: fipre = fexp#0) to reject the model. Jiang
and Mahadevan (2008) later formulated the interval-based
hypothesis test (Ho: |ftpre = fexp| < €) and concluded that the
interval-based hypothesis test provides a more consistent
model validation result because rejection of the point null
hypothesis merely proves that the prediction and the observa-
tion are not exactly the same. Other work showed that as the
amount of data increases, the interval-based method con-
verges to the correct inference (Jiang and Mahadevan 2008).

In some studies, Bayes factor B is used as a validation
metric based on the hypothesis testing (Jiang and
Mahadevan 2009a, b; Chen et al. 2008; Jiang et al. 2013a).
Basically, the Bayes factor looks at the ratio of the posterior
distribution of the null and alternative hypothesis to infer
whether the experimental data fall inside the statistical popu-
lations from the simulation. In addition, it can be interpreted as
a ratio of relative likelihood of the null hypothesis that the
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experimental data support the predictions and the alternative
hypothesis that the data does not support the predictions. The
Bayes factor (B) can be expressed as

B, — Pr{data|Ho : p = py, 0 =00}
0 Pr{datalH; : p#p,, o#oo}

_ L(data|:u'01 00)
(12 (datal s, o) 27" (11, o) dpdor

where 1y and o, are the mean and standard deviation of the
prediction, respectively. In the right-hand side of the (11),
L(data| o, 0p) is the likelihood of observing the data under
the null hypothesis and the denominator means the integration
of any competing distribution that the data can support. The
Bayes factor can also be expressed as

/P, o data)
P (s o)

(11)

B (12)

U=ty 0=0

where /"(1, o) is the prior PDF of the mean and standard
deviation under the alternative hypothesis, and °*'(y, o data)
is the posterior PDF of the mean and standard deviation after
being inferred by data. As a large Bayes factor value indicates
that the observation from experiments increasingly supports
the prediction results, it acts as a quantitative metric as well as
a decision method. Jiang and Mahadevan (2007) showed that
the threshold of the Bayes factor for model acceptance can be
derived based on a risk vs. cost trade-off, thereby aiding in
robust, meaningful decision-making.

It is noteworthy that the null hypothesis in classical hypothesis
testing is not accepted with confidence even if the test statistic falls
into the confidence interval. However, Bayesian hypothesis test-
ing can allow a confident result via the assistance of prior expert
knowledge. Even when only one experimental data point is avail-
able, the Bayesian method still can identify whether the simula-
tion results and the experiment results belong to the same popu-
lation. An additional desirable feature is that adding more data
increases the confidence. It is also worth noting that the Bayesian
method can be used for model updating even when a large
amount of data is not available at present, but when additional
future experiments are planned. However, it can be misleading if
the experts have inconsistent prior knowledge. Furthermore,
Bayesian test results are focused on the statistical moments (e.g.,
mean and standard deviation), not the full distribution.

6 Conclusions and remaining challenges
in statistical model calibration and validation

This paper reviews methods and development trends for sta-
tistical model calibration and validation. The review begins
with a systematic categorization of uncertainty. Based on the
categorized uncertainty structure, the entire process of
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statistical model calibration and validation is divided into
three problems: (1) the forward problem, (2) the inverse prob-
lem, and (3) the validation problem. For each of the three
problems, the review summarizes the published literature
and the developed methodologies. This review not only ex-
plores research works on statistical model calibration and val-
idation but also examines statistical methodologies that can be
used in each of the three problems of statistical model calibra-
tion and validation. This study is expected to provide a general
guideline for constructing calibration and validation proce-
dures in practical applications.

To perform statistical model calibration and validation suc-
cessfully, several challenges must be addressed including ad-
dressing the forward, inverse, and validation problems.
Challenges and future opportunities include:

1) With unlimited resources, statistical model validation
based on developed methodologies would not be a prob-
lem. However, in real-world settings, there is always a
need to minimize the cost of statistical model validation.
Most of the costs related to existing methods are paid for
designing and conducting validation experiments that in-
clude as many sources of uncertainty as possible. Thus,
the design of validation experiments is perhaps the most
important part of the process. Nevertheless, studies on
design of validation experiments are still few in number.
The reason for this is because each case study has a dif-
ferent purpose and different resources for the validation
experiments. A general study on design of validation ex-
periments with limited resources will likely be proposed
in the future. At the same time, proper results of statistical
model validation can convey credibility and confidence in
statistical analysis in order to make better decisions about
whether to believe the capability of a computational mod-
el. Furthermore, statistical model validation is not only to
assess the degree of model accuracy but can also be very
useful for effective design process, decision-making for
usage of model, estimating confidence on model
prediction, etc. Another challenge on model validation
is to deal with epistemic uncertainty due to limited data.
Appropriate conservativeness is not easy to achieve
given lack of test data. A related matter is the extrapola-
tion of prediction bias (or a correction) from calibration
and/or validation points to prediction points in the
modeling space. Appropriate packaging of information
from the validation assessment to best enable prediction
bias correction and its extrapolation is extremely
important but not yet well studied or solved by the veri-
fication, validation, and uncertainty quantification com-
munity. This is an area ripe for intensive future research
and will impact the optimal development of validation
methods and their use by the engineering analysis
community.

2) One function of uncertainty characterization is to con-
struct an intact PDF for fully describing the uncertainty
in observed system responses. When observing the sys-
tem responses through validation experiments, it is diffi-
cult to avoid uncertainties during measurement. For ex-
ample, the same biased sensor or biased experimental
environments may cause bias error in observed system
responses (systematic error); likewise, aleatoric uncer-
tainty exists in measurement sensors (random error). In
general, these two types of error occurring in measure-
ment are often disregarded due to lack of information
associated with the two types of error. Future studies on
statistical model calibration and validation will enable
engineers and designers to avoid bypassing the obvious
existence of systematic and random errors.

3) There is a strong demand for acquiring uncertainty of dy-
namic system responses. As discussed in Section 5, system
responses are classified into stationary and dynamic re-
sponses. The state-of-the-art technique for uncertainty prop-
agation involves obtaining a PDF of the system response
with which only the uncertainty of the stationary system
responses can be characterized. A PDF has difficulty in
acquiring the uncertainty of dynamic system responses.
As a result, model analysts are reluctant to conduct statisti-
cal model validation in regard to dynamic system responses.
However, considering diverse system responses in model
validation helps assessing the accuracy of a computational
model in a larger prediction domain. Various statistical
methodologies on stochastic or random processes are avail-
able. Applying those methodologies, further studies can
provide calibration and validation methodologies for vari-
ous kinds of system responses.

4) In the same context, there is a need for a stochastic validation
metric or a calibration metric for dynamic system responses.
Numerous deterministic validation metrics are available to
compare the predicted and the observed dynamic system
responses. These metrics are effective in analyzing the dif-
ference in important features of a dynamic response but have
limitations in considering uncertainties. Future work is need-
ed to develop a stochastic validation metric based on
existing deterministic validation metrics.

5) For the inverse problem, variables without enough infor-
mation are designated as calibration variables. Because
building a large-scale model requires the use of numerous
inputs for describing the physical reality, there is a great
chance that models for practical applications will have
many epistemic variables. From an accuracy perspective,
an excessive number of calibration variables may result in
an undetermined problem or an indeterminate problem.
An indeterminate problem is a problem of multiple solu-
tions. In model calibration, an undetermined problem oc-
curs when the number of calibration variables outnum-
bers the number of constraints. (A system response or a
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physical relationship between variables can act as a con-
straint that restricts the degrees of freedom produced by
the calibration variables.) When an undetermined system
is formulated, the calibration result can be unstable and
inaccurate, depending on the initial points, because infi-
nitely, many optima are possible for calibration variables.
Future studies are needed to find a solution to deal with
the undetermined problem.

6) For both optimization-based and Bayesian-based ap-
proaches, the results of model calibration depend on the
preliminary assumption. In optimization-based model cali-
bration, the initial set value of statistical parameters of the
assumed probability distribution is calibrated by the optimi-
zation process. In Bayesian-based model calibration, the pri-
or distribution is updated with newly observed data. Thus, a
wrongly assumed probability distribution can lead to an in-
accurate calibration result. Moreover, for optimization-based
model calibration, inappropriate setting of initial values for
statistical parameters can increase the number of iterations
needed to find the optimum. Generally, an early assumption
is made upon experience of model developers. A subjective
decision by experts is not negligible; it is sometimes even
helpful when the data for calibration is insufficient. However,
methods highly dependent on assumptions cannot avoid hu-
man error. Therefore, future advanced development of the
inverse problem, which is objective and less dependent on
prior assumption, is required to build highly predictive com-
putational models.

7) In general, local optimization algorithms or gradient-based
optimization algorithms have been used to solve the inverse
problem for efficiency for conducting optimization-based
model calibration. Alternatively, a global optimization algo-
rithm (nongradient or evolutionary) has an increased chance
of finding the global optimum, but at a high computational
cost. The problem is when the optimization-based calibra-
tion problem is formulated as not globally convex. In this
case, local optimization algorithms do not ensure that sub-
sequent iterations converge to the global optimum. The
global convexity of the calibration problem can be affected
by nonlinearity of a computational model, a calibration met-
ric, or a type of assumed probability distribution. Research
is needed for a robust methodology with which the global
optimum is always found using gradient-based optimization
algorithms starting from the initial calibration variables.

8) What should we do if a constructed computational model
is revealed to be invalid? As investigated in this paper,
numerous model validation methodologies can consider
recognized (accounted for) uncertainties. Validation prob-
lems can reveal the presence of unrecognized (unaccount-
ed for) uncertainty, which can cause invalidity of a com-
putational model. The sources of unrecognized (unac-
counted for) uncertainty are expected to eventually be
uncovered, because the process of model validation is

@ Springer

not only a process of assessing the accuracy of a compu-
tational model but also a process of improving the model
based on the validation results. Therefore, there is a need
for future work that enables development of a systematic
procedure for uncovering the sources of unrecognized
(unaccounted for) uncertainties. There has been little
work to date on this topic. One recently proposed method
for unrecognized (unaccounted for) uncertainty is called
model refinement (Liang and Mahadevan 2014; Jung
et al. 2014; Oh et al. 2016). Future work on this issue is
expected. Additionally, the feedback information derived
from the forward, inverse, and validation problems is an
important topic for future research.
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