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Abstract: While there are many data-driven diagnosis algorithms for fault isolation of complex
systems, a new challenge arises in the case of multiple operating regimes. In this case, the diagnosis
is usually carried out for each regime for better accuracy. However, the problem is that different
results can be derived from each regime and they can conflict with each other, which may invalidate
the performance of fault diagnosis. To address this challenge, a methodology for selecting the most
reliable one among the different diagnostic results is proposed, which combines the Bayesian network
(BN) and the information value (IV). The BN is trained for each regime and a conditional probability
table is obtained for probabilistic fault diagnosis. The IV is then employed to evaluate the value of
several diagnostic results. The proposed approach is applied to the fault diagnosis of a train door
system and its effectiveness is proven.

Keywords: multiple classifier; Bayesian network; multiple operating conditions; train door system;
information value

1. Introduction

Health diagnostics of mechanical systems and remaining useful life (RUL) prediction brings
numerous benefits such as safety system operation, zero downtime, cost-effective maintenance
scheduling. To realize these aspects, many studies have been conducted under the name of prognostics
and health management (PHM). There are several review papers that address the recent research trend
of PHM [1–3]. Basically, PHM can be grouped into two main aspects: fault diagnosis and prognosis.
Diagnosis is the prior stage of prognosis because accurate fault isolation and fault severity estimation
are directly related to the accuracy of prognostics. Most of the fault diagnostics approaches can be
categorized into the model-based and data-driven method [4]. In the case of model-based methods,
users are required to establish mathematical models of the system based on the physics of failure,
in which the physical parameters are estimated from the sensors data [5]. Data-driven approaches
use large amounts of training datasets to train machine learning algorithms to diagnose the health
state of the system [6]. Recently, deep learning algorithms are gaining popularity as an alternative
option in the data-driven diagnostics approach due to less involvement of features processing [7–10].
Each approach has its own pros and cons. Model-based methods are superior in terms of accuracy.
However, it is rarely possible to establish such a model. Data-driven approaches are more common in
the field, but require a large amount of data that is not easily available in the industry [11,12]. Users
should choose a proper one based on their environments for effective PHM implementation.

In the railway system, the passenger access system (PAS) is known to operate under highly
stressed conditions over time and is regarded as one of the most critical parts in the view of safety.
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PAS is responsible for 30–40% of the failures during operation [13]. In order to prevent such failures,
model-based and data-driven approaches have been applied to the fault diagnostics of the PAS. In the
model-based approach, Bond Graph modeling of a train door is employed to carry out a global FDI
(Fault Diagnostics and Isolation) for the fault indicators and residual threshold in the presence of door
failures [14]. Lin et al. established a mathematical model of an urban train door system to estimate
physical parameters in the case of normal and faulty conditions [15]. Then, the principal component
analysis (PCA) is applied to perform the fault diagnosis. Dassanayake et al. performed fault detection
and diagnosis of an electric train door by parameter estimation of the system model [16]. In the
knowledge-based and data-driven approach, a Petri net behavioral model, which includes normal and
faulty condition operating, is established, which is used for fault diagnosis of PAS [17]. Similar to the
train door system, Yan and Lee used information gathered from controllers or sensors in the elevator
door system and performed on-line performance degradation assessment and root cause analysis using
multiple logistic regression (LR) [18]. Apart from these approaches, there have been continued studies
employing the Bayesian network (BN) for the fault diagnosis, which is a probabilistic causal network
that represents a set of random variables and their conditional dependencies. For decades, it has
been widely applied in numerous domains from reliability engineering, risk analysis, and medical
diagnosis [19]. In the fault diagnosis, there have been several approaches using BN. For example,
Yang and Lee applied BN to predict the wafer quality of a semiconductor manufacturing system and
inferred which sensors are directly related to the wafer quality [20]. Xu et al. performed fault inference
for rotating flexible rotors with an attempt to enhance the reasoning capacity under conditions of
uncertainty with BN [21]. Cai et al. applied PCA and used the principal components as the input nodes
of BN for the fault diagnostics of a three-phase inverter [22]. Zheng et al. combined fault tree (FT)
and BN to diagnose the bridge crane spreader. This method proved that the proposed method could
reduce the amount of required data for model training by using prior knowledge for the system [23].
More applications of the BN in the fault diagnosis can be found in [19].

In this study, the BN is applied to the train door system for the purpose of fault diagnosis using
the motor current signals acquired during the door operation. Although there exists literature with the
similar applications, a new challenge arises in this problem, which is the issue of multiple operation
stages, namely, the train door moves under three different conditions: acceleration, constant motion,
and deceleration. As will be discussed in the main text, the diagnosis performance is significantly
affected by whether the velocity stages are considered separately or not. In order to achieve better
results, it is more advantageous to divide the current signal into different stages, and training is
performed respectively.

The problem is, however, that the algorithm can yield different diagnosis results in each stage,
which can confuse the identification of the fault modes. Several methods have been proposed to deal
with the issue of different or competing results from multiple classifications. Zhang et al. combined
multiple neural networks to obtain a more reliable diagnosis than a single one by using the modified
majority voting method [24]. The result was compared with original majority voting, averaging, and
weighted averaging. Niu et al. proposed a decision fusion for fault diagnosis that integrates data from
different types of sensors and decisions of multiple classifiers [25]. The multiple classifiers are fused by
using a multi-agent combination algorithm. W. Yan and Xue introduced a dynamic fusion approach
and applied it to an aircraft engine fault diagnosis [26]. Their performance was compared with other
fusion approaches such as simple averaging and local accuracy-based selection. Existing pieces of
literature, however, have focused only on the fusion of different algorithms trained by the data under
the same operating condition. On the other hand, this study aims at the fusion of different diagnosis
results by multiple operation data using a single BN algorithm.

To solve this problem, this paper proposes a new method that introduces information value (IV)
based on the training data to suggest the most reliable classifier. The paper is organized as follows.
Section 2 introduces the theoretical background of the Bayesian network. In Section 3, the basic concept
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of IV is explained. Application to the train door system is introduced in Section 4 and finally, the paper
is concluded in Section 5.

2. Bayesian Network

Bayesian network (BN) is a probabilistic graphical model which represents conditional
dependencies or causal connections between a set of random variables via a Directed Acyclic Graph
(DAG). BN is capable of reasoning under uncertainty, where the nodes represent variables (discrete
or continuous) and links represent direct connections between them. In addition, BN models the
quantitative strength of the connections between variables, allowing probabilistic beliefs about them to
be updated automatically as new information becomes available [27]. The BN-based fault diagnosis
consists of three steps: (1) Determine the network structure, (2) establish the conditional probability
table (CPT), and (3) carry out probabilistic fault diagnosis based on given evidence. In the BN, the DAG
is called the structure and the values in the CPT are called the parameters.

2.1. Basis of Bayesian Network

Let us assume a network model which consists of four nodes named X1, X2, X3, and X4. The joint
probability of the illustrated model can be written as

P(X1, X2, X3, X4) = P(X1)P(X2
∣∣∣X1)P(X3

∣∣∣X1, X2)P(X4
∣∣∣X1, X2, X3) (1)

where 24
− 1 = 15 conditional probability parameters are required to construct the full joint probability

when each node has binary status. On the other hand, the BN assumes conditional independence which
leads to the reduction of the required number of parameters to calculate joint probability. In the network
model shown in Figure 1, X2 is the parent node of X3 and X4, which are conditionally independent
each other, and X1 is non-immediate parent nodes of X4, i.e., P(X4|X1, X2, X3) = P(X4

∣∣∣X2) . Applying
these relations, the joint probability can be obtained as follows

P(X1, X2, X3, X4) = P(X1)P(X2)P(X3
∣∣∣X1, X2)P(X4

∣∣∣X2) (2)

where the number of parameters is now reduced to 8. Based on this, any type of probability can be
calculated with joint probability.
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BN can be established based on the domain expert. In some cases, however, it is not a simple matter 
to find the structure of a BN. In this case, the structure can be determined automatically by applying 
BN learning algorithms. Among others, the score-based approach is one of the most popular 
methods, including the Akaike information criterion (AIC), the Bayesian information criterion (BIC), 
the minimum description length (MDL), and K2 [20]. This paper employs the K2-algorithm which 
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Figure 1. An example of a Bayesian network.

2.2. Structure Learning and Parameter Learning for Bayesian Network

The first step of BN-based fault diagnosis is to establish a network structure which reflects the
interconnection between random variables. In simple words, the structure implies a set of conditional
independence relations among the variables involved [28]. When a domain expert or system user
already understands paths of possible influence between variables or the fault tree, the structure
of BN can be established based on the domain expert. In some cases, however, it is not a simple
matter to find the structure of a BN. In this case, the structure can be determined automatically by
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applying BN learning algorithms. Among others, the score-based approach is one of the most popular
methods, including the Akaike information criterion (AIC), the Bayesian information criterion (BIC),
the minimum description length (MDL), and K2 [20]. This paper employs the K2-algorithm which was
developed by Cooper [29] and is known as the simplest approach. The benefit of the K2 algorithm is
that prior knowledge for the network structure can be embedded by defining node order in advance
to reduce the unnecessary computation. Given database D and a candidate network structure BS,
the K2 algorithm searches the BN structure, maximizing the probability P(Bs

∣∣∣D) . This algorithm
requires node ordering and an upper limit of the number of parent nodes as the input to reduce the
computational complexity. Then, the algorithm searches the most likely set of parent nodes which
precedes the current node based on the node ordering by calculating the probability of each case.
In other words, it searches the set of parent nodes maximizing the following probability function:

g(i,πi) =

qi∏
j=1

(ri − 1)!(
Ni j + ri − 1

)
!

ri∏
k=1

Ni jk! (3)

where i is the index of the node variable xi,πi is the set of its parent nodes, qi is the unique instantiations
of the parents of xi in the database, ri is the number of all possible values of xi, and Ni jk is the number
of cases in the database in which the variable xi has kth value, and the parents of xi are instantiated
with the jth instances among all possible instantiations of the πi. Note that Ni j can be obtained by

ri∑
k=1

Ni jk. Algorithm 1 illustrates the pseudo-code for the K2 algorithm and details can be found in

references [29–31]. As a result, optimum BN structure is determined based on the K2 algorithm.

Algorithm 1: The K2 algorithm

1: procedure K2;
2: {Input: A set of n nodes, an ordering on the nodes, an upper bound u on the
3: number of parents a node may have, and a database D containing m cases.}
4: {Output: For each node, a printout of the parents of the node.}
5: for i := 1 to n do
6: πi := ∅;
7: Pold := g(i, πi);
8: OKToProceed : true
9: while OKToProceed and |πi| < u do
10: let z be the node in Pred(xi) - πi that maximizes g(i, πi ∪ {z});
11: Pnew : g(i, πi ∪ {z});
12: if Pnew > Pold then
13: Pold : Pnew;
14: πi := πi ∪ {z}
15: else OKToProceed : false;
16: end {while};
17: write (‘Node:’, xi, ‘Parents of this node:’, πi)
18: end {for};
19: end {K2};

Once the network structure is determined by the K2 algorithm, next is to establish the CPT.
CPTs are usually obtained by two ways: domain expert’s knowledge or learning from normal and
fault data [22]. In this paper, CPTs are calculated from training data by implementing the maximum
likelihood estimation (MLE) [32]. When database D consists of N samples and is expressed as
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D = {D1, D2, . . . , DN}, MLE tries to find the best parameter θ by maximizing the likelihood function,
l(θ|D). The log-likelihood of θ is represented as follows:

l(θ|D) = log P(D|θ) = log
N∏

l=1

P(Dl|θ) =
N∑

l=1

log P(Dl|θ) =
∑
i jk

Ni jk logθi jk (4)

where θi jk is defined as kth probability of a conditional probability of P
(
Xi = k

∣∣∣πi = j
)
. In other words,

the MLE estimate θ∗i jk for θi jk can be calculated as follows:

θ∗i jk =
Ni jk

Ni j
(5)

After the model structure and the CPT of all nodes are established, the BN can be used to propagate
probabilities from the root to the following other nodes under given evidence [33].

3. Information Value

Information value (IV) is known as a very useful concept for variable selection during the model
construction in the industry. The IV helps to rank variables based on their significance for the predictive
model and it can be stated as follows:

IV =
∑{

P(E|H) − P(E
∣∣∣H)

}
log

P(E|H)

P(E
∣∣∣H)

(6)

where H and E represent the hypothesis or theory and some evidence, respectively. The negation of H
is denoted by H. The first term on the right, P(E|H) − P

(
E
∣∣∣H)

, measures the importance of deviation.

The second term, log P(E|H)/P
(
E
∣∣∣H)

, known as the weight of evidence (WOE), represents the deviation
between distributions, which is the ratio of likelihood and is mathematically equal to the logarithm
of the Bayes factor. In general, the IV values are interpreted as shown in Table 1 [34]. In this study,
the hypothesis and evidence correspond to the normal condition of the system and the feature vectors
that are used to diagnosis the system health, respectively.

Table 1. Interpretation of information value.

Information Value (IV) Attribute Predictiveness

Less than 0.1 Weak
0.1 to 0.3 Medium
0.3 to 0.5 Strong

>0.5 Over-predicting

4. Application: Train Door System Fault Diagnosis

4.1. Data Acquisition and Preprocessing

In this study, motor current and encoder signals acquired from the door control unit (DCU) with
the sampling rates of 100 Hz and 10 Hz are utilized during the open and close operation of the train
door. Figure 2a,b show the train door system test rig and the current signal obtained during the
operation. In the figure, the spindle nut assembly moves along the spindle where the cam follower
bearing slides within the track of the base frame is parallel to the spindle. Attached to this assembly
is the hanger assembly, which hangs the door below and moves along the roller track by the rollers.
Note that the eccentric roller exists inside the hanger assembly to prevent vibration during the door
operation. Based on the experiences, it is known that the cam follower bearing and roller are prone
to fail due to the wear. Therefore, signals are acquired for the conditions of normal and two seeded
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faults to the bearing and roller. The faults are shown in Figure 2c, in which the outer diameter of the
bearing is reduced from 22.3 mm (normal) to 21.8 mm (fault) to induce loosening of locking, and the
shaft diameter of the roller is reduced from 10.0 mm (normal) to 9.0 mm (fault) to simulate the wear
between the roller and shaft. The door is operated under three different velocity conditions when it
opens and closes, which are the acceleration, constant speed, and deceleration.
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The three regimes can be identified by the encoder, and the acquired signals are shown in
Figure 3a,b for the open and close operation, respectively, distinguished by the symbols at each regime.
For more accuracy, it is better to carry out fault diagnosis by dividing the signal into these regimes and
extracting features, respectively. This is because the features can represent the condition in a certain
regime more clearly, while it may not be so for the whole period. Similar attempts have been made in
the literature [35,36] to cluster the data by the velocity regimes.
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By considering the three regimes corresponding to different input conditions, it also makes sense
to evaluate the features separately for different input conditions. Commonly used statistical features,
root mean square (RMS), max, mean and variance, are extracted from each regime as illustrated
in Table 2, which results in the total of 12 features. Since the BN usually deals with the discrete
variables, all the extracted features are transformed into the binary states, assuming that all the features
follow normal distribution, namely normal (1) and abnormal (0) where the anomaly is defined by the
exceedance of 95% confidence limit. In the table, velocity regimes are labeled as follows: acceleration =

1, constant = 2, and deceleration = 3. Figure 4 illustrates the feature transformation process during the
open operation. The output dataset in the database consists of six variables: one velocity state (1, 2, or
3), four feature states (1 or 0), and one door state (norm, bearing, roller). Since the number of datasets
in each operation is 57, the total number of datasets for all three operating conditions becomes 171.
Among them, 70% are used for the training, which is to find parameters and structure of BN, while the
remaining 30% are used to test the model performance.

Table 2. Feature extraction for velocity condition.

Velocity RMS Max Mean Variance

1 RMS1 Max1 Mean1 Variance1
2 RMS2 Max2 Mean2 Variance2
3 RMS3 Max3 Mean3 Variance3



Sensors 2020, 20, 3952 8 of 14

Sensors 2020, 20, x FOR PEER REVIEW 8 of 15 

 

1 𝑅𝑀𝑆ଵ 𝑀𝑎𝑥ଵ 𝑀𝑒𝑎𝑛ଵ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒ଵ 
2 𝑅𝑀𝑆ଶ 𝑀𝑎𝑥ଶ 𝑀𝑒𝑎𝑛ଶ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒ଶ 
3 𝑅𝑀𝑆ଷ 𝑀𝑎𝑥ଷ 𝑀𝑒𝑎𝑛ଷ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒ଷ 

 
Figure 4. Feature transformation into the binary state during the open operation. 

4.2. Bayesian Network Model Construction 

As mentioned in Section 2.2, the optimum BN structure is constructed by using the K2 algorithm. 
The algorithm requires node ordering and the number of maximum parent orders as an important 
input. In this study, the velocity regimes and the door state are chosen as the root node at the top and 
the final node at the bottom, respectively. Node ordering is then set as: Vel, RMS, max, mean, var, door 
state, with the number of nodes n being six. The maximum number of parents u for a node is 
constrained at three to reduce complexity of the model. Using the training data, the BN structures are 
constructed by applying the K2 algorithm for the open and close operation as shown in Figure 5a,b 
respectively. As shown in the figure, different BN structures are obtained for each operation. For the 
open operation, door state (𝑆) is found to have conditional dependency on the Max, Mean and Var, 
whereas it has the Vel, Mean and Var in the close operation. These structures represent that the door 
health conditions can be estimated by monitoring the condition values of these nodes. Note that the 
structures in Figure 5a,b are those maximizing the probability function (3). In fact, the log of the 
function being −512.82 at the initial structure converged to −228.5 and −255.5, respectively, at the two 
optimum structures. Using the constructed BN, CPTs for open and close operation are obtained next 
based on the MLE approach. As an illustration, CPTs of the last node, which is the door state (𝑆), and 
three nodes connected with S are given in Tables 3 and 4. Once the BN and CPTs are available, they 
can be applied to diagnose the door health condition, i.e., fault can be predicted through the belief 
propagation of the network. Given a velocity condition (acc’ 1, const’ 2, or dec’ 3) and corresponding 
state (normal 1 or abnormal 0) of each feature, the door state is predicted by the posterior probabilities 
for the three failure modes: normal, bearing fault, and roller fault. For example, during the close 
operation, when Vel, RMS, and Max are at the state 1, 0, and 0, respectively, the BN indicates that the 
door has the chance of roller fault with 97.78%. This can be expressed in the form of conditional 
probability as P (S = Roller | Vel = 1, RMS = 0, Max = 0) = 0.9778. With this information, one can 
estimate the health condition of the train door system. For each of the training data, the door state is 

Figure 4. Feature transformation into the binary state during the open operation.

4.2. Bayesian Network Model Construction

As mentioned in Section 2.2, the optimum BN structure is constructed by using the K2 algorithm.
The algorithm requires node ordering and the number of maximum parent orders as an important
input. In this study, the velocity regimes and the door state are chosen as the root node at the top
and the final node at the bottom, respectively. Node ordering is then set as: Vel, RMS, max, mean, var,
door state, with the number of nodes n being six. The maximum number of parents u for a node is
constrained at three to reduce complexity of the model. Using the training data, the BN structures are
constructed by applying the K2 algorithm for the open and close operation as shown in Figure 5a,b
respectively. As shown in the figure, different BN structures are obtained for each operation. For the
open operation, door state (S) is found to have conditional dependency on the Max, Mean and Var,
whereas it has the Vel, Mean and Var in the close operation. These structures represent that the door
health conditions can be estimated by monitoring the condition values of these nodes. Note that the
structures in Figure 5a,b are those maximizing the probability function (3). In fact, the log of the
function being −512.82 at the initial structure converged to −228.5 and −255.5, respectively, at the two
optimum structures. Using the constructed BN, CPTs for open and close operation are obtained next
based on the MLE approach. As an illustration, CPTs of the last node, which is the door state (S),
and three nodes connected with S are given in Tables 3 and 4. Once the BN and CPTs are available,
they can be applied to diagnose the door health condition, i.e., fault can be predicted through the belief
propagation of the network. Given a velocity condition (acc’ 1, const’ 2, or dec’ 3) and corresponding
state (normal 1 or abnormal 0) of each feature, the door state is predicted by the posterior probabilities
for the three failure modes: normal, bearing fault, and roller fault. For example, during the close
operation, when Vel, RMS, and Max are at the state 1, 0, and 0, respectively, the BN indicates that
the door has the chance of roller fault with 97.78%. This can be expressed in the form of conditional
probability as P (S = Roller | Vel = 1, RMS = 0, Max = 0) = 0.9778. With this information, one can
estimate the health condition of the train door system. For each of the training data, the door state is
predicted in this way and validated by the true state. The accuracies of the open and close operation
are validated by using the training datasets and their results are 82.53 and 78.83%, respectively.
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Figure 5. Bayesian network structure: (a) open operation; (b) close operation (Vel: velocity, Max:
Maximum, Var: variance, S: door state).

Table 3. Conditional probability table during the open operation.

Max. Mean Var
Door Condition

Normal Bearing Fault Roller Fault

0 0 0 0.0333 0.2000 0.7667
0 0 1 0 0.7258 0.2742
0 1 0 0.2727 0.7273 0
0 1 1 0.1923 0.8077 0
1 0 0 0.8333 0.1667 0
1 0 1 0.2857 0.7143 0
1 1 0 0.3333 0.6667 0
1 1 1 0.9823 0.0177 0

Table 4. Conditional probability table during the close operation.

Vel. RMS Max
Door Condition

Normal Bearing Fault Roller Fault

1 0 0 0 0.0222 0.9778
1 0 1 0.1190 0.8810 0
1 1 0 1 0 0
1 1 1 1 0 0
2 0 0 0.0435 0 0.9565
2 0 1 0.3750 0.6250 0
2 1 0 0.7500 0.2500 0
2 1 1 0.5294 0.4706 0
3 0 0 0 0.1579 0.8421
3 0 1 0.0625 0.1875 0.7500
3 1 0 0.2857 0.7143 0
3 1 1 0.6308 0.3692 0

4.3. Fault Diagnosis Based on Information Value

As mentioned, when the system operates under different conditions and multiple diagnosis
models are established for each condition, the result can be different for each operating condition.
To resolve the conflicting issues in terms of diagnosis performance, one should determine which result
is the most reliable. In the train door system, three different fault prediction results were obtained
for three velocity conditions. As an example, Table 5 shows this problem, which diagnoses three
different door conditions for an open operation. That is, the door is considered to be bearing fault
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at the acceleration stage (Vel = 1) and the constant speed (Vel = 2), while normal at the deceleration
stage (Vel = 3). To overcome this problem, proposed information value (IV) is utilized to obtain a
single door condition by following the procedure described in the Figure 6. Table 6 describes the
example of IV calculation. Let H be the normal state, with its negation H being the other two fault
states. Evidence E represents the variables that are directly connected with door state node. For open
operation, E becomes Max, Mean, and Var. Based on the calculated IV in Table 6, one can recognize
that the deceleration stage (Vel = 3) shows the highest IV with 0.8340, which means among three stages,
the deceleration stage is the most reliable. Finally, diagnostic results from the deceleration stage are
employed. The test data are used to evaluate the performance of the BN constructed by the training
data, and the proposed IV-based decision-making process is applied to the BNs for open and close
operations. Note that six IVs are obtained during one reciprocal operation: open and close, three for
each operation. Table 7 shows the result of the IV calculation on arbitrarily chosen test data. As shown
in the table, IV shows the highest value at the acceleration stage in the close operation. As mentioned,
the result for the stage with the highest IV is considered to be the most reliable. Figure 7 compares
the accuracy of prediction using BN with and without applying the IV by using the confusion matrix.
The confusion matrix is widely used as model performance measure whose row and column represent
the predicted class from a trained model and its true class. In this application, classes 1, 2 and 3
represent, respectively, normal, bearing fault, and roller fault. Their diagonal elements represent the
number of records that are predicted correctly, whereas nondiagonal elements describe the number of
records that are misclassified. In other words, the matrix element of ith row and jth column represent
the number of samples that were classified as ith class, whereas their true class is jth class. In addition,
the percentage value written below the element represents the ratio between corresponding samples
and total number of samples. The percentage values colored as green and red in the last row or column
represent the rate of success and fail of classification, respectively, and their summation becomes 100%.
The diagonal element at the last column represents the accuracy of the model. The confusion matrix
shown in the paper is constructed by using MATLAB software [7]. Note that the results without
IV are those obtained for each of the three velocity stages and the highest probability is determined
as a diagnostic result. Therefore, the total number at each column is three times larger than those
with IV. On the other hand, the total number of test data for the results with IV reduces to one-third
because only the velocity condition whose IV is the maximum among the three is used for prediction.
As shown in Figure 7, after applying IV, the estimation accuracy increases during both open and close
operations. In addition, test results for the case that uses the open and close operations simultaneously
show the highest performance among three approaches using IV. This is because the classifier could
utilize six classification results during one cycle, which means that more information can be employed
to determine the door health state than other two approaches using single open or close model.

Table 5. Estimation result during one open operation.

Vel. Max Mean Var
Door Condition

Normal Bearing Fault Roller Fault

1 1 0 1 0.2857 0.7143 0
2 0 1 0 0.2727 0.7273 0
3 1 0 0 0.8333 0.1667 0

Table 6. Information value calculation during one open operation.

Vel Max Mean Var P(E|H) P(E|
¯

H) WOE IV

1 1 0 1 0.2000 0.3571 −0.5798 0.0911
2 0 1 0 0.3000 0.5714 −0.6444 0.1749
3 1 0 0 0.5000 0.0714 1.9459 0.8340
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Table 7. Information value during open and close.

Operation Vel IV
Door Condition

Normal Bearing Fault Roller Fault

Open 1 0.4987 0.2727 0.7273 0
Open 2 0.0240 0.0333 0.2000 0.7667
Open 3 0.0240 0.0333 0.2000 0.7667
Close 1 0.6318 0.1190 0.8810 0
Close 2 0.0231 0.5297 0.4706 0
Close 3 0.1600 0.6308 0.3692 0
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Figure 7. Comparison of fault diagnostic results before and after applying information value: (a) open
operation; (b) close operation; (c) open & close operation.

5. Conclusions

Fault prediction using a Bayesian network provides more information (i.e., probabilistic reasoning)
for effective reasoning than a deterministic fault diagnosis algorithm. To realize effective fault
diagnostics, operation conditions, such as rotating speed and loading condition, should be considered
properly. For this purpose, this paper performed regime partitioning, which is widely used to deal
with fault diagnosis problems under multiple operating conditions. In addition, information value
was proposed to deal with the situation when multiple diagnostic results exist, which are derived from
the results of each regime. Future work can be considered as two mainstreams: A continuous Bayesian
network will be considered to alternate binary Bayesian networks. Even if the Bayesian network was
originally developed for a binary condition, continuous versions are expected to show more accurate
results. In addition, a dynamic Bayesian network will be developed to deal with real-time data.

Author Contributions: Conceptualization, S.K.; writing—original draft preparation, S.K.; writing—review and
editing, N.H.K. and J.-H.C.; supervision, J.-H.C. All authors have read and agreed to the published version of
the manuscript.



Sensors 2020, 20, 3952 13 of 14

Funding: This research was supported by National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2019R1A2C2010028).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, J.; Wu, F.; Zhao, W.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design for
rotary machinery systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 2014, 42,
314–334. [CrossRef]

2. Pecht, M.; Jaai, R. A prognostics and health management roadmap for information and electronics-rich
systems. Microelectron Reliab. 2010, 50, 317–323. [CrossRef]

3. Xia, T.; Dong, Y.; Xiao, L.; Du, S.; Pan, E.; Xi, L. Recent advances in prognostics and health management for
advanced manufacturing paradigms. Reliab. Eng. Syst. Saf. 2018, 178, 255–268. [CrossRef]

4. Zerhouni, N.; Atamuradov, V.; Medjaher, K.; Dersin, P.; Lamoureux, B. Prognostics and Health Management
for Maintenance Practitioners-Review, Implementation and Tools Evaluation. Artic. Int. J. Progn. Heal. Manag.
2017, 8, 1–31. [CrossRef]

5. Isermann, R. Model-based fault-detection and diagnosis - Status and applications. Annu. Rev. Control. 2005,
29, 71–85. [CrossRef]

6. Introduction to Data-Driven Methodologies for Prognostics and Health Management. Available online:
https://link.springer.com/chapter/10.1007/978-3-319-55852-3_2 (accessed on 15 July 2020).

7. Kim, S.; Choi, J.H. Convolutional neural network for gear fault diagnosis based on signal segmentation
approach. Struct. Health Monit. 2018, 18, 1401–1415. [CrossRef]

8. Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van
Hoecke, S. Convolutional Neural Network Based Fault Detection for Rotating Machinery. J. Sound Vib. 2016,
377, 331–345. [CrossRef]

9. Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vásquez, R.E. Gearbox fault diagnosis based on
deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Signal. Process. 2016, 76–77, 283–293.
[CrossRef]

10. Long, J.; Zhang, S.; Li, C. Evolving Deep Echo State Networks for Intelligent Fault Diagnosis. IEEE Trans.
Ind. Inf. 2020, 16, 4928–4937. [CrossRef]

11. Sobie, C.; Freitas, C.; Nicolai, M. Simulation-driven machine learning: Bearing fault classification. Mech. Syst.
Signal Process. 2018, 99, 403–419. [CrossRef]

12. Kim, S.; Kim, N.H.; Choi, J.-H. Prediction of remaining useful life by data augmentation technique based on
dynamic time warping. Mech. Syst. Signal Process. 2020, 136, 106486. [CrossRef]

13. Turgis, F.; Copin, R.; Loslever, P.; Cauffriez, L.; Caouder, N. Design of a testing bench for simulating
tightened-up operating conditions of train’s passenger access. In Proceeding of the European Safety and
Reliability Conference (ESREL), London, UK, 11 April 2009; pp. 21–23.

14. Cauffriez, L.; Grondel, S.; Loslever, P.; Aubrun, C. Bond Graph modeling for fault detection and isolation of a
train door mechatronic system. Control Eng. Pr. 2016, 49, 212–224. [CrossRef]

15. Lin, S.; Jia, L.; Qin, Y.; Yu, B.; Wang, Y. Research on Urban Rail Train Passenger Door System Fault Diagnosis
Using PCA and Rough Set. Open Mech. Eng. J. 2014, 8, 340–348.

16. Dassanayake, H.; Roberts, C.; Goodman, C.J.; Tobias, A.M. Use of parameter estimation for the detection
and diagnosis of faults on electric train door systems. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2009, 223,
271–278. [CrossRef]

17. Boussif, A.; Ghazel, M. Model-Based Monitoring of a Train Passenger Access System. IEEE Access. 2018, 6,
41619–41632. [CrossRef]

18. Yan, J.; Lee, J. Degradation Assessment and Fault Modes Classification Using Logistic Regression. J. Manuf.
Sci. Eng. 2005, 127, 912–914. [CrossRef]

19. Cai, B.; Huang, L.; Xie, M. Bayesian Networks in Fault Diagnosis. IEEE Trans. Ind Inf. 2017, 13, 2227–2240.
[CrossRef]

20. Yang, L.; Lee, J. Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor
manufacturing systems. Robot. Comput. Integr. Manuf. 2012, 28, 66–74. [CrossRef]

http://dx.doi.org/10.1016/j.ymssp.2013.06.004
http://dx.doi.org/10.1016/j.microrel.2010.01.006
http://dx.doi.org/10.1016/j.ress.2018.06.021
http://dx.doi.org/10.1016/j.euprot.2015.07.015
http://dx.doi.org/10.1016/j.arcontrol.2004.12.002
https://link.springer.com/chapter/10.1007/978-3-319-55852-3_2
http://dx.doi.org/10.1177/1475921718805683
http://dx.doi.org/10.1016/j.jsv.2016.05.027
http://dx.doi.org/10.1016/j.ymssp.2016.02.007
http://dx.doi.org/10.1109/TII.2019.2938884
http://dx.doi.org/10.1016/j.ymssp.2017.06.025
http://dx.doi.org/10.1016/j.ymssp.2019.106486
http://dx.doi.org/10.1016/j.conengprac.2015.12.019
http://dx.doi.org/10.1243/1748006XJRR265
http://dx.doi.org/10.1109/ACCESS.2018.2860966
http://dx.doi.org/10.1115/1.1962019
http://dx.doi.org/10.1109/TII.2017.2695583
http://dx.doi.org/10.1016/j.rcim.2011.06.007


Sensors 2020, 20, 3952 14 of 14

21. Xu, B.G. Intelligent fault inference for rotating flexible rotors using Bayesian belief network. Expert Syst. Appl.
2012, 39, 816–822. [CrossRef]

22. Cai, B.; Zhao, Y.; Liu, H.; Xie, M. A data-driven fault diagnosis methodology in three-phase inverters for
PMSM drive systems. IEEE Trans. Power Electron. 2017, 32, 5590–5600. [CrossRef]

23. Zheng, Y.; Zhao, F.; Wang, Z. Fault diagnosis system of bridge crane equipment based on fault tree and
Bayesian network. Int. J. Adv. Manuf. Technol. 2019, 105, 3605–3618. [CrossRef]

24. Zhang, J. Improved on-line process fault diagnosis through information fusion in multiple neural networks.
Comput. Chem. Eng. 2006, 30, 558–571. [CrossRef]

25. Niu, G.; Han, T.; Yang, B.S.; Tan, A.C.C. Multi-agent decision fusion for motor fault diagnosis. Mech. Syst.
Signal Process. 2007, 21, 1285–1299. [CrossRef]

26. Yan, W.; Xue, F. Jet engine gas path fault diagnosis using dynamic fusion of multiple classifiers. In Proceedings
of the International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008; pp. 1585–1591.
[CrossRef]

27. Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence, 2nd ed.; CRC Press: New York, NY, USA, 2010;
pp. 29–30. [CrossRef]

28. Learning Bayesian Network Model Structure from Data. Available online: https://apps.dtic.mil/sti/pdfs/
ADA461103.pdf (accessed on 15 July 2020).

29. Cooper, G.F.; Herskovits, E. A Bayesian Method for the Induction of Probabilistic Networks from Data.
Mach. Learn. 1992, 9, 309–347. [CrossRef]

30. Tabar, V.R. A Simple Node Ordering Method for the K2 Algorithm based on the Factor Analysis. In Proceedings
of the 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), Porto,
Portugal, 1 January 2017; pp. 273–280. [CrossRef]

31. Larranaga, P. Structure learning of bayesian networks by genetic algorithms: A performance analysis of
control parameters. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 912–926. [CrossRef]

32. Zhou, Y.; Fenton, N.; Neil, M. Bayesian network approach to multinomial parameter learning using data and
expert judgments. Int. J. Approx Reason. 2014, 55, 1252–1268. [CrossRef]

33. Huang, Y.; Wang, Y.; Zhang, R. Fault troubleshooting using bayesian network and multicriteria decision
analysis. Adv. Mech. Eng. 2014, 6, 282013. [CrossRef]

34. Yap, B.W.; Ong, S.H.; Husain, N.H.M. Using data mining to improve assessment of credit worthiness via
credit scoring models. Expert Syst. Appl. 2011, 38, 13274–13283. [CrossRef]

35. Lapira, E.; Brisset, D.; Ardakani, H.D.; Siegel, D.; Lee, J. Wind turbine performance assessment using
multi-regime modeling approach. Renew Energy. 2012, 45, 86–95. [CrossRef]

36. Baraldi, P.; Maio, F.D.; Rigamonti, M.; Zio, E.; Seraoui, R. Clustering for unsupervised fault diagnosis in
nuclear turbine shut-down transients. Mech. Syst. Signal Process. 2015, 58, 160–178. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2011.07.079
http://dx.doi.org/10.1109/TPEL.2016.2608842
http://dx.doi.org/10.1007/s00170-019-03793-0
http://dx.doi.org/10.1016/j.compchemeng.2005.11.002
http://dx.doi.org/10.1016/j.ymssp.2006.03.003
http://dx.doi.org/10.1109/IJCNN.2008.4634008
http://dx.doi.org/10.1201/b10391
https://apps.dtic.mil/sti/pdfs/ADA461103.pdf
https://apps.dtic.mil/sti/pdfs/ADA461103.pdf
http://dx.doi.org/10.1007/BF00994110
http://dx.doi.org/10.5220/0006095702730280
http://dx.doi.org/10.1109/34.537345
http://dx.doi.org/10.1016/j.ijar.2014.02.008
http://dx.doi.org/10.1155/2014/282013
http://dx.doi.org/10.1016/j.eswa.2011.04.147
http://dx.doi.org/10.1016/j.renene.2012.02.018
http://dx.doi.org/10.1016/j.ymssp.2014.12.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Bayesian Network 
	Basis of Bayesian Network 
	Structure Learning and Parameter Learning for Bayesian Network 

	Information Value 
	Application: Train Door System Fault Diagnosis 
	Data Acquisition and Preprocessing 
	Bayesian Network Model Construction 
	Fault Diagnosis Based on Information Value 

	Conclusions 
	References

