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A B S T R A C T

Fatigue performance optimization without considering uncertainties of design variables can be problematic or
even dangerous in real life. In this paper, a hybrid multi-objective robust design optimization methodology
is proposed to make a proper tradeoff between the lightweight and fatigue durability for the design of a
truck cab. However, the uncertainties, in reality, could lead to the optimized design unstable or even useless;
this situation can be more serious in non-deterministic optimization. The Taguchi robust parametric design
technique is adopted to refine the intervals of design variables for the subsequent optimization based on
the validated simulation model against fatigue tests. Three types of dual surrogate models, namely the dual
polynomial response surface, dual Kriging, and dual radial basis function methods are compared, and the
dual Kriging is selected to model the mean and standard deviation of the mass and fatigue life for its high
accuracy. The multi-objective particle swarm optimization algorithm is utilized to perform robust design. The
Pareto fronts with different weight factors are analyzed to provide some insightful information on optimum
designs. The robust optimization results demonstrate that the optimized design improves the fatigue life and
reduces the mass of the truck cab significantly and becomes less sensitive to uncertainty. Different optimums
can be obtained based on three different normalization techniques (Linear, vector, and LMM) and three MCDM
methods (TOPSIS, WPM, and WSM) from the same Pareto front. The comparison analysis emphasizes the
importance of normalization and MCDM method selection in the optimal design selection process.
1. Introduction

Fatigue life has drawn significant attention in a wide range of auto-
motive industry due to its significant effect on the performance, safety,
and durability of automobile structures. For example, Bayrakceken
et al. [1] conducted the fatigue performance analysis of the drive shaft
as well as the universal joint yoke of a vehicle power transmission.
Colombo et al. [2] systematically investigated the failure causes of the
strut seat on a suspension. Palma et al. [3] used the finite element
analysis (FEA) method to evaluated fatigue performance for a trailer
hook of a car. Veloso et al. [4] analyzed the failure performance of a
stringer of a chassis system. He et al. [5] conducted the failure cause
analysis of damper spring for a passenger car and estimated fatigue life.

Structural optimization techniques can be employed to improve
the fatigue performance of vehicles. Hsu and Hsu [6] employed a
sequential neural network method to perform the lightweight design
of disk wheels with the constraints of fatigue life. Kang et al. [7]
conducted the fatigue performance optimization of a lower control
arm to ensure its durability. Mrzyglod and Zielinski [8] optimized
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the parameters of a suspension arm based on the multi-axial fatigue
criteria. Ping et al. [9] analyzed the fatigue performance of a vehicle
body and optimized the spot weld to improve its durability. Adl and
Panahi [10] improved the fatigue life-span and reduced the weight
by performing a multi-objective optimization design for a car based
on the artificial neural network method. Kaya et al. [11] presented a
framework for a topology and shape optimization approach to re-design
a failed component under cyclic loading. Kim et al. [12] optimized
the outer tie rod of a passenger car to improve its durability. Song
et al. [13] performed an optimization design of a control arm based on
surrogate models to improve its strength and durability performance.

The above-mentioned studies on fatigue durability optimization
are limited to deterministic design. However, in real-life, any design
optimization may not afford to neglect uncertainty [14,15], which
may pertain to material properties, manufacturing processes, and ge-
ometries, etc. It needs to be noticed that usually objective functions
and constraints are conflicted with each other and the determinis-
tic optimization tends to push the optimal design towards constraint
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boundaries, thereby leaving less room for manufacturing imperfections
and/or tolerances. To overcome this limitation, some researchers have
developed reliability-based design optimization (RBDO). For example,
Boessio et al. [16] estimated the fatigue lifetime of a vehicle consider-
ing the presence of random rough pavement surfaces and optimized the
structural design with the constraints of the reliability index. d’Ippolito
et al. applied RBDO of fatigue life to a slat-track considering manu-
facturing tolerances of geometric parameters [17]. They also employed
this method to optimized structures of a vehicle knuckle including the
effect of variability in material parameters [18]. Song and Lee [19]
utilized a constraint-feasible moving least-squares approach to perform
the RBDO for a knuckle component.

In addition to the reliability of structural fatigue, robustness has
been another critical issue in optimization with uncertainties. This is
because when optimization searches for a ‘‘peak’’ solution, sometimes
a subtle perturbation in system parameters and/or design variables
could lead to a substantial change of performance, even result in
a misleading ‘‘optimized design". Although RBDO helps to obtain a
reliability optimum within constraints, it does not directly deal with
uncertainty in design. The robust design optimization (RDO) aims to
address this critical issue by controlling uncertainty, to guarantee the
quality of optimal design [14,15]. The concept of robust design was
established by Genichi Taguchi to made the product less sensitive to
the uncontrolled real-life variations of variables and thus improve the
quality of manufactured goods. This issue has drawn some attention
in the literature [20–23]. Zhou et al. [24] found that the prediction
uncertainty from the surrogate models has a more serious effect on the
robust optimization results. However, limited studies have been found
on RDO for structural fatigue in the automotive industry to date [25].

To meet today’s design requirements and improve the fuel effi-
ciency of vehicles, there is an increasing demand for assuring the
lightweight of vehicle components. However, many performance in-
dices are typically employed to characterize engineering problems in
real-life, some of which (e.g. fatigue durability) could conflict with
the lightweight requirement. Thereby, an appropriate compromise be-
tween the mass and other performance indices should be made. Multi-
objective optimization has proven to be one of the most effective tools
for this purpose [14,15]. Multi-objective optimization typically leads
to a Pareto front amongst a range of conflicting objectives, not just a
unique optimal solution, thereby providing decision-makers with more
insightful data for design justification [26–28].

Although design under uncertainty has been explored extensively,
its industrial applications anticipated a lot of challenges, including
impractically high computational cost, inaccuracy of surrogate mod-
els to estimate the level of uncertainty, exploring multiple objectives
(goals) in high-dimensional parameter space, and exploring multiple
optimums. The current manuscript has two contributions for overcom-
ing the abovementioned challenges. First, we present a practical case
study of robust design optimization of fatigue life and lightweight. Such
a seemingly simple problem still requires many practical considerations
for engineers to obtain acceptable design, such as exploring parameter
design using the Taguchi method, and building dual surrogate models,
and solving a multi-objective optimization problem. Therefore, this
manuscript can be a good case study for engineers in practice. The
second contribution is related to the fact that engineers often obtain
multiple optimum designs and need to make a decision among them.
In this manuscript, it is shown that different optimums can be ob-
tained based on three multi-criteria decision-making (MCDM) methods
(TOPSIS, WPM, and WSM) and three different normalization schemes
(Linear, vector, and LMM) from the same Pareto front. This topic has
significant scientific research values and needs to be further studied.

In this paper, to address a fatigue optimization problem of a truck
cab with consideration of the uncertainties on material properties, a
hybrid multi-objective robust optimization (MORDO) procedure was
proposed in Section 2. In Section 3, the dual surrogate model and

Taguchi parameter design with a multi-objective MOPSO algorithm
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Table 1
Expressions of S/N ratio.

Quality characteristics Expression

Lower-the-better S∕N = −10 log( 1
𝑛

∑

𝑦2𝑖 )

Larger-the-better S∕N = −10 log( 1
𝑛

∑ 1
𝑦2𝑖
)

Nominal-the-better S∕N = 10 log( 𝜇
2

𝜎2 ), 𝜇 = 1
𝑛

∑

𝑦𝑖 , 𝜎2 = 1
𝑛−1

∑

(𝑦𝑖 − 𝜇)2

were integrated. The Taguchi parameter design approach is used to
help better initialize the design space for the subsequent surrogate-
based optimization. After the sizes and dimensions of the design space
are explored, different dual surrogate models are constructed to fit both
the mean and standard deviation of the mass and fatigue objectives of
the truck cab. Based on the achieved accuracy, the dual Kriging model
is selected to perform the subsequent optimization. Finally, MOPSO is
adopted to solve the MORDO problem for seeking a robust Pareto front
in Section 4. To achieve the best final design, different MCDM methods
and different normalization techniques are implemented for the same
Pareto front.

2. Hybrid multi-objective robust design optimization

2.1. Parameter design of Taguchi method

Taguchi method is a statistical method aiming to improve the
quality of manufactured goods, which is developed by Genichi Taguchi.
Nowadays, the Taguchi method has been applied successfully to solving
many engineering problems [29,30]. In this regard, Taguchi assumed
that engineering optimization should be conducted through the follow-
ing procedure [31]; i.e., system design, parameter design, and tolerance
design. The objective of parameter design is to optimize the setting
of parameters to improve system performance. Besides, the optimal
parameters should be insensitive to the involved noise factors.

The Taguchi method uses an orthogonal array as a statistical ap-
proach to explore the effects of multiple variables simultaneously, with
a relatively small number of experiments compared to the classical
design of experiments methods. The experimental results are then
transformed into a signal-to-noise (S/N) ratio as a combined measure of
the mean and standard deviation of the quality characteristic. Taguchi
classifies the parametric design problem into three categories based on
the quality characteristics of output (𝑦𝑖); i.e., lower-the-better, larger-
the-better, and nominal-the-better; and their S/N ratios are given in
Table 1.

A higher S/N ratio indicates a better-quality characteristic. Thus, the
level with the highest S/N ratio is the optimal level of the parameters.
In this study, the Taguchi parametric design is used to reduce the
dimension and size of the design space as suggested in the litera-
ture [32,33]. Moreover, the refinement of design space can enhance
the accuracy of subsequent surrogate modeling because it is commonly
acknowledged that a smaller region can achieve a higher accuracy [34].

2.2. Multi-objective robust design optimization

For an uncertainty case, robust design optimization takes into
account the uncertainty factors, aiming to enhance the nominal per-
formances of the objectives while reducing the variability of the per-
formances. Typically, a multi-objective robust design optimization
(MORDO) problem can be formulated as

⎧

⎪

⎨

⎪

⎩

min
{

𝑓1
(

𝑌𝜇1(𝐱), 𝑌𝜎1(𝐱)
)

,… , 𝑓𝑖
(

𝑌𝜇𝑖(𝐱), 𝑌𝜎𝑖(𝐱)
)}

i = 1, 2,… , 𝑚
𝑠.𝑡. 𝑔𝑗 (𝐱) ≤ 0 𝑗 = 1, 2,… , 𝑛

𝐱𝐿 ≤ 𝐱 ≤ 𝐱𝑈
(1)

where 𝑌𝜇𝑖(𝐱) and 𝑌𝜎𝑖(𝐱) denotes the mean and standard deviation of the
𝑖th objective, respectively. It is also possible that uncertainty can affect
constraints. Since the uncertainties in constraints are not important



N. Qiu, Z. Jin, J. Liu et al. Thin-Walled Structures 162 (2021) 107545

𝑌

𝑌

𝑌

w
g
m
t
t
n
m
o
d
o
r
g

2

t
a
w
o
I
w
u
m
t
M

m
e
B
s
t
d
i
f
d
o
s
i

3

3

i
c
t
b
f

Table 2
Expression of the weighted objective function including the mean and standard
deviation.

Objective type Expression

Minimization 𝑓𝑖
(

𝑌𝜇𝑖(𝐱), 𝑌𝜎𝑖(𝐱)
)

= 𝜆𝑌𝜇𝑖(𝐱) + (1 − 𝜆)𝑌𝜎𝑖(𝐱)
Maximization 𝑓𝑖

(

𝑌𝜇𝑖(𝐱), 𝑌𝜎𝑖(𝐱)
)

= −𝜆𝑌𝜇𝑖(𝐱) + (1 − 𝜆)𝑌𝜎𝑖(𝐱)

as long as the constraints are satisfied, reliability-based optimization
is used for the constraints with uncertainty. When the reliabilities of
constraints are considered, the problem formulation is called reliability-
based robust optimization [35–37]. Since the reliability constraint can
be handled separately from robustness, it is considered as out of the
scope of the current study.

The objective vector in Eq. (1) can be rewritten weighted sum form
as shown in Table 2, where 𝜆 is the weight factor to emphasize their
relative importance.

2.3. Dual surrogate model (DSM)

In engineering optimization, direct performing optimization based
on the simulation model can be very difficult (if not impossible) since it-
erative simulations require high computational costs [38] and may not
converge. As an alternative, the surrogate modeling technique appears
effective for many complicated problems. It builds an approximate
function to formulate responses in terms of design variables with a
moderate number of simulations. Once the surrogate model is accurate
enough to approximate the responses, it can replace simulation to run
the optimization.

Response surface methodology is one of the most widely used sur-
rogate modeling techniques. The classical polynomial response surface
usually emphasizes the mean value of responses without considering
uncertain parameters. However, the polynomial response surface may
not be adequate under uncertainty and the optimization could become
even meaningless [39]. To solve this issue, the dual polynomial re-
sponse surface (DPRS) was utilized to simultaneously models the mean
and standard deviation as Eqs. (2)–(3). In this study, a second-order
of polynomials is used for DPRS. This approach has been adopted for
robust design in the literature [39–43].

𝑌𝜇(𝐱) = 𝑏0 +
𝑘
∑

𝑖=1
𝑏𝑖𝑥𝑖 +

𝑘
∑

𝑖=1
𝑏𝑖𝑖𝑥

2
𝑖 +

∑

𝑘
∑

𝑖<𝑗
𝑏𝑖𝑗𝑥𝑖𝑥𝑗 (2)

𝑌𝜎 (𝐱) = 𝑐0 +
𝑘
∑

𝑖=1
𝑐𝑖𝑥𝑖 +

𝑘
∑

𝑖=1
𝑐𝑖𝑖𝑥

2
𝑖 +

∑

𝑘
∑

𝑖<𝑗
𝑐𝑖𝑗𝑥𝑖𝑥𝑗 (3)

The specific steps to fit the dual polynomial response surface can be
summarized as follow:

(1) Construct the cross-product array using the Taguchi method;
(2) Capture the variability by repeating the numerical experiments

over the uncertain (noise) range of parameters;
(3) Extract the mean and standard deviation at all design samples;
(4) Build response surfaces for both the mean and standard deviation;
(5) Check for accuracy of the dual response surface models;
(6) Repeat the above steps until obtaining the acceptable accuracy.

The polynomial response surface is relatively simple to derive pa-
rameter sensitivity, but might be unsatisfactory sometimes, in par-
ticular for highly nonlinear problems [44]. To address the issue of
model form error, other surrogate models are commonly used in solving
complicated optimization problems, for example, Kriging models and
radial basis function [45–52]. In this paper, we construct the dual
polynomial response surface using the following surrogate models, in
which Eqs. (4) and (5) are used for the dual Kriging (DKRG) model,
and Eqs. (6) and (7) are used for the dual radial basis function (RBF)
model, respectively. For Kriging, what was the trend function is linear
 b

3

and the hyperparameters are estimated by the maximum likelihood
function. The basic functions for RBF surrogate models are multi-
quadric functions (specifically 𝜙(r) =

√

𝑟2 + 𝑐2 and c is the free shape
parameter [53]). The polynomial term P of the RBF model is not used.
They are the same for mean and standard deviation.

𝑌𝜇(𝐱) = 𝛽𝜇 + 𝐫𝑇𝜇 (𝐱)𝐑
−1
𝜇 (𝐲𝜇 − 𝐟𝜇𝛽𝜇) (4)

̂𝜎 (𝐱) = 𝛽𝜎 + 𝐫𝑇𝜎 (𝐱)𝐑
−1
𝜎 (𝐲𝜎 − 𝐟𝜎𝛽𝜎 ) (5)

̂𝜇(𝐱) =
𝑚
∑

𝑗=1
𝑐𝜇𝑗𝑝𝜇𝑗 (𝐱) +

𝑛𝑠
∑

𝑖=1
𝜆𝜇𝑖𝜙𝜇(𝑟𝜇(𝐱, 𝐱𝑖)) (6)

̂𝜎 (𝐱) =
𝑚
∑

𝑗=1
𝑐𝜎𝑗𝑝𝜎𝑗 (𝐱) +

𝑛𝑠
∑

𝑖=1
𝜆𝜎𝑖𝜙𝜎 (𝑟𝜎 (𝐱, 𝐱𝑖)) (7)

Through a comparative study, the model with the highest accuracy
ill be selected to replace simulations in optimization herein. Because
ood accuracy for surrogate models does not mean a good fit for opti-
ization [54,55], the accuracy of optimal design will be checked with

heir simulation results as shown in Fig. 1. To evaluate the accuracy of
he surrogate model, three metrics are utilized to evaluate the accuracy,
amely R-square, relative average absolute error (RAAE), and relative
aximum absolute error (RMAE) [44,56,57]. In general, a large value

f R2 and a small value of RAAE indicate a high global accuracy in the
esign space and thus are preferred. On the other hand, a small value
f RMAE is preferred, which indicates a high local accuracy in some
egions of the design space. In practice, we mainly pay attention to
lobal accuracy and thus place more emphasis on the first two metrics.

.4. Multi-objective particle swarm optimization algorithm

Once the dual surrogate model is available, it can be used to solve
he multi-objective robust optimization problem. MOPSO algorithm is
n extended version of the particle swarm optimization algorithm [58],
hich is a well-established metaheuristic algorithm. Compared with
ther multi-objective optimization algorithms such as PEAS, NSGA-
I [59,60], and micro PGA [61–63], MOPSO has the properties of
ell-distributed Pareto front and fast convergence. MOPSO has been
sed successfully in various engineering applications [64–70] to opti-
ize the design of metal sheet forming [57] and crashworthiness for

hin-walled structures [71], and thus is also employed in this study.
ore details are given in Ref. [62].

The proposed hybrid multi-objective robust optimization (MORDO)
ethodology is illustrated in Fig. 1. It uses the Taguchi method first to

xplore the design and parameter spaces and to reduce the dimensions.
esides, it will also reduce the range of design space. Then, the dual
urrogate model is constructed using the inner and outer arrays from
he Taguchi method. This step is repeated until the accuracy of the
ual surrogate model is acceptable. Once the dual surrogate model
s available, the MOPSO algorithm is invoked to calculate the Pareto
ronts for multiple objective functions. This sequential optimization
esign method can perform better than the traditional approach in
btaining better optimums based on fewer samples. Because for the
equential optimization design, only limited evaluations are required
n each iteration, but the accuracy can be improved a lot.

. Demonstrative example of fatigue optimization for a truck cab

.1. Finite element model building and experimental validation

The 3D geometry of the cab-in-white model and the correspond-
ng finite element FE (FE) model is illustrated in Fig. 2. For such a
omplicated 3D model, validation is needed before the design study. In
his regard, modal analysis is a useful validation approach, which can
e performed with a free-free boundary to calculate the cab’s natural
requency before running stress analysis. If the first six zero rigid

ody modes cannot confirm, the FE model could be over-constrained.
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Fig. 1. Flowchart of the proposed hybrid methodology for MORDO.
owever, if zero rigid body modes are more than six, the FE model
ould have ruptured. In addition to the modal test, the full-scale fatigue
est is also performed to validate the fatigue life prediction.

In this study, the durability prediction method is employed based
n direct transient response. MSC-Nastran is utilized to get the stress
istory of each element, based on the input of load-time history. When
he front body mounts are fixed, the cab is subjected to a torsional
yclic moment at the rear body mounts. As shown in Fig. 2b, 𝐹1 and
2 generate the torsional moment, and its frequency and amplitude are
et as 1 Hz and 5000 Nm [72], respectively.

To obtain durability performance, the stress response history is used
irectly in the MSC Fatigue module. Strain-life methods of durability
rediction with transient analysis can be utilized in this case. The
train-life (𝜀-N) curve is represented by the classical Coffin–Manson
quation, as shown in the following equation [73,74]:

𝛥𝜀
2

=
𝛥𝜀𝑒
2

+
𝛥𝜀𝑝
2

=
𝜎′𝑓
𝐸

(2𝑁𝑓 )𝑏 + 𝜀′𝑓 (2𝑁𝑓 )𝑐 (8)

where 𝛥𝜀∕2 are total strain amplitudes, 𝛥𝜀𝑒∕2 and 𝛥𝜀𝑝∕2 denotes elastic
and plastic strain amplitudes, respectively. 𝜎′ and 𝑏 are fatigue strength
𝑓

4

Fig. 2. Truck cab model: (a) 3D geometric model and (b) finite element model.

and fatigue strength exponent, respectively. 𝜀′𝑓 and 𝑐 are fatigue duc-
tility coefficient and fatigue ductility exponent, respectively. These
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Fig. 4. Comparison of experimental data and numerical simulation for fatigue
urability.

able 3
alidation of the FE model: comparison between simulation and experimental results.

Simulation Experiment

Torsional frequency 20.06 Hz 19.94 Hz
Bending frequency 29.64 Hz 28.47 Hz
Log of fatigue life 4.46 4.60

parameters can be derived from the Bäumel–Seeger’s uniform material
law [75], which can be easy to obtain based on the ultimate tensile
strength (𝜎𝑏) and elastic modulus (E) of material.

The finite element model describing the structural behavior of the
ruck cab was validated by comparing it with experimental data. Fig. 3
emonstrates the setup of physical tests with the same loading condi-
ions as in the simulations. As shown in Table 3, the simulation results
gree well with the corresponding experimental results. Fig. 4 shows
hat the weakest regions of fatigue durability are identical between the
xperiment and the simulation. Hence, the FE models are validated and
onsidered effective for the subsequent design optimization.

.2. Definition of the optimization problem

Vehicle weight reduction can bring many benefits, including using
ewer materials, less fuel consumption, less exhaust emission, and less
on-biodegradable materials. Unfortunately, the automotive industry’s

emand for reducing weight inevitably conflicts with other design o

5

Fig. 5. Thickness design variables.

criteria such as the overall strength, stiffness, safety durability, and
corrosion resistance of the body. In this paper, the maximization of
fatigue life and minimization of lightweight are chosen as two com-
peting objectives to be optimized within a multi-objective framework.
Considering symmetry, four thicknesses of six panels were chosen as
the design variables for cab structural optimization. As shown in Fig. 5,
𝑥1 is the thickness of the window frame, 𝑥2 is the thickness of the A-
pillar inner plate, 𝑥3 is the thickness of the roof Crossrail and 𝑥4 is the
thickness of the A-pillar outer plate. All the thickness design variables
are allowed to vary from 0.7 to 2.0 mm.

Considering the uncertainty induced by the rolling process, the
key material properties are chosen as noise factors. To be specific,
their fluctuated range are E = (200, 220 GPa), 𝜎𝑏 = (300, 340 MPa),
and 𝜌 = (7700, 7900 kg/m 3) according to the statistical data in the
literature [76]. The MORDO problem can be expressed as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min (𝑓1(𝐱), 𝑓2(𝐱))
𝑓1(𝐱) = −𝜆𝐹𝜇 + (1 − 𝜆)𝐹𝜎
𝑓2(𝐱) = 𝜆𝑀𝜇 + (1 − 𝜆)𝑀𝜎

𝑠.𝑡. 𝐱𝐿 ≤ 𝐱 ≤ 𝐱𝑈

(9)

where 𝐹𝜇 is the mean of the log of fatigue life and 𝐹𝜎 denotes the
tandard deviation of the log of fatigue life, 𝑀𝜇 is the mean of the
asses of the six panels and 𝑀𝜎 is the standard deviation of the masses

f the six panels (Fig. 5).
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Table 4
Cross product array for parameter design.

E −1 −1 +1 +1 0
𝜌 −1 +1 −1 +1 0
𝜎𝑏 −1 +1 +1 −1 0

No 𝑥1 𝑥2 𝑥3 𝑥4 F M F M F M F M F M S/N1 S/N2

1 1 1 1 1 3.07 15.41 3.18 15.82 3.24 15.41 3.19 15.82 3.18 15.61 0.61 29.14
2 1 2 2 2 3.31 19.67 3.41 20.18 3.49 19.67 3.44 20.18 3.43 19.92 0.74 27.02
3 1 3 3 3 3.40 26.75 3.51 27.45 3.40 26.75 3.36 27.45 3.43 27.10 0.74 24.35
4 1 4 4 4 3.43 33.84 3.54 34.72 3.48 33.84 3.44 34.72 3.48 34.28 0.76 22.31
5 2 1 2 3 3.47 23.32 3.59 23.93 3.49 23.32 3.45 23.93 3.51 23.62 0.78 25.54
6 2 2 1 4 3.68 26.06 3.82 26.74 3.73 26.06 3.67 26.74 3.73 26.40 0.89 24.58
7 2 3 4 1 3.87 26.99 4.02 27.69 3.89 26.99 3.82 27.69 3.91 27.34 0.97 24.27
8 2 4 3 2 3.88 28.72 4.03 29.46 3.92 28.72 3.86 29.46 3.93 29.09 0.98 23.74
9 3 1 3 4 3.75 32.06 3.87 32.89 3.86 32.06 3.80 32.89 3.83 32.48 0.93 22.78

10 3 2 4 3 4.22 32.91 4.37 33.76 4.36 32.91 4.27 33.76 4.32 33.33 1.14 22.55
11 3 3 1 2 4.34 26.93 4.53 27.63 4.43 26.93 4.32 27.63 4.41 27.28 1.18 24.29
12 3 4 2 1 4.37 28.89 4.56 29.64 4.44 28.89 4.33 29.64 4.43 29.27 1.19 23.68
13 4 1 4 2 4.14 32.80 4.28 33.65 4.28 32.80 4.19 33.65 4.23 33.23 1.10 22.58
14 4 2 3 1 4.73 30.42 4.93 31.21 4.90 30.42 4.76 31.21 4.84 30.81 1.34 23.24
15 4 3 2 4 4.97 37.47 5.22 38.44 5.25 37.47 5.04 38.44 5.12 37.96 1.44 21.42
16 4 4 1 3 4.82 35.79 5.05 36.72 5.04 35.79 4.85 36.72 4.95 36.25 1.38 21.82
Table 5
Values of the noise factors for parameter design.

Code E (GPa) 𝜌 (kg/m3) 𝜎𝑏 (MPa)

−1 200 7700 300
+1 220 7900 340
0 210 7800 320

4. Results and discussion

4.1. Parameter design

In this paper, the initial intervals of design variables are determined
by the Taguchi method and the matrix of experiments are built by the
orthogonal arrays. As shown in Table 4, the inner array concerning four
design variables at four levels each is chosen as the L16 matrix, while
the inner array concerning the three noise factors is also established
based upon the orthogonal array. Tables 5 and 6 represent the value of
the design variables and control factors that are used in the inner and
outer arrays. Since each set of design variables has five combinations
of noise array, a total of 80 experiments should be conducted. After
numerical experiments are done, S/N ratios for the experiments are
computed for the fatigue life (S/N1) and mass (S/N2), which are shown
in the last column of Table 4.

Analysis of variance (ANOVA) is conducted from the S/N ratios,
which are utilized to represent the relative importance of various
factors. ANOVA of the fatigue life and the truck cab mass are shown
in Tables 7 and 8, respectively. The optimal set of design variables
is selected based on the ANOVA analyses. Level 1 is the best for all
design variables with respect to the mass objective because high values
of S/N are preferred. It can be seen that 𝑥1 has the most important
effect on both objectives, with a contribution of 85.46% and 45.29%,
respectively. Since Level 4 is selected for the fatigue life objective, the
range of 𝑥1 is determined without any change as level-1 < 𝑥1 < level-4.
𝑥4 has a weak contribution to the fatigue life objective and level 1 is
also preferred for that, and the value can be 𝑥4 = 0.7 mm. The ranges
of 𝑥2 and 𝑥3 can be determined using the same method, and the results
of parameter design are summarized in Table 9.

4.2. Dual surrogate models

After the refinement of variable ranges, dual surrogate models can
be constructed in terms of 𝑥1, x2, and 𝑥3 since 𝑥4 has been fixed at
0.7 mm as shown in Section 4.1. The outer array is the noise factors
obtained from the orthogonal array as shown in Table 10. The inner

array is control factors with 30 sample points, which are sampled

6

Table 6
Values of the design variables for parameter design.

Level 𝑥1 (mm) 𝑥2 (mm) 𝑥3 (mm) 𝑥4 (mm)

1 0.7 0.7 0.7 0.7
2 1.0 1.0 1.0 1.0
3 1.5 1.5 1.5 1.5
4 2.0 2.0 2.0 2.0

Table 7
ANOVA of the fatigue life.

𝑥1 𝑥2 𝑥3 𝑥4
Level1 0.7113 0.8560 1.0118 1.0239
Level2 0.9020 1.0245 1.0348 0.9984
Level3 1.1084 1.0798 0.9958 1.0085
Level4 1.3143 1.0756 0.9935 1.0051
SS 0.8127 0.1325 0.0044 0.0014
Contribution 85.46% 13.93% 0.46% 0.15%

Table 8
ANOVA of the truck cab mass.

𝑥1 𝑥2 𝑥3 𝑥4
Level1 25.7054 25.0102 24.9583 25.0826
Level2 24.5322 24.3472 24.4180 24.4082
Level3 23.3268 23.5852 23.5250 23.5669
Level4 22.2656 22.8874 22.9287 22.7724
SS 26.5823 10.1753 9.8371 12.1047
Contribution 45.29% 17.33% 16.76% 20.62%

Table 9
Results of parameter design: bounds of design variables.

Design variables Varying ranges

Lower bound Upper bound

𝑥1 (mm) 0.7 2.0
𝑥2 (mm) 0.7 1.5
𝑥3 (mm) 0.7 1.0
𝑥4 (mm) 0.7 0.7

with the Optimal Latin Hypercube sampling approach [14,15,77]. Ad-
ditional five points of control factors are generated for assessing the
accuracy of the surrogate models. To capture the variability due to the
uncertainties of noise factors, numerical experiments in the inner array
are repeated at five points corresponding to the outer array. Hence,
the total simulation number is 175. The mean and standard deviation
of each design are displayed in Table 11.

Because the mass of the cab has a linear relationship with the panel

thicknesses, the dual linear polynomial response surfaces are utilized
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Table 10
Cross product array for DSMs.

E −1 −1 1 1 0
𝜌 −1 1 −1 1 0
𝜎𝑏 −1 1 1 −1 0

No. 𝑥1 𝑥2 𝑥3 F M F M F M F M F M

1 1.69 0.76 0.95 4.07 24.47 4.21 25.11 4.13 24.47 4.06 25.11 4.13 24.79
2 1.96 1.31 0.82 4.65 28.56 4.87 29.30 4.82 28.56 4.66 29.30 4.75 28.93
3 1.91 1.11 0.97 4.63 27.95 4.85 28.67 4.81 27.95 4.65 28.67 4.74 28.31
4 1.60 1.22 0.91 4.47 25.72 4.67 26.39 4.56 25.72 4.44 26.39 4.54 26.06
5 1.10 0.98 0.83 4.09 20.41 4.26 20.94 4.07 20.41 4.00 20.94 4.12 20.68
6 0.97 0.73 0.88 3.63 18.41 3.74 18.88 3.75 18.41 3.71 18.88 3.76 18.65
7 1.87 1.17 0.73 4.54 26.83 4.75 27.52 4.68 26.83 4.54 27.52 4.63 27.17
8 0.74 1.25 0.80 3.32 18.72 3.42 19.21 3.50 18.72 3.44 19.21 3.43 18.96
9 1.37 1.14 0.79 4.28 23.10 4.46 23.70 4.30 23.10 4.21 23.70 4.32 23.40

10 1.82 0.81 0.77 4.25 25.02 4.41 25.67 4.33 25.02 4.24 25.67 4.32 25.35
11 1.15 1.33 0.87 4.11 22.53 4.28 23.11 4.09 22.53 4.02 23.11 4.13 22.82
12 0.92 1.09 0.72 3.66 19.02 3.78 19.51 3.87 19.02 3.80 19.51 3.79 19.27
13 1.33 1.36 0.99 4.19 24.59 4.37 25.23 4.23 24.59 4.14 25.23 4.24 24.91
14 1.46 1.00 1.00 4.32 24.06 4.51 24.69 4.39 24.06 4.29 24.69 4.38 24.38
15 1.06 1.20 0.96 4.03 21.60 4.18 22.16 4.01 21.60 3.94 22.16 4.05 21.88
16 0.79 0.87 0.78 3.35 17.23 3.46 17.67 3.55 17.23 3.48 17.67 3.47 17.45
17 1.73 1.03 0.86 4.48 25.68 4.69 26.34 4.61 25.68 4.47 26.34 4.57 26.01
18 0.70 1.06 0.90 3.22 17.89 3.32 18.35 3.40 17.89 3.34 18.35 3.34 18.12
19 1.19 0.78 0.74 3.98 19.84 4.12 20.35 3.96 19.84 3.91 20.35 4.00 20.10
20 1.42 1.50 0.84 4.30 25.30 4.49 25.96 4.34 25.30 4.25 25.96 4.35 25.63
21 0.88 0.92 0.98 3.67 19.03 3.78 19.52 3.85 19.03 3.78 19.52 3.80 19.27
22 1.51 0.70 0.81 3.91 22.23 4.04 22.81 3.93 22.23 3.87 22.81 3.95 22.52
23 0.83 1.42 0.93 3.59 20.71 3.69 21.25 3.79 20.71 3.72 21.25 3.71 20.98
24 1.64 1.39 0.75 4.48 26.16 4.68 26.84 4.57 26.16 4.44 26.84 4.55 26.50
25 2.00 0.89 0.89 4.49 27.29 4.67 28.00 4.61 27.29 4.50 28.00 4.58 27.65
26 1.55 0.95 0.71 4.36 23.27 4.56 23.88 4.42 23.27 4.31 23.88 4.42 23.57
27 1.78 1.44 0.94 4.60 28.26 4.82 29.00 4.75 28.26 4.60 29.00 4.70 28.63
28 1.28 0.84 0.92 4.06 21.55 4.21 22.11 4.08 21.55 4.01 22.11 4.10 21.83
29 1.24 1.28 0.70 4.21 22.27 4.39 22.85 4.20 22.27 4.12 22.85 4.24 22.56
30 1.01 1.47 0.76 3.90 21.66 4.02 22.22 4.03 21.66 3.97 22.22 4.03 21.94
31 2.00 1.30 1.00 4.73 29.63 4.96 30.40 4.95 29.63 4.76 30.40 4.85 30.02
32 1.35 0.70 0.93 3.82 21.48 3.96 22.04 3.84 21.48 3.78 22.04 3.86 21.76
33 1.03 1.50 0.85 3.96 22.25 4.09 22.82 4.03 22.25 3.97 22.82 4.07 22.54
34 1.68 1.10 0.70 4.43 24.88 4.63 25.53 4.52 24.88 4.40 25.53 4.50 25.21
35 0.70 0.90 0.78 3.13 16.65 3.24 17.08 3.31 16.65 3.25 17.08 3.25 16.86
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to model both the mean and standard deviation of the mass. Detailed
parameters for each surrogate model can be found in Section 2.3. For
the fatigue life, different surrogate models are compared for determin-
ing the modeling accuracy. According to the results of the accuracy
assessment shown in Table 12, the DKRG model performs best in
accuracy and thus is selected for the following optimization procedure.

4.3. Optimization results and discussions

Fig. 6 plots the optimal Pareto fronts of robust multi-objective
optimizations with different values of 𝜆. For the Pareto fronts, the
opulation size is set as 100 and the number of generations is 100
oo. For MOPSO, the Maximum Number of Iterations is set as 100, grid
nflation parameter is set as 0.1, Number of Grids per each dimension
s 10, leader Selection Pressure Parameter is 4, and repository member
election pressure is 2. The Pareto solutions for different values of 𝜆
epresent optimums in different cases. For example, when 𝜆 = 1.00
variance term equals zero as in Eq. (8)), the Pareto front represents
he deterministic solution, which shows that the mean values of the
ass and fatigue life (Fig. 6a) are strongly competing with each other.
onsequently, if the mass is emphasized more, fatigue life must be com-
romised and become shorter, and vice versa. Interestingly, however,
he standard deviations do not conflict with each other as shown in
ig. 6b. For example, when 𝜆 = 0.5 (mean term and variance term
re equally important as in Eq. (8)), the standard deviation of fatigue
erformance are the first decreased, increased, decreased, increase, and
hen decreased with the increase of standard deviation of mass. This
ay be because the mean’s order of magnitude is much larger than the

ne of standard deviation. When 𝜆 is not small (for example 𝜆 > 0.01),

he mean value plays a dominant role due to its large magnitude and (

7

big weight factors. Thus the standard deviation does not demonstrate
conflict property. But when 𝜆 is very small (for example 𝜆 = 0.01), the
tandard deviation is emphasized and it shows some conflict between
he standard deviation of fatigue and mass.

Most importantly, when the uncertainties of the material properties
re considered, the Pareto front changes evidently for both the mean
nd standard deviation (as shown in Fig. 7), and the change with
he decreasing 𝜆 can be divided into three stages. First, when much
mphasis is placed on the mean (i.e., 0.10 < 𝜆 < 1.00), the Pareto fronts
f MORDO indeed emerge as part of the deterministic Pareto front
𝜆 = 1.00). At this stage, when considering the objective robustness,
he optima of deterministic multi-objective optimization located in the
egion representing the largest mass (i.e. in the upper left corner in
ig. 6a) fail to become candidate optima for MORDO, because these
ptima have the lowest mass robustness (in the upper right corner in
ig. 6b), although they can lead to the best fatigue performance.

Second, when 𝜆 has an intermediate value (0.01 < 𝜆 < 0.10), the
areto front of the mean changes both the range and the shape, rather
han simply shifts in the Pareto space. The Pareto front of the means
oves further towards the feasible region (or away from the utopia
oint [15]) with a decreasing value of 𝜆 (i.e., with more emphasis on
he standard deviation), which indicates that when the robustness of
he objectives increases, the performances must be sacrificed (i.e., a
orse fatigue performance will be obtained for the same mass or vice
ersa). Besides, the longest fatigue life of the Pareto solutions would be
educed when increasing the robustness of the objectives.

Third, when 𝜆 has a very small value (for example 𝜆 = 0.01),
he Pareto front would be limited in the bottom right corner for the
ean (Fig. 6a) and the bottom left corner for the standard deviation
Fig. 6b). Due to further improvement of the robustness of the objective
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Table 11
Results of mean and standard deviation.

No. F𝜇 F𝜎 M𝜇 M𝜎

1 4.12 0.0618 24.79 0.3178
2 4.75 0.0974 28.93 0.3708
3 4.74 0.0964 28.31 0.3630
4 4.53 0.0888 26.05 0.3340
5 4.11 0.0947 20.68 0.2651
6 3.72 0.0512 18.64 0.2390
7 4.63 0.0921 27.17 0.3484
8 3.42 0.0644 18.96 0.2431
9 4.31 0.0919 23.40 0.3000

10 4.31 0.0680 25.35 0.3249
11 4.12 0.0956 22.82 0.2926
12 3.78 0.0759 19.26 0.2470
13 4.23 0.0849 24.91 0.3194
14 4.38 0.0842 24.37 0.3125
15 4.04 0.0853 21.88 0.2805
16 3.46 0.0710 17.45 0.2237
17 4.56 0.0898 26.01 0.3335
18 3.32 0.0629 18.12 0.2323
19 3.99 0.0787 20.09 0.2576
20 4.35 0.0899 25.63 0.3286
21 3.78 0.0655 19.27 0.2471
22 3.94 0.0642 22.52 0.2888
23 3.70 0.0734 20.98 0.2689
24 4.54 0.0935 26.50 0.3397
25 4.57 0.0736 27.65 0.3544
26 4.41 0.0919 23.57 0.3022
27 4.69 0.0952 28.63 0.3671
28 4.09 0.0744 21.83 0.2798
29 4.23 0.1006 22.56 0.2892
30 3.99 0.0589 21.94 0.2812
31 4.85 0.1036 30.02 0.3848
32 3.85 0.0660 21.76 0.2790
33 4.02 0.0581 22.53 0.2889
34 4.50 0.0905 25.21 0.3232
35 3.24 0.0636 16.86 0.2162

Table 12
Accuracy assessment of DSMs.

DSM Response 𝑅2 RAAE RMAE

DPRS 𝐹𝜇 0.9536 0.2006 0.2821
𝐹𝜎 0.7761 0.4212 0.6727

DKRG 𝐹𝜇 0.9980 0.0374 0.0737
𝐹𝜎 0.9530 0.1775 0.3808

DRBF 𝐹𝜇 0.9963 0.0586 0.0742
𝐹𝜎 0.6299 0.4276 1.2603

functions, the mean of fatigue life becomes the worst of these three
stages whilst that of the mass is the smallest. This implies that the
robustness and performance of the fatigue durability conflict with each
other, and thus a proper trade-off between them should be made.
Furthermore, unlike for the first stage, not only the means but also the
standard deviations of the objective functions conflict with each other
as indicated in Fig. 6b.

In practical applications, a large value for 𝜆 should be utilized
f emphasizing the nominal performances, while a small value for 𝜆
hould be selected if emphasizing the robustness of the performances.
o explain the effect of the proposed method, we select an optimum
rom the Pareto front obtained with 𝜆 = 0.05 in this study, as signified
ith a red circle in Figs. 6a and b. Table 13 compares the optimal
nd baseline designs. It was found that the optimized design improves
he fatigue life of truck cab, and simultaneously reduces the mass
oticeably. Moreover, both the standard deviations of the fatigue life
nd mass decrease, which means that the objectives become more
obust with the presence of the uncertainties.
8

Fig. 6. Pareto fronts of the mean (a) and standard deviation (b) of the objectives.. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

4.4. Final design selection and comparison study

In engineering application, the Pareto provides a set of non-
dominant results and are not satisfied in all cases. Thus a further analy-
sis is needed to select the final optimal design from the obtained results.
However, the obtained solutions from Pareto fronts can be compared
by different MCDM methods, TOPSIS, WPM, and WSM [78]. Generally
speaking, the objectives of optimization are measured with different
units and these values need to be normalized to be comparable before
the decision-making step. Thus, different normalization formulations
(Linear, vector, and Linear max–min (LMM) [78]) can result in different
values and consequently affect the solutions from MCDM.

In this study, the final designs selected by the three MCDM methods
and three normalization techniques are compared as shown in Fig. 8,
which are obtained from the Pareto front for 𝜆 = 0.05. It can be seen
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Table 13
Comparison of baseline and optimized designs of the truck cab.
Description Baseline Optimized

DSM CAE simulation

Design variables

𝑥1 1.5 mm 2.00 mm
𝑥2 1.5 mm 0.85 mm
𝑥3 1.5 mm 0.92 mm
𝑥4 1.5 mm 0.70 mm

Fatigue life (log) 𝐹𝜇 4.45 4.53 4.49
𝐹𝜎 0.076 0.071 0.070

Mass 𝑀𝜇 33.46 kg 27.60 kg 27.60 kg
𝑀𝜎 0.43 kg 0.35 kg 0.35 kg
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Fig. 7. Pareto fronts of 𝑓1 and 𝑓2.

hat the final design from the linear-based WSM method is the same

s that from the Vector-based TOPSIS method. The final design from

PM is the same as that from the vector-based TOPSIS method. For
 a

9

he linear, vector, and LMM normalization methods, the WSM decision-
aking method results in similar results. On the other hand, the TOPSIS

btained comparatively different results due to three normalizations. It
hows that the normalization method has more effect on TOPSIS than
he WSM method.

As shown in Table 14, the first-ranked solutions are selected to
ompare the effect of the normalization technique and MCDM methods
n the result. Different from the TOPSIS and WSM method, WPM does
ot require to normalize the input value and only has one rank. The
ther rank is the results of employing TOPSIS and WSM methods due
o normalization by Linear, vector, and LMM techniques. It was shown
hat optimal designs from Linear-based WSM, LMM-based WSM and
ector-based TOPSIS have the lease rank-sum for different methods and
erform best. However, LMM-based TOPSIS has the largest rank-sum
or different methods and performs worst for all cases. The compari-
on analysis emphasizes the importance of normalization and MCDM
ethod selection in the optimal design selection process.

For the case study, as shown in Table 14, the top-ranked designs
btained based on WPM and WSM methods are generally similar, while
hat of the TOPSIS method are different. Besides, the TOPSIS method
s relatively sensitive to a normalization method. For example, the
OPSIS top-rank design based on LMM normalization underperforms
rank 14 and 19) that of linear and vector normalization methods.
hus, the TOPSIS method has a low chance to select well-performed
olutions compared to other MCDM and normalization methods and is
ot recommended to be employed alone to select the optimal solutions.
hen selecting optimal solutions from the Pareto fronts for different

pplications, the comparative study for different MCDM methods and
Fig. 8. Final design selections from three different normalization techniques within different MCDM methods.
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Table 14
Comparison of first-rank designs obtained from different normalization and MCDM methods.

Alternative I.Ds Ranked by WPM Ranked by WSM due to normalization by Ranked by TOPSIS due to normalization by Rank-sum for different methods
Rank Linear Vector LMM Linear Vector LMM

49 1 2 1 10 12 7 16 49
27 4 1 2 3 6 1 13 30
98 8 3 4 1 2 2 10 30
54 19 10 13 2 1 9 2 56
10 23 20 22 14 14 19 1 113
different normalization schemes in this study is recommended to be
utilized for engineers.

5. Concluding remarks

To obtain robust designs considering uncertainty factors, the design
problem of a truck cab was expressed as a multi-objective robust
optimization problem aiming to minimize mass and maximize dura-
bility. To address the uncertainty and multi-objective optimization
issues, the Taguchi parameter design, dual surrogate model method,
and multi-objective particle swarm optimization (MOPSO) algorithm
were integrated for obtaining a non-deterministic optimum. Taguchi
parameter design was used to reduce the size and dimension of the
design space, thereby simplifying the subsequent optimization. In this
study, three different dual surrogate models, namely dual polynomial
response surface, dual radial basis function models, and dual Kriging,
were utilized to fit the mean and standard deviation of the mass and the
log of fatigue life. Based on a comparative study, the dual Kriging was
selected as the most accurate dual surrogate model in this case. MOPSO
was then used to search the design space for the robust Pareto fronts.
the influence of the weight factor on the Pareto front was investigated
to provide some insightful information. Finally, the selected optimal
solution from MORDO could increase fatigue life, reduce vehicle mass,
and significantly improved the design robustness. To selecting an op-
timal design from the Pareto front, a comparison study of different
normalization techniques introduced to different MCDM methods is
recommended.

According to the numerical studies in this paper, the uncertainty in
material properties has a large effect on fatigue performance. In the op-
timization process, although the prediction error is another important
source of uncertainty, this is beyond the scope of this study. In future
work, more focus is required to investigate the effects of the prediction
error on fatigue performance optimization.
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