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Abstract

The reaction wheels actuated by motors are widely used for advanced attitude control of satellites. During the satellite operation, the
performance of reaction wheel motor degrades and results in unexpected failures. To guarantee the reliability and safety of satellites, it is
important to predict its remaining useful life while it is in operation. To address this issue, this study presents a system-level prognostics
approach for the reaction wheel motor, by regarding it as a system composed of multiple components. The approach is demonstrated by
using the motor operation data obtained during the accelerated-life tests on ground for 3 years. Health degradation of each components
of the motor are estimated using the adaptive extended Kalman filter. Failure threshold of the motor performance is established by the
design requirement on characteristic curve. The anomaly detection and failure prediction are performed using the shifting kernel particle
filter.
� 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Satellites in space require accurate attitude control and
high reliability to fully conduct their mission. The reaction
wheel (RW) actuated by a motor provides consistent angu-
lar momentum to help stabilize satellite from external tor-
ques such as solar radiation pressure and to control its
precise attitude as illustrated in Fig. 1. However, the func-
tion of the motor degrades by continuous operation and
eventually impacts the reliability of the whole satellite con-
trol system (Hu et al., 2012). According to the survey on
the failure statistics of satellite components, most failures
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are attributed to the actuators of attitude and control sys-
tem (AOCS) such as RW motor (Ji et al., 2019). Therefore,
the methods to monitor health and predict degradation of
RW motor are necessary to achieve such reliability.

Recently, several publications have been conducted on
the health management of satellite components, emphasiz-
ing its importance in spacecraft operation service, which
can be divided into fault diagnosis and failure prognosis.
In the fault diagnosis, Tudoroiu et al. (2006) developed
interacting multiple models Unscented Kalman filter
(IMM-UKF) to detect various fault modes in the RWs
including unexpected changes in power supply bus voltage
and motor current variations. Rahimi et al. (2017) used
adaptive UKF (AUKF) to detect abrupt and intermittent
faults in the RW and control moment gyros (CMG). In a
more recent effort, Rahimi et al. (2020a) addressed a new

https://doi.org/10.1016/j.asr.2022.11.028
mailto:jhchoi@kau.ac.kr
https://doi.org/10.1016/j.asr.2022.11.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asr.2022.11.028&domain=pdf


Fig. 1. External torques to satellite in space.
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hierarchical method for fault diagnosis for RW faults
which used the residual signals with an adaptive threshold
technique. A dual unscented Kalman filter is used for fault
identification by states and parameter estimation. Aghalari
and Shahravi (2017) proposed improved electro-
mechanical modeling of RW for more robust fault estima-
tion and isolation. While the above studies are based on the
model-based approaches, others have addressed the data-
driven approaches which highly depend on the quality
and quantity of the measured data. Muthusamy and
Kumar (2021) proposed a fault detection scheme for motor
faults in satellite control systems using Chebyshev Neural
Network. Rahimi and Saadat (2020) applied an ensemble
machine-learning method with various classifiers to detect
faults in the RW motor current and bus voltage. Nozari
et al. (2019) proposed multiple classifier-based fault detec-
tion schemes with four classification algorithms to deal
with the combined simultaneous faults. Abd-Elhay et al.
(2022) proposed a deep learning architecture that com-
bined a one-dimensional Convolutional Neural Network
(1D-CNN) and Long Short-Term Memory (LSTM) to
detect and identify RW fault modes such as motor current
loss and high friction. Lee et al. (2020) also applied the
deep learning method using the residuals between the mea-
sured attitude data and the estimated attitude data and ver-
ified its performance based on simulation.

However, unlike the motors on ground, fault diagnosis
in space is of less importance since the immediate mainte-
nance or replacement is impossible for the space system.
Instead, the failure prognosis that predicts remaining use-
ful life (RUL) is more useful as a means to ensure the safe
operation period in space and to aid decision making as
early as possible. The RUL prediction can provide the time
for engineers on the ground to prepare and counteract the
upcoming satellite failure.

Few studies are found for the prognostics in the satellite
applications, in which most articles are focused on the Li-
ion battery for satellite electrical power (Cao et al., 2019;
Jun et al., 2012; Liu et al., 2013; Song et al., 2017; Zhang
et al., 2018). Only few papers have addressed the prognos-
tics of RW motor. Wang et al. (2016) explored data-driven
approach to predict the bearing life in the RW using a neu-
ral network (NN) algorithm. They have considered bearing
temperature and rotating speed as the health indicators
(HI) and the NN is trained with historical HIs to predict
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the future RUL. Muthusamy and Kumar (2022) proposed
General path model and Bayesian updating technique to
predict failure of spin motor in the control moment gyros
(CMGs) using attitude measurement data. Rahimi et al.
(2020b) have taken model-based approach by applying
adaptive Unscented Kalman filter (UKF) to estimate the
parameter related to the bearing friction change and pre-
dict RUL until failure using Particle filter (PF). However,
there are several limitations in these papers. First, the stud-
ies are conducted using the simulated run-to-failure data
generated by the model, which can differ from actual degra-
dation and need additional validation with an actual degra-
dation process. Second, the failure threshold is set arbitrary
which lacks physical ground and may lead to the wrong
RUL. Third, while the motor is regarded as a single com-
ponent, it is also a system in itself since it consists of elec-
trical and mechanical components with multiple failure
modes. Since each component’s degradation affect the
motor performance, the RUL should be predicted account-
ing for this, which we call the system-level prognostics.

Motivated by the above limitations and requirements,
this paper addresses the RUL prediction of RW motor
based on the system-level prognostics architecture. The
architecture was recently proposed by the authors (Kim
et al., 2021), in which the motor was taken to demonstrate
the procedure, but it was conducted by the virtual data
made by the model dynamics. The main idea is based on
the fact that if any system degrades in performance, it is
due to those of the underlying components. In this study,
we have conducted accelerated-life test (ALT) on the RW
motor for the period of 3 years to acquire real measure-
ment data with the low sampling rate, same as the space
environment. A proper failure threshold is imposed on
the motor based on the characteristic curve given by the
design requirement. The RUL is predicted using the degra-
dation relation between the system and components,
assuming the data as being obtained during the space
operation.

The rest of the article is organized as follows. Section 2
explains an experimental setup for ALT and the measure-
ment process. In Section 3, the on-line diagnosis and off-
line prognosis part of the framework is address with the
used algorithms. In additional, application to ALT data
is explained. In Section 4, the application result is repre-
sented and Section 5 concludes this article.

2. Experimental setup

The RW in this study is developed for the Korean Space
Launch Vehicle, of which the name is Science and Technol-
ogy Satellite-3 (STSAT-3), and addressed in (Kim et al.,
2010). It is actuated by the motor to provide consistent
angular momentum and control its precise attitude. The
motor specification is described in Table 1. For this motor,
the ALT is performed, in which a cycle consists of the oper-
ation with a short-term pull-up and a long-term constant
speed as shown in Fig. 2. During the operation, the current



Table 1
Motor specification.

SRB-361-1103 Motor

Diameter 139 mm
Height 51.5 mm
Total mass 1.38 kg
Wheel inertia 0.001143 kgm2

Torque constant 0.0568 Nm=A
Friction coefficient (bearing) 1.01 �10�5

Friction coefficient (air drag) 0.72 �10�5

Current (24 V)
Steady state @ 3000 rpm 0.19A

Fig. 2. Measured current and angular velocity signal in a cycle.
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and angular velocity signals are acquired at a 2 Hz sam-
pling rate. The pull-up test lasts only for few seconds, while
the rest of the time is given for the constant speed test,
which takes from 10 to 20 h. As a result, a day is spent
in average for a single cycle operation, and the whole test
lasts for 3 years. The pull-up operation is to evaluate the
motor performance by applying a maximum voltage to
the motor. The test is conducted under two extreme tem-
perature conditions: hot (60 �C) and cold (�30 �C) temper-
ature in the thermal vacuum chamber to evaluate its
reliability and performance. Despite the long period of
3 years, the test did not reach failure, and is stopped
because of the abnormal high current consumption and
safety issues.
3. Methodology

The overall framework of the system-level prognosis is
illustrated in Fig. 3. It consists of two stages: on-line diag-
nosis and prediction at the upper part, and off-line moni-
toring and prognosis at the lower part. In the on-line
diagnosis, the state and measurement models are developed
based on the electro-mechanical dynamic model. Then the
health parameters denoted by kT and b are estimated for a
cycle by the Adaptive Extended Kalman Filter (AEKF)
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(Wang et al., 2021; Zhou et al., 2010) using the acquired
motor operation data x and i. Once the health parameters
are estimated, system performance is evaluated, which is
defined by the torque J _x at a certain velocity x� as shown
on the upper right in Fig. 3. In the lower part, namely the
off-line monitoring and prognosis, the estimated health
parameters from each cycle are exploited to monitor the
degradation trend over long-term cycles and to predict
their future behavior as shown on the left. The Shifting
Kernel Particle Filter (SKPF) algorithm is used for this
purpose (Kim et al., 2020), in which the anomaly from nor-
mal state is detected and its degradation is predicted in a
single frame. Then the predicted health parameters are
transferred to the upper part, i.e., the on-line prediction
to predict the system performance in the future. Finally,
the end of life (EOL) of system performance is obtained
against a threshold given by the design requirement. Fur-
ther details are addressed in the following subsections.

3.1. On-line parameter estimation

In the on-line diagnosis, the Extended Kalman Filter
(EKF) is used to estimate the health state based on the
motor dynamic model and measured signals from each
cycle. While the detail of the EKF for motor system can
be found in (Bavdekar et al., 2011; Singleton et al.,
2015), they are summarized here for brevity. The governing
equations of the mechanical and electrical part of the
motor are given by:

Mechanical part J dx
dt þ bx ¼ kT i� T L

Electrical part L di
dt þ Ri ¼ V � kTx

ð1Þ

where V is the input voltage and x and i are the angular
velocity and current, which are the output state variable
to be obtained as the solution. Table 2 explains the model
parameters used in this study. Among these, the health
parameters responsible for the motor performance degra-

dation are given by h ¼ kT ; b½ �T which are the back EMF
coefficient and the friction coefficient. They are related with
the bearing and permanent magnet health, respectively. To
apply the EKF to this model, the state and measurement
model are formulated from (1), which are
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where equation (2) is the recursive expression of (1), in

which x ¼ x; i½ �T represents the state variable to be deter-
mined by the EKF. Equation (3) is the measurement
model, in which z represents the measurement of state vari-
able x and v is the associated noise. In the EKF, the state
and measurement model are further transformed to the dis-
crete form for the estimation, in which the state variable is
augmented by the health parameters h, i.e., the state vari-



Fig. 3. Framework of the proposed method (Kim et al., 2021).

Table 2
Parameter description and values for EKF.

Symbol Description Value

R Armature resistance 22 X
L Armature inductance 0.1215 H
J Moment of inertia 0.001143 kg m2

b Friction coefficient 1:01� 10�5 N m s/rad
kT Electro-mechanical coupling coefficient 0.054 Nm/A
V Input voltage 24 V
T L Load torque 0.0001 Nm

Fig. 4. Process of Extend Kalman Filter.
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able vector xt includes the original state variable x and
health parameter h. They are given by:

State model:xt ¼ F xt�1; ut�1ð Þ þ wt�1 or

xt

it
kT ;t
bt

2
6664

3
7775 ¼

1� bt�1
dt
J

� �
xt�1 þ dt

J kT ;t�1it�1 � T Lð Þ
�kT ;t�1 � xt�1 � dtL þ 1� R � dtL

� �
it�1 þ V � dtL

kT ;t�1

bt�1

2
6664

3
7775þwt�1

ð4Þ
Measurement:zt ¼ H xtð Þ þ vt or

zt ¼
1 0 0 0

0 1 0 0

� � xt

it
kT ;t
bt

2
6664

3
7775þ vt ð5Þ

where ut stands for the input operation parameter which is
the voltage V at the current time t: In the equations, wt and
vt represent the process and measurement noise which are
assumed to be the Gaussian distribution with zero mean
and the covariances Q and R, respectively.
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The overall process of the EKF is illustrated in Fig. 4,
which is decomposed into two steps: prediction and correc-
tion. In the prediction step, the prior prediction of the state



Fig. 5. SRB-361-1103 motor characteristic curve.
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variable x�t at current time t (denoted by ‘‘�”) is made from
those at the previous time t � 1 using the state model under
a given input u. The error covariance P�

t is also predicted
where F t is a matrix form described in Eq. (4). Then in
the correction step, the posterior update (denoted by
}þ }) is made by the measurement model, which leads to
the corrected estimation of state variables by the measured
data. Note that Kt and St denote the Kalman gain and
covariance of the innovation term zt � Hðx�t ) respectively.
The posterior update of state variables xþt and error covari-
ance Pþ

t become the initial estimate in the next time step
t þ 1 and the two steps are recursively performed to con-
verge to the true values.

In the EKF, it is common that the initial values of pro-
cess and measurement noise covariance are assumed by
arbitrary values and kept as a constant during the process.
Assigning improper values, however, adversely affect and
degrade the EKF’s performance greatly. To overcome this,
an Adaptive EKF (AEKF) by (Akhlaghi et al., 2018) is
employed in this study to adaptively estimate the covari-
ance matrixes at each step of the EKF. Let us define the
difference between the measurement and the prediction as
innovation (qÞ, and the difference between the measure-
ment and the correction as residual (e).

qt ¼ zt � Hðx�t Þ ð6Þ
et ¼ zt � Hðxþt Þ ð7Þ

Then the measurement and process noise covariances
are recursively estimated as follows.

Rt ¼ aRt�1 þ 1� að ÞðeteTt þ HtP�
t H

T
t Þ ð8Þ

Qt ¼ aQt�1 þ ð1� aÞðKtqtq
T
t K

T
t Þ ð9Þ

where a denotes a forgetting factor ranging in (0; 1) for
adaptive estimation. Note that a larger a indicates more
weights on previous estimates and incurs less fluctuation
of the covariance and longer time delays to adapt with
changes. In this paper, set a ¼ 0:8 for all the studies.

3.2. Motor system performance evaluation

In the evaluation of the motor system performance in
the satellite, a characteristic curve is usually used, which
is defined by the relation between the output torque
(T output ¼ J _x) and the angular velocity (x) during the
pull-up range. A typical characteristic curve is shown in
Fig. 5, which is given by the straight blue line. To ensure
the minimum actuation performance of RW, the motor
needs to generate at least 5 mN �m of output torque at
x� = 314.16 rad/s, i.e., the motor is considered failure when
the curve falls below this point as shown in the figure. This
is a design requirement for the STSAT-3 (Kim et al., 2010)
mission where the satellite with an inertial moment of 18
kgm2 need to maneuver 25� in 40 s. Under this context,
the motor system performance is defined by P sys as follows:

P sys ¼ J _xjx¼x� ð10Þ

2695
and the failure threshold point is given by 5 mN �m.

3.3. Off-line prognosis and monitoring

In the off-line monitoring and prognosis, the health
parameters h estimated from the on-line diagnosis for each
cycle are transferred, and monitored until the current cycle.
The empirical degradation model is introduced to describe
the health degradation over long-term cycles in a quantita-
tive way, in which the model parameters are estimated
using the accumulated health parameters. Particle Filter
(PF) is used for this purpose, which is to recursively esti-
mate the probability density function (pdf) of the long-
term health state and model parameters in the form of par-
ticles (An et al., 2013; Orchard and Vachtsevanos, 2009).
PF has advantages in managing the uncertainty in predic-
tion and estimating the pdf in a nonlinear system with
non-Gaussian noise. The future trend is then predicted by
extrapolating each particle to the future cycles. As in the
EKF, standard PF also consists of state transition function
f and measurement function h as follows:

xk ¼ f xk�1; bkð Þ ð11Þ
zk ¼ hðxk; nkÞ ð12Þ
where k is the cycle step index, xk is the estimated health
state, bk is the degradation model parameter, zk is the mea-
surement data which is in this case the health parameter
values obtained by the on-line estimation, and nk is the
measurement noise. It is noted that while the two functions
F and H in Eqs. (4), (5) are the state and measurement
models for the motor dynamics in EKF formulation, the
functions f and h here represent those for the empirical
degradation model. In order to present the degradation
in this study, an empirical based exponential function
(Barbieri et al., 2015; Bejaoui et al., 2020; Yang et al.,
2021) is employed for the function f :

f xk�1; bkð Þ ¼ exp bkdtð Þxk�1 ð13Þ



H.J. Park et al. Advances in Space Research 71 (2023) 2691–2701
The measurement noise is assumed by the Gaussian pdf,
i.e., nk � Nð0; rkÞ, where rk is the unknown standard devi-
ation. Consequently, the unknown parameters to be esti-

mated are h ¼ x; b; r½ �T . It should be emphasized that the
health parameters are estimated by the motor dynamic
model using the AEKF at the on-line stage, whereas its
trend over long-term cycles are estimated by the degrada-
tion model using the PF at the off-line stage. Once the
degradation model is estimated up to the current cycle, it
is used to predict the RUL for the future.

In the off-line prognosis, it is often the case that the
degradation trend tends to accelerate after a certain cycle
or initial fault. In order to account for this in the PF pro-
cess, Shifting Kernel Particle Filter (SKPF) is used, which
adds the capability to detect whether the current cycle devi-
ates from the normal condition (Kim et al., 2020). To this
end, the SKPF calculates the likelihood L; followed by cal-
culating the decision function dk:

L zk xik; b
i
k;r

i
k

�� �� ¼ 1ffiffiffiffiffiffi
2p

p
ri

k

exp � 1

2

zk � xik bi
k

� �
ri

k

 !2
2
4

3
5 ð14Þ

dk ¼ �ln
1

N

XN

i¼1
Lðzkjxik; bi

k; r
i
kÞ

	 

ð15Þ

When the observed degradation is close to the normal
condition, the likelihood tends to be high, resulting in the
negative value, and the degradation is not monitored. On
the other hand, if the state degrades in a different fashion,
e.g., deviates from the normal, the likelihood becomes
lower, which leads to the value toward the positive value.
By monitoring this over cycles and examining if the deci-
sion function reaches the positive value, the anomaly point
is identified. Once detected, the SKPF shifts the kernel
function used in the resampling step of PF and adapt to
the new degradation trend.

4. Result

4.1. Health parameter estimation by AEKF

In this section, the result of health parameter estimation
at each cycle using the AEKF is addressed. To apply the
AEKF, the initial values are necessary, which are given

as x0 ¼ 0; 0; 0:054; 10�5
� �T

based on the motor specifica-

tion, in which the first two are the state variable x; i½ �T
and the remaining are the health parameters kT ; b½ �T . The
initial process and measurement noise covariances are

assumed arbitrary as Q ¼ ½10�50; 010�5� and R ¼ ½20; 00:1�
respectively. Then after performing the AEKF, estimated
heath parameters in a cycle at the early stage (normal con-
dition) are given in Fig. 6, where the red and green line rep-
resent the mean and 95 % confidence intervals, respectively.
The value at the end of the time is then used as the health
value of the cycle.
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The ALT test has ended at 658 and 600 cycles for cold
and hot conditions respectively. The resulting health
parameter estimates made for the whole cycles are plotted
in Fig. 7 for both conditions. Among the results, the degra-
dation of the friction coefficient (b) in cold condition is
noticeable, while the others do not change much. There-
fore, test data under cold condition is used in this study
to verify the proposed methodology. The bearing degrada-
tion is found dominant in this test and responsible for the
motor performance degradation. This conforms to the lit-
erature that have indicated the bearing as the most frequent
failure mode in the RW motor (Jin et al., 2013; Wang et al.,
2016).

4.2. Motor system performance

The characteristic curves obtained from the on-line
diagnosis in each cycle are drawn in the Fig. 8(a) where
x-axis is the angular velocity and y-axis is the output tor-
que. The graph shows that the curve constantly decreases
in its slope as the cycle proceeds and approaches the thresh-
old point. Since the motor system performance is defined
by the torque at x� = 314.14 rad/s, they are given by the
points in Fig. 8(b) in which the green dashed line is the
threshold. Even though the test has lasted over 3 years with
658 cycles, the results indicate that the motor did not reach
the final failure yet.

4.3. Off-line prognosis by SKPF

Once the health parameters are estimated for each cycle,
they are transferred to the off-line prognosis stage. Using
the data up to 658 cycles, the degradation models of each
health parameter are estimated, and their future is pre-
dicted using the SKPF. The prognosis results for both
health parameters are shown in Fig. 9(a) and (c). The blue
dots and triangular marks represent the estimated health
values and the detected anomaly points by the decision
function. The red dashed and solid lines represent the med-
ian and predictive interval (PI) in the future. The Fig. 9(b)
and (d) represent the trace of the anomaly decision func-
tion. The blue line with circle is the decision function value
and red dotted line is the anomaly threshold set by the user.
From the result of parameter b as shown in Fig. 9(c), it is
clear that the SKPF successfully detects the initial point of
the degradation trend change after 500 cycles. There are
few anomalies detected before 500 cycles due to sudden
abnormal measurements during normal conditions. This
occurs frequently in real applications, but the estimation
trend does not change because the following data stays
within the normal conditions. Meanwhile, when the degra-
dation pattern changes after 500 cycles, the SKPF algo-
rithm successfully adapts to the new degradation trend.
The trace of decision function shows that dk significantly
increases and exceeds the threshold when the estimated



Fig. 6. Estimated health (kT and b) in each cycle.

Fig. 7. Estimated health state (a) b and (b) kT over cycles under cold and hot condition.

Fig. 8. (a) Characteristic curve and (b) system performance data of cold condition test.
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state becomes incoherent with the observed data. After the
algorithm adapts to the new degradation curve, it decreases
back to the below threshold.
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Once the health parameters are predicted at the future
cycles, they are transferred up to the on-line stage. Then
the health parameters are used in the state model to predict



Fig. 9. (a) Prediction of parameter kT by SKPF algorithm and (b) corresponding decision function (c) prediction of parameter b by SKPF algorithm and
(d) corresponding decision function (e) prediction of system performance based on the health parameters.
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the system performance. Then they are transferred down to
the off-line stage. The results are given in the Fig. 9(e) with
the median and 95 % PI. With the system threshold given
by green dotted line, the EOL cycle for the system is pre-
dicted at 808 cycles, and the RUL being 150 cycles. It is
emphasized again that the reason to predict RUL at 658
cycles is because the test has ended at this cycle. In order
to validate this prediction, it is necessary to continue the
test further to 808 cycles, and check whether it reaches
the threshold line. This was however not implemented
due to the limited cost and time. Instead, the validity of
the prediction was confirmed by numerical simulation of
the similar motor in the previous study by the authors
(Kim et al., 2021).

5. Application of the framework to the RW motor in space

In the previous sections, the prognosis framework for
the RW motor was implemented by the ALT data con-
ducted on the ground. This section presents the feasibility
of the proposed framework in the space. While a single
cycle in the ALT consists of signals under pull-up and con-
stant speeds as shown in Fig. 2, it is a little different in the
space application. As shown in Fig. 1, the RW motor
rotates in a pseudo-periodicity condition to provide consis-
tent angular momentum to help stabilize the satellite from
external torques such as low earth orbit aerodynamic
forces, solar radiation pressure and etc. Based on the recent
study on actual satellite telemetry (Zhang et al., 2021),
telemetry signal tends to repeat periodic condition with
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some variability between time intervals due to space envi-
ronment, interference and noise. Nevertheless, it is possible
to use the measured data to estimate the health parameters
in the motor dynamics model, and the same process applies
to predict the RUL of the motor.

The steps are summarized in Table 3 and explained as
follows. First, collect the motor operation data: motor cur-
rent and velocity, for a cycle where the motor activates the
RW for attitude control in space. In this study, virtual data
of the speed and current are generated using the dynamic
model by changing the input voltage according to the oper-
ating conditions (Zhang et al., 2021), and adding Gaussian
white noise to express the measurement environment. The
signals of input voltage and output speed and current are
shown in Fig. 10. Second, conduct on-line diagnosis (esti-
mation) using the data via AEKF to assess the current
health parameters in the motor, which are b and kT . The
estimation results using virtual data are presented in
Fig. 11 and health parameters are successfully estimated
toward true value which root-mean square error (RMSE)
for b and kT are 0.015 and 0.017, respectively. If other com-
ponents are presumed to degrade and affect the system per-
formance as well, corresponding parameter should be
identified in the model (1). Third, evaluate corresponding
motor system performance under the current condition,
which is defined by the output torque at
x� ¼ 314:16 rad=s in the characteristic curve. Fourth, use
the accumulated health parameters obtained at on-line
diagnosis to estimate the off-line parameters in the degra-
dation model by using the SKPF. Then their future behav-



Table 3
Steps for space application.

Application to space environment

1. Motor operation data collection for a cycle with period Virtual data in Fig. 10
2. Health estimation using the data via AEKF to assess the current health states of components Estimation result

in Fig. 11
3. Evaluate corresponding motor system performance based on the characteristic curve Characteristic curve as shown in Fig. 8(a)
4. Using health data h_(0:k) up to the current cycle, predict their future behavior via SKPF Prediction as shown in Fig. 9(a) & (c)
5. Transfer the predicted h to online estimation and obtain the system performance in the future for system

RUL
System performance as shown in Fig. 9(e)

Fig. 10. Virtual data considering pseudo-periodicity and noise.

Fig. 11. Health parameter estimation result.
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iors are predicted via extrapolating the degradation model.
Finally, apply the health parameters in the on-line predic-
tion to obtain the system performance in the future. Then
the RUL can be calculated against its threshold. Using
the predicted result, the operation engineer can make
appropriate decision early before its failure such as shifting
the mission to another satellite, plan to launch a new one,
and so on.

6. Conclusions

In this research, the authors have proposed a PHM
framework for the satellite RW motor not only to guaran-
tee its safety and reliability, but also to aid decision making
for the further operating schedule. The main contribution
2699
can be summarized as follows. First, the authors have con-
ducted long-term ALT of RW over 3 years under harsh
temperature conditions to evaluate the performance of
the proposed method. Then, the future trend of the compo-
nents health is predicted using the results of on-line diagno-
sis, and the system health degradation is predicted as well.
By imposing the failure threshold for the system, the RUL
of the motor is obtained while it is in operation. The
uniqueness of the study is that it proposes advanced prog-
nostics framework, integrating the component-level prog-
nosis into the system. Although it is demonstrated for the
dataset from ALT on the ground, the framework applies
the same in the satellite operation in space, and provides
effective means to aid decision making for the next action
as early as possible using the predicted RUL.
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However, further study is needed to enhance the practi-
cality of the study. The experiment until failure data will be
acquired to validate the capability of the proposed method
more robustly. Also, the degradation difference between
accelerated test and real operating conditions needs to be
considered to effectively implement in the real satellite
monitoring system. Moreover, other available models in
the literature will be considered to have a more comprehen-
sive sub-division of the components and various prognosis
algorithms to effectively implement the framework in the
real system.
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