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Abstract
In machinery operation, a prolonged healthy or nominal state often lacks prognostic
significance, causing challenges like data overload, biased predictions, and complex models.
Moreover, many prediction methods utilize the complete history of monitoring data from the
machine’s startup to its failure; however, prognostics mostly relies on data from the degradation
stage. To address this, this study proposes a method to identify and exclude the prolonged
period of the nominal state, thereby enhancing the prediction performance of remaining useful
life (RUL). A health index (HI) is formulated by integrating acceleration signals from multiple
time windows, with deviations computed as the disparity between the HI and its root mean
squares. The identification of start and end times for the nominal state, determined by the
intersection of consecutive deviation curves, leads to its exclusion from degradation behaviour
modelling. The utilization of polynomial degradation trends from HI data after the nominal
state’s end time, incorporating a positive slope constraint, aids in mitigating extrapolation
uncertainty. The method’s efficiency is demonstrated in three defect cases, highlighting
improved RUL predictions without the nominal state’s inclusion.
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1. Introduction

The degradation process in amachine component such as bear-
ings can be represented by a health indicator or health index
(HI). The HI encompasses several states prior to actual fail-
ures, such as the running-in stage during startup, a nominal
state (healthy state), defect initiation, degradation, and dam-
age growth. In real engineering applications, the condition
of machines can vary due to differences in load, mechanical
systems, and supporting components. HIs play a crucial role
in identifying maintenance needs, optimizing performance,
ensuring safety, and supporting predictive maintenance, lead-
ing to cost savings and extended machine lifetimes. Accurate
modelling of these HIs is essential, which involves observing
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the degradation process through signal processing from mon-
itoring sensors such as accelerometers [1, 2]. Generally, con-
dition monitoring, through data collection, is essential for
predicting remaining useful life (RUL) before equipment or
component failures occur [3–6]. This monitoring is part of
condition-based maintenance and is considered a prognostic
process [7–10], even though some monitoring occurs during
all machine states, including the nominal state. However, it
is important to note that the entire HI, including the nominal
state, may not be effective for prognostics because RUL pre-
diction is primarily influenced by the degradation state.

Including all degradation processes, especially the nominal
state can pose several challenges. Firstly, it can lead to high
data volume and increased costs due to the extended duration
of the nominal state. Secondly, the presence of undamaged
states can introduce bias into predictions. Additionally, the
substantial difference in trend between the nominal state and
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degradation state makes RUL predictions difficult. Finally,
including the nominal state can complicate the functional form
of the degradation process. To address these issues and sim-
plify degradation trend modelling, it is necessary to identify
and exclude nominal states [11].

Previous research has explored methods for identifying the
transition from nominal to degraded states in health monit-
oring. These methods used the deviation in HIs to predict
the degradation point with a threshold [12]. Additionally,
the relative rate of change in the mean and variance of HIs
were used as a criterion to distinguish the abnormal state
from the normal one [13]. Some studies employed super-
vised learning to predict anomalies in bearings by identi-
fying nominal conditions using historical run-to-failure data
[14, 15]. Furthermore, a convolutional autoencoder was util-
ized to extract input features of degradation and reduce
dimensions through a multi-dimensional health state map-
ping function. When the health status index, calculated using
Euclidean distance, falls below a certain threshold, online
degradation detection is triggered, and RUL predictions are
adaptively updated [16]. Another approach involved cluster-
ing degradation data based on operating conditions and using
a tailored Transformer model for RUL prediction [17]. It
is noteworthy that most of these studies relied on histor-
ical run-to-failure data. These studies require future condi-
tion data in the training process, while in the case of pro-
gnosis training, data are only available up to the current time
of operation. This represents a weakness in existing studies
where run-to-fail data are used for training while the machine
is running without knowing the conditions or data in the
future.

In addition to determining the nominal state or the start-
ing time of degradation, predicting the RUL is a crucial step
of prognostics [18], given the industry’s high demand for
accurate and reliable RUL predictions [19–21]. As mentioned
earlier, excluding the nominal state can improve RUL predic-
tion accuracy, where the final part of the nominal state serves
as the initial degradation time for estimating RUL [22, 23].

Several studies have sequentially predicted the starting time
of degradation and RUL. For instance, Ahmad et al [24]
employed a gradient-based method to identify the degrada-
tion starting time and used quadratic regression to estimate the
bearing RUL. Li et al [25] determined the degradation start-
ing time based on the deviation criterion and applied multi-
scale convolutional neural networks (CNN) to enhance RUL
prediction. Yang et al [26] identified the degradation start-
ing time and predicted RUL using a dual CNN approach.
While these studies have demonstrated satisfactory perform-
ance, it is important to note that the degradation starting time
was determined using run-to-failure monitoring data, without
providing a detailed explanation of RUL prediction. Ding
et al [27] predicted degradation indicators based on com-
pound domain shifts. In addition, they carried out uncertainty
predictions using the Bayesian improved probabilistic meta-
learning method [28]. Unfortunately, both studies still used
run-to-failed data, where in prognostics, the machine or com-
ponent had failed before it was predicted. Prognostics could

not utilize future monitoring data to identify either the nom-
inal state or degradation initiation.

Removing nominal state data may result in insufficient
degradation data for robust RUL prediction, introducing sig-
nificant uncertainty. To ensure reliable predictions, it is essen-
tial to guide the training process toward a monotonic degrada-
tion trend [29–32]. By focusing on a monotonically increasing
degradation trend, unrealistic RUL predictions can be elim-
inated, reducing uncertainty. Additionally, RUL prediction
should be versatile, and applicable to various failure scenarios,
to demonstrate strong predictive capabilities.

Finally, below are summary of challenges in the prognostic
process.

1. It is difficult to identify the starting time an anomaly or
degradation occurs without referencing to future monitor-
ing data.

2. The prolonged nominal state period can cause a bias in RUL
prediction or complicate the prediction model.

3. Due to the small number of data in the degradation stage, it
is possible that the degradation model predicts an opposite
trend.

4. The level of uncertainty is large in RUL prediction due to a
small number of data.

5. It is difficult to generalize the training methodology due to
different trend behaviours and nonlinearity.

This study presents a prognostic approach for addressing
the abovementioned challenges in predicting the RUL of bear-
ings. This is achieved by determining the nominal state using
available information up to the current time and guiding the
extrapolation process. The key contributions of the proposed
method are as follows:

1. Identification of the starting and ending times of the nom-
inal state by finding the crossing point of consecutive devi-
ation values without relying on future data.

2. By excluding the nominal state from degradationmodelling
and simplifying RUL prediction into a simple functional
form, the model becomes intuitive and easy to use, enabling
unbiased RUL predictions with low computational costs.

3. By imposing a monotonicity constraint that accounts for
degradation behavior, uncertainty in RUL predictions is
reduced.

4. Evaluation of the proposed method in three different bear-
ing failure cases, considering various characteristics like
fault mode, run-to-failure time, operating conditions, and
loading.

The manuscript is organized as follows: section 2 defines
the prognostic problems of predicting RUL with monitoring
data, which consists of several degradation phases. Section 3
describes the proposed methods to address the problems.
Section 4 introduces the data used to test the proposed method.
Section 5 presents the results of the proposed method in
determining the nominal state and excluding it from the RUL
prediction.
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Figure 1. An illustration of the RUL prediction with degradation.

2. Problem definition

Components in rotating machinery, such as bearings, can
degrade in performance due to the heavy load imposed on
the shaft, leading to wear and damage. Vibration sensors are
employed for monitoring anomalies and gathering damage
data. Each bearing operates under different conditions includ-
ing load support, rotation frequency, bearing types, and failure
modes, leading to varying degradation trends.

Several studies on bearing performance degradation mod-
elling have presented the variations in degradation processes
under different bearing operation conditions [33–35], includ-
ing (a) slow degradation, (b) accelerated degradation, (c)
slow degradation followed by accelerated degradation, and
(d) defect initiation and propagation degradation as shown in
figure 1. These findings illustrate that:

1. The degradation process is modelled from degradation
onset to end-of-life (EoL) due to varying trends in different
failure cases, necessitating a universally applicable method.

2. Data from the running-in process and nominal state
throughout the entire operating time were excluded from
degradation modelling.

3. Figure 1 illustrates the entire degradation process and
changes in HI over time, including the operation start time
(t0), nominal state start time (tSoN), the nominal state end
time (tEoN), the current time (tc), the EoL time (tEoL), and
monitoring end data (tEoM) under real operating conditions.

4. The nominal state remains stable with little variation for
a long time compared to the degradation time, σt0∼tEoN >
σtEoN∼tEoL and t0 ∼ tEoN > tEoN ∼ tEoL, where σ is the devi-
ation of the degradation trend, as shown in the figure 1.

The condition of degraded bearing is of utmost importance
in predicting RUL. The nominal state, unrelated to degrada-
tion, should be excluded from prognostic processes to enhance
RUL prediction accuracy. Once the nominal state is determ-
ined, its end time is used as the initial time of degradation for
RUL prediction. The EoL time of the bearing is determined
when the degradation value reaches the failure threshold.

Modelling HI at the point where initial degradation
occurs after (tEoN) can often lead to false RUL predic-
tions because of insufficient training data. For example, as
shown in figure 1, the EOL (̂tEOL) estimated from insuf-
ficient degradation data often yields infinite RUL values
when the degradation trend decreases. Even if the calcu-
lated EOL yields a finite RUL value, significant deviations
from the actual EOL value can still produce inaccurate
predictions.

3. Proposed method

The proposed method involves two primary stages. In Stage
1, the state of the entire process is determined, encompassing
the running-in state, nominal state (excluded for prognostic
analysis), degrading state, and damage growth state. Stage 2
involves extrapolating the HI in the degradation state beyond
the current time and predicting the RUL.

Stage 1 begins with the data collection, serving as input for
the proposed method. The data includes vibration measure-
ments from multiple bearings with varying fault modes and
operating conditions. Detailed information about data collec-
tion can be found in section 4.

To demonstrate the relationship between amplitude, fre-
quency, and time simultaneously, vibration data is trans-
formed into the frequency domain using FFT and a simultan-
eous windowing to generate a spectrogram. The highest amp-
litudes extracted from the spectrogram are then used to obtain
the HI values through principal component analysis (PCA).
Further details can be found in [36].

As shown in figure 2, Stage 1 aims to determine the start-
ing and end points of the nominal state based on the HI.
The HI values from the monitored bearing exhibit various
trends, including typical noise found in vibration data signal
processing. The HI values are smoothed using the Savitzky–
Golay method, which involves a convolution process apply-
ing linear least squares to fit subsets with polynomials [37].
Conversely, Stage 2 is dedicated to improving RUL predic-
tions following the identification and exclusion of the nominal
state.
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Figure 2. Flowchart of the proposed method.

3.1. Identification of the nominal state

Once the raw HI data are smoothed, they are used to define the
history of updated features. Let m be the current time index.
Then, the updated features can be defined as

F(m)
i =

∣∣∣∣∣∣
√√√√ 1
m

m∑
k=1

Y2k −Yi

∣∣∣∣∣∣ (1)

where Yi is the smoothed HI, and 0⩽ i ⩽ m is the time index.
Therefore, F(m)

i represents the updated feature values from the
0 through the mth time index. When a significant HI change
occurs at time ti, the RMS changes gradually because the RMS
is affected by all data up to time tm.

The way to determine the state change is to find a crossing
point when the updated feature values at (m−1) and (m) cur-
rent time intersect in the ith and (i + 1)th time indexes. That
is, the starting and end points of the nominal state can be iden-
tified when the following condition holds:

if F(m−1)
i

〈
F(m)
i and F(m−1)

i+1

〉
F(m)
i+1, then tSoN= ti+1. (2)

Once the start time of the nominal state is established, the
end time can be determined by observing the same condition
over an extended period without crossings.

In figure 3(a), the HI trend initially starts high until time
index 5. After applying smoothing to the HI data and using
equation (1) for updating features with an increment of m,
as shown in figure 3(b), the start of the nominal state is pin-
pointed at time index 4 as it fulfills the conditions in equation
(2). Despite several consecutive crossings after time index 4
due to the transition process from an unstable to a stable state
(the nominal state), the endpoint of the nominal state is iden-
tified when there are no further crossings after time index 6,

signifying the nominal state condition. The end of the nominal
state is recognized when the upcoming update time increases
until the degradation condition in equation (2) is satisfied.

3.2. RUL prediction

In Stage 2, once the end of the nominal state is identified,
degradation prediction is initiated by gradually increasing the
number of training data from the end of the nominal state to
the current time. The prediction process involves utilizing data
to generate a polynomial fit, followed by extrapolation. The
degradation model is defined as follows:

Ŷ(t) = a0 + a1t+ a2t
2 + a3t

3. (3)

Where t is the time starting from the end of the nominal
state, and a’s are unknown model parameters. In this study, a
cubic polynomial is chosen for its ability to effectively capture
the nonlinear degradation while maintaining simplicity with
a limited number of unknown coefficients. Since degradation
typically follows amonotonically increasing pattern, a positive
slope is required. Hence, the model parameters are determined
by solving a constrained optimization problem that ensures a
positive slope:

Minimize MSE=
1
N

c∑
i=tEoN

(
Yi− Ŷi

)2

Subject to dŶ
dt > 0

(4)

where Yi represents the ith degradation data, and Ŷ is the
degradation prediction value from tEoN to tc with a total of N
training data. Note that the mean squared error is calculated
using only the training data up to the current time tc, but the
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Figure 3. Illustration of the proposed method: (a) synthetic data and
(b) identifying the nominal state with updated features.

positive-slope constraint is imposed for all times up to the pre-
diction failure.

The optimization problem is solved using constrained
optimization by linear approximation algorithm [36], which
employs linear approximation for objective and constraint
functions. This optimization is a component of Powell’s con-
jugate direction method [37].

The RUL is incrementally estimated over time based on
predicted degradation values. At the current time ti, the calcu-
lation of the time at which the degradation value exceeds the
threshold, t̂fail (i), is performed using the degradation model.
Subsequently, the predicted RUL at ti is defined as:

RUL (i) = t̂fail (i)− ti (5)

where t̂fail is the failure time predicted using the proposed
method.

4. Data collection

4.1. IMS bearing datasets

The datasets for this study were obtained from experiments
conducted by the Center for Intelligent Maintenance Systems
(IMS) at the University of Cincinnati [38]. These experiments

Figure 4. IMS experimental setup [39].

involved multiple bearings on a mechanical system’s shaft,
as depicted in figure 4. The experimental setup included a
shaft rotating at a constant speed of 2000 rpm, a shaft under a
6000 lbs load, with a Rexnord ZA-2155 bearing, and a high-
sensitivity quartz ICP accelerometer (PCB 253B33).

The experiment generated a dataset of bearing vibrations,
covering the entire lifespan from a healthy state to fail-
ure. Vibration data, captured as acceleration responses, came
from bearings with different fault modes. This study specific-
ally focuses on two cases: ‘Case 1’ involving data dimen-
sions of 20480 × 984, and ‘Case 2’ with data dimensions of
20480 × 2156. The data was intermittently recorded through-
out the bearing’s lifespan at a 20 kHz sampling frequency
with 20480 sample points. The raw data was then processed
to derive HIs using a combination of spectrogram-based fea-
tures and PCA [36]. The HI is derived from spectral analysis,
which involves detecting peak values in all time windows to
enhance the model’s accuracy. After completing the extrac-
tion from spectral analysis, PCA is used to combine all the
extracted data from the time windows, transforming the model
dimensions into 2D. Figure 5 illustrates the HIs for both cases.

4.2. PRONOSTIA datasets

Another dataset was obtained from experiments conducted on
the PRONOSTIA platform at the FEMTO-ST Institute [40].
Figure 6 illustrates the experimental setup, featuring the bear-
ing and accelerometer sensors used for recording acceleration
responses. This experiment aimed to gather vibration monit-
oring data from the bearing over its entire operational life.
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Figure 5. Bearing health index (a) outer race defect and (b) inner
race defect.

Figure 6. PRONOSTIA experimental setup [41].

To comprehensively understand how various system
operating conditions affect bearing degradation, this study
incorporates the PRONOSTIA platform data as one of its case
studies. In real-world situations, the nature of degradation or
failure type is often unknown unless intentionally induced
for experimental purposes. However, this study uses a dataset
encompassing a range of degradation scenarios resulting from
different experimental variables such as rotational speed, load,
and operating frequency.

To demonstrate this, the study focuses on one run-to-failure
case (Case 3), in which the bearing operates at a speed of
1650 and under a load of 4200 N, exceeding the maximum
load capacity of 4000 N to accelerate degradation. The dataset

Figure 7. Case 3 (Unknown bearing defect).

dimensions of the dataset for Case 3 are 2559 × 911. HI for
this case was obtained in the same manner as in the previous
study, as depicted in figure 7.

5. Results and discussions

The main goal of this study is to demonstrate the effect-
iveness of the proposed method in identifying the nominal
state and predicting the RUL using the three datasets out-
lined in section 4. The methodology involves smoothing the
HI data and identifying the start and end of the nominal
state. Furthermore, the study includes a comparison analysis
to assess the performance of degradation and RUL predictions,
considering both scenarios: with and without the inclusion of
the nominal state.

5.1. Case 1: prognostics of outer-race failure

5.1.1. Nominal state determination for Case 1. The raw HI
data contains significant noise, requiring smoothing to reveal
the underlying trend. Figure 8 displays both the noisy raw and
the clearer smoothed HI trends. The data is truncated at time
index 701, as indicated in [34], marking the first time the HI
trend crosses the failure threshold through six-sigma analysis.
This time index establishes the bearing’s EoL.

As seen in figure 8, the smoothed data provides amore evid-
ent trend than the raw HI data. These results are employed to
determine the initiation and conclusion times of the nominal
state. Initially, the HI value starts high as the bearing begins
operation and gradually decreases, stabilizing as the bearing
reaches a stable state.

Figure 9 illustrates the application of the proposed method
to identify the nominal states in Case 1. In figure 9(a), updated
features are plotted at interval of 10 data points to reduce com-
putational load. Before the initial crossing, updated features
with a higher number of data points exhibit higher values than
the previous interval due to lower RMS values, as more HI
data becomes available, signifying the bearing’s approach to
stable operation.

Figure 9(a) indicates the first crossing at time index 59,
marking the point of unstable operation until then. Beyond
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Figure 8. HI from starting operation to EoL in Case 1.

Figure 9. Nominal state start times in Case 1: (a) 52–80 (b) 80–100,
and (c) 100–150.

time index 59, additional crossings reflect transitional condi-
tions until the bearing stabilizes into its nominal state. Asmore
data points are added, shown in figures 9(b) and (c), the con-
dition stabilizes with no further crossings after time index 74.
This demonstrates the method’s robustness in identifying the
initial running-in state and the start of the nominal state.

As mentioned in section 3, a significant increase in HI leads
to a crossing between the current and previous time, indicat-
ing the onset of bearing degradation. Figure 10 displays this
phenomenon, with the crossing at time index 520 in Case 1
marking the end of the nominal state.

Figure 10. The ending of the nominal state in Case 1.

Figure 11. Classification of the degradation phase in Case 1.

In summary, the nominal state in Case 1 commences at the
time index 59 and concludes at time index 520, with bearing
failure at time index 701. The classification of each state is
illustrated in figure 11. The RUL calculation is initiated from
the end of the nominal state, simplifying the bearing degrad-
ation model by excluding the running-in, nominal state, and
damage growth phases.

The results obtained through the proposed method for
identifying the nominal state are satisfactory. It is evident that
the nominal state exhibits a stable trend, while the unstable,
degradation, and damage growth states are marked by non-
stationary conditions. This confirms the validity of the pro-
posed method for nominal state determination.

5.1.2. RUL prediction for Case 1. In Case 1, the RUL predic-
tion initiates at time index 520, marking the end of the nom-
inal state. The degradation model is trained incrementally by
adding more data to observe its impact on RUL prediction.
Figure 12(a) displays RUL predictions using five data points,
ranging from time index 520–525. Figure 12(c) illustrates the
use of ten training data points, spanning from time index 520–
530. Notably, starting with ten data points initially leads to
decreasing degradation predictions, which in turn result in an
infinite RUL prediction. This issue is resolved by applying a
positive slope constraint, resulting in a finite RUL prediction
as shown in figure 12(d).

5.1.3. Effect of excluding the nominal state of RUL prediction.
Figure 13 compares RUL predictions with and without the
nominal state. Excluding the nominal state enhances predic-
tion accuracy, especially with an increasing number of training
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Figure 12. Degradation prediction results in Case 1 using the proposed method, except for (c): (a) 5 training data, (b) 170 training data, (c)
10 training data by extrapolating a cubic polynomial without constraint, and (d) 10 training data.

Figure 13. Comparison of RUL prediction with and without the nominal state for Case 1: (a) entire degradation state, (b) detailed view
from time index 650–701, (c) including nominal state, and (d) excluding nominal state.

data points, as shown in figures 13(a) and (b). RUL predictions
without the nominal state are accurate from time index 650–
701, with 701 representing the bearing’s EoL. Furthermore,
excluding the nominal state reduces prediction uncertainty and
bias.

Figures 13(c) and (d) illustrate that including the nominal
state data can lead to biased predictions and violate mono-
tonicity. Accordingly, excluding the nominal state in Case 1
yields satisfactory results. With only five training data points,
the model incorrectly predicts the EoL at time index 544

(figure 12(a)), compared to the actual EoL is at 701, indicating
substantial prediction errors due to insufficient early samples
for extrapolation. Even with ten samples (figure 12(c)), the
prediction remains inaccurate. However, applying the positive-
slope constraint results in predictions that approach the actual
failure threshold, as shown in figure 12(d).

Increasing the number of training data points consist-
ently improves prediction accuracy. With more training data,
polynomial extrapolation, guided by the positive-slope con-
straint, achieves realistic predictions, eliminating unrealistic
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Figure 14. HI from starting operation to EoL in Case 2.

Figure 15. The starting of the nominal state in Case 2.

Figure 16. The ending of the nominal state in Case 2.

predictions and ensuring monotonically increasing degrada-
tion models, as demonstrated in figures 12(a), (b) and (d).

5.2. Case 2: prognostics of inner-race failure

5.2.1. Nominal state determination for Case 2. In Case 2,
the initial trend of HI during operation contrasts with that of
Case 1, starting with a low HI value that indicates unstable
conditions. Despite this, both cases exhibit noise in the HI
data, as depicted in figure 14, which is managed using the same
smoothing method. Figures 15 and 16 show the initiation and
conclusion of the nominal state in Case 2. The starting point is
at time index 137 (figure 15), with crossings continuing until
time index 178, indicating a gradual transition. The nominal
state concludes at time index 1200 (figure 16), with no further
crossings observed up to time index 1260.

Figure 17. Classification of the degradation phase in Case 2.

To summarize the bearing’s condition, figure 17 provides
an overall classification. The monitoring process starts with an
unstable running-in condition, followed by the nominal state
spanning from time index 137–1200. The degradation state
then occurs from time index 1200–1680, during which RUL
predictions are made. The final phase corresponds to dam-
age growth in the HI-bearing, commencing at the end of the
degradation state and progressing towards EoL.

In figure 17, the overall classification of the bearing condi-
tions is summarized. The bearing monitoring process initiates
with an unstable running-in condition, followed by the nom-
inal state spanning from time index 137–1200. Subsequently,
the degradation state extends from time index 1200–1680, dur-
ing which RUL predictions are made. The final stage repres-
ents damage growth in theHI-bearing, commencing at the con-
clusion of the degradation state, ultimately leading to EoL.

5.2.2. RUL prediction for Case 2. During the degradation
state, the RUL is estimated by constructing a prediction model
for the bearing degradation. This model is developed by train-
ing degradation data from time index 1200, gradually increas-
ing the number of training data by 20 until EoL. This dataset
presents a challenge as the actual data trend decreases between
time index 1300 and 1500.

Figure 18(a) shows the degradation prediction with 20
training data points, where the predicted EoL is still far
from the true EoL. This indicates that 20 training data are
insufficient for accurately estimating polynomial coefficients.
Additionally, several degradation predictions result in unreal-
istic RUL estimations due to the increasing trend in the
extrapolation region, as shown in figure 18(c). However, this
decreasing trend can be fixed by imposing the positive slope
constraint. Figure 18(d) depicts the change in the prediction
trend after applying the proposed method.

5.2.3. Effect of excluding the nominal state of RUL prediction
in Case 2. Excluding the nominal state in RUL predictions
led to a higher prediction accuracy compared to including the
nominal state. When the nominal state was included, the RUL
predictions became unconservative, surpassing the actual RUL
value after time index 1400. This unconservative poses a prob-
lem as it undermines the reliability ofmaintenance predictions.
A similar unconservative pattern emerged when the nominal
state was excluded at time index 1570. However, the degree of
unconservative prediction was significantly lower, as demon-
strated in figure 19.
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Figure 18. Degradation prediction in Case 2 using the proposed method, except for (c): (a) 20 training data, (b) 470 training data, (c) 80
training data by extrapolating a cubic polynomial without constraint, and (d) 80 training data.

Figure 19. RUL prediction with and without the nominal state in Case 2: (a) RUL prediction on entire degradation state, (b) Zoom-in RUL
prediction from time index 1500–1700, (c) RUL prediction including nominal state, and (d) RUL prediction excluding nominal state.

5.3. Case 3: prognostics of unknown failure mode

5.3.1. Nominal state determination for Case 3. The first
crossing of updated feature values in Case 3 occurred at time
index 47 (figure 20(b)). Subsequent slow transition and fluc-
tuating trends led to additional crossings up to time index 520.
Beyond this point, no further crossings were detected until the
failure state was reached. Consequently, the transition period
was considered part of the nominal state. Figure 21 illustrates

the crossing of feature values at time index 870, occurring
after the state had stabilized with no further crossings, indic-
ating the end of the nominal state. The updated feature val-
ues then increased rapidly post-time index 870. Figure 21 dis-
plays these changes, categorized into two distinct trend groups,
either below or within the green dashed-line box, indicating
whether the number of data points is less than or greater than
910, respectively.

10
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Figure 20. Determination of nominal state in Case 3: (a) HI from starting operation to EoL, (b) starting of the nominal state in Case 3, and
(c) ending of the transition from unstable to nominal state.

Figure 21. The ending of the nominal state in Case 3.

Notably, a significant deviation is observed in the upper
group, with updated features having 910–990 data points. This
deviation primarily stems from the utilization of data points
within the 910–990 range, resulting in a notably higher degrad-
ation value compared to the value observed before the time
index of 910. The proposed feature updating method heavily
depends on data deviation to update degradation values.

Figure 22 indicates that the significant degradation devi-
ation in Case 3 is due to a sudden failure, occurring without
prior degradation initiation after passing through the nominal
state. Consequently, using data beyond 910 according to our
method results in a drastic increase in feature value compared
to using fewer than 910 data points.

In Case 3, the HI states are summarized in figure 22 as
follows:

• Time indices 0-56: Running-in state.
• Time indices 56–870: Nominal state.

Figure 22. Classification of the degradation phase in Case 3.

• Time indices 870–900: Degradation state (used for RUL pre-
diction).

• Time index 900: EoL in Case 3.
• Time indices 900–911: Damage growth in the bearing.

5.3.2. RUL prediction for Case 3. Case 3 experiences rapid
degradation from a healthy state to failure, resulting in lim-
ited degradation data. To address this limitation, degradation
predictions in Case 3 are trained with an additional five data
points. Figure 23(a) illustrates early degradation predictions
using only these five data points, from time indices 870–875,
as training data. However, this small number of training data
points proves inadequate for accurate RUL predictions.

Degradation prediction performance in Case 3 significantly
improves when the amount of training data is increased up
to the EoL, as shown in figure 23(b). This approach closely
matches the actual degradation model and yields better RUL
estimates. In contrast, using incorrect degradation models res-
ults in unrealistic RUL predictions, as seen in Cases 1 and
2, demonstrated in figure 23(c). Utilizing the proposed third
order polynomial extrapolationwith positive slope constraints,
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Figure 23. Degradation prediction in Case 3 by applying the proposed method except (c): (a) 5 training data, (b) 20 training data, (c) 15
training data by extrapolating a cubic polynomial, and (d) 15 training data.

Figure 24. Comparison of RUL prediction with and without the nominal state in Case 3: (a) RUL prediction on entire degradation state, (b)
Zoom-in RUL prediction from time index 875–900, (c) Including nominal state, and (d) Excluding nominal state.

as shown in figure 23(d), provides a more realistic prediction
of bearing degradation.

5.3.3. Effect of excluding the nominal state of RUL predic-
tion in Case 3. RUL predictions that exclude the nominal
state demonstrate improved accuracy compared to those that
include it, as illustrated in figure 24(a). Figure 24(b) provides

an enlarged view of RUL predictions without the nominal
state, showing how closely these predictions approach the true
RUL. On the contrary, RUL predictions that incorporate the
nominal state deviate significantly deviate from the true RUL,
as shown in figures 24(c) and (d). These figures provide an
example of fitting degradation to predict RUL at time index
900, both excluding and including the nominal state, respect-
ively. The exclusion of the nominal state results in a curve that
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Figure 25. Comparison of method performances: (a) Training data
until the current time at cycles 550, and (b) Training data until the
current time at cycles 600.

fails to follow the data trend due to the substantial influence of
a larger number of data points in the nominal state.Meanwhile,
including the nominal state results in a curve that accurately
fits the data trend, leading to an accurate prediction of the
EoL.

5.4. Comparison of the proposed RUL prediction and other
methods

The performance of the proposed method was compared with
two other popular approaches for predicting time series data,
neural networks (NN) and long-short-term memory (LSTM),
using the Case 1 datasets. Figures 25(a) and (b) show the
degradation models derived using each method with data up
to the 550th cycle (30 data points) and 600th cycles (80 data
points), respectively.

As the figure illustrates, while LSTM and NN show high
predictive accuracy within the range of the training data, their
performance significantly drops in predicting future condi-
tions where no data is available, resulting in RUL estimates
that extend to infinity. As the amount of training data increases
to 600 cycles, the predictions from LSTM and NN improve
since they are closer to the actual EOL, compared to using data
limited to 550 cycles. On the other hand, the proposed method,
by employing a simplified monotonic increasing polynomial
function, can estimate the EOL relatively accurately, espe-
cially at the onset of initial degradation, thus enabling high
RUL predictions.

6. Conclusions

This study introduces a novelmethod for determining the nom-
inal state using updated HI data without relying on future data.
The method calculates the deviation of HI for each new data
point and computes the difference between consecutive HI val-
ues. The crossing points in these deviations serve as indicators
for the start and end of the nominal state. By excluding the
nominal state, the degradation model is simplified, leading to
improved accuracy in RUL predictions.

Furthermore, the study presents a technique for predicting
degradation performance and RUL. This approach employs
third-order polynomial extrapolation with constraints that
ensure a realistic degradation model by enforcing a positive
gradient.

The proposed method’s generality and effectiveness were
assessed across three distinct bearing failure cases, each with
varying operating conditions and degradation behaviours. The
results demonstrated successful identification of the nominal
state using updated HI data in all three cases. Additionally,
applying constraints to the degradation prediction led tomono-
tonicmodels and realistic RUL estimations. Notably, RUL pre-
dictions excluding the nominal states exhibited higher accur-
acy, reduced uncertainty, and lower bias compared to those
that included the nominal state.

It is important to note that this study is entirely data-driven
and does not incorporate machine learning or physical mod-
elling approaches. Future research may explore the poten-
tial benefits of combining these methods to leverage machine
learning’s capacity to predict complex functions and phys-
ical model’s ability to providemore representative degradation
performance predictions, ultimately achieving amore accurate
and robust RUL estimation. On the other hand, to prove the vis-
ibility and increase the credibility of the proposed method, it
will be implemented using measurement data from machines
in real industrial problems.
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