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ABSTRACT
Optimizing structural designs, especially for complex systems like turbine
blade cooling structures, requires efficient strategies for handling categor-
ical configurations alongside computationally expensive simulations. This
article presents a Bayesian optimization strategy tailored for integrated
tasks involving categorical configurations and high-dimensional continu-
ous design variables. A Gaussian process with Con-Cat kernel is proposed
in order tomerge responsedatasets fromdiverse configurations effectively,
capturing inter-configuration and intra-configuration correlations seam-
lessly. Additionally, a supervised dimension–reduction scheme is devel-
oped based on subspace activation, utilizing a half-Cauchy distribution.
Remarkably, the Con-Cat kernel represents a generalization of standard
kernels, achieving equivalence in scenarios solely involving continuous
variables. The subspace activation scheme enhances surrogate modelling
performance without introducing extra model parameters, which is par-
ticularly beneficial for sparse datasets. Numerical evaluations, including
three mathematical functions, a supported beam problem, and turbine
blade cooling structure design optimization, demonstrate the superiority
of the proposed Bayesian optimization strategy, exhibiting up to an 85%
improvement over five alternative approaches, especially in scenarios with
sparse data.
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1. Introduction

The integrated design of complex structures, incorporating both categorical and continuous vari-
ables, presents a formidable challenge (F. Wang, Zhang, and Zhou 2021; Kaveh, Rahmani, and
Eslamlou 2022; Y. Zhang, Apley, and Chen 2020). Such designs require thoughtful considera-
tion of various configurations and material selections, seamlessly integrated with continuous vari-
ables like material properties and geometric dimensions. Achieving this integration is crucial for
constructing optimization frameworks that accurately reflect the intricacies of industrial design
challenges.
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As the number of variables in a design space increases, the complexity of optimization tasks grows
rapidly (Kirschner et al. 2019; Letham et al. 2020;Malu, Dasarathy, and Spanias 2021). This expansion
creates a high-dimensional landscape that is difficult to navigate, posing a challenge to even the
most sophisticated optimization algorithms. Finding optimal solutions within this vast space requires
algorithms to be both computationally efficient and innovative to overcome the so-called ‘curse of
dimensionality’.

The scarcity of training data exacerbates the difficulty of constructing probabilistic models in
structural design optimization problems. These models are crucial for making reliable predictions
and quantifying uncertainties, yet they often suffer from limited accuracy and generalizability owing
to the sparse nature of high-dimensional data. Developing precise and broadly applicable models is a
pressing challenge, especially when the available data does not adequately represent the entire design
space.

Furthermore, the computational expense of evaluating potential solutions cannot be overlooked.
Objective functions relying on detailed numerical simulations are essential for capturing the intricate
behaviour of complex systems. However, the high computational demands of such simulations can
severely constrain the optimization process, particularly when multiple evaluations are necessary to
explore the solution space effectively.

Addressing these multifaceted issues is not just an academic endeavour but a practical neces-
sity driving innovation in structural design disciplines. This article aims to advance the field by
exploring new optimization strategies that can navigate these challenges with greater efficiency and
effectiveness, ultimately enhancing the structural design process.

Traditional methods for handling categorical variables (Daxberger et al. 2021; Deshwal, Belakaria,
and Doppa 2021; Iyer et al. 2019; Luo et al. 2023; Nguyen et al. 2020; Qiu et al. 2024; Ru et al. 2020;
Saves et al. 2022) can be categorized as three approaches. The first approach involves employing
one-hot encoding, transforming each categorical variable into a binary vector. While preserving the
distinctiveness of categorical variables, this method may lead to computational inefficiencies owing
to increased dimensionality, especially with a large number of categories. The second method entails
directly replacing categorical variables with fixed numerical values, simplifying computations but
potentially introducing an ordinal relationship between categories and biases in model predictions.
The third method constructs separate Gaussian Process (GP) models for each category within the
dataset, allowing for personalized modelling and potentially more accurate predictions. However,
this approach may escalate computational complexity and require more data for effective modelling,
especially for less frequent categories.

These traditional approaches each present their own set of advantages and limitations in handling
categorical variables (Daxberger et al. 2021; Deshwal, Belakaria, and Doppa 2021; Iyer et al. 2019;
Nguyen et al. 2020; Qiu et al. 2024; Ru et al. 2020; Saves et al. 2022). Exploring the nuances of these
traditional approaches is essential for determining the most suitable approach based on the dataset’s
specific characteristics and the modelling task’s objectives. Additionally, further research may aim to
devise hybrid or novel techniques that effectively mitigate drawbacks while capitalizing on existing
methodologies’ advantages.

This article focuses on adaptive sampling based on Bayesian Optimization (BO), a robust,
sample-efficient technique for structural design optimization with computationally expensive sim-
ulations (Eriksson et al. 2019; Foumani et al. 2023; Luo et al. 2023; Qiu et al. 2024; Sabater et
al. 2021; Shahriari et al. 2015; Sheikh et al. 2022; Snoek, Larochelle, and Adams 2012; X. Wang et
al. 2023; Yang, Kissas, and Perdikaris 2022). However, its applicability has been restricted to low-
dimensional and fully continuous problems owing to computational and statistical challenges in
high-dimensional settings and hybrid spaces, including variable representation and optimization,
search space complexity, algorithm adaptability and the trade-off between sampling efficiency and
evaluation cost (Cavazzuti 2013; Helton and Davis 2003; Kirschner et al. 2019; Malu, Dasarathy,
and Spanias 2021; Rodríguez et al. 2018; Ru et al. 2020; Sabater et al. 2021; Shields and Zhang
2016).
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A novel adaptive sampling strategy leveraging Bayesian optimization is proposed to handle
categorical configurations and high-dimensional continuous variables integratively. The key contri-
butions include the following.

• Introduction of a Gaussian process with a novel Con-Cat kernel for fusing datasets from differ-
ent structural configurations, capturing inter-configuration and intra-configuration correlations
simultaneously.

• Development of a supervised dimension–reduction strategy using the half-Cauchy distribution,
designed as theGaussian process’s prior, and activating critical design variables throughmaximum
a-posteriori estimation.

• Proposal of a Bayesian optimization strategy for integrated design optimization of different config-
urations and high-dimensional variables, enhanced with a multi-start gradient descent algorithm
for thorough optimization of the acquisition function. The strategy’s superiority is validated for
turbine blade cooling structure design with four configurations.

The outline of the article is as follows. Section 2 introduces the basics of BO. Section 3 elaborates on
the proposed strategy with theoretical details. Section 4 describes numerical evaluations using three
mathematical functions and the design optimization of a simply supported beam. Section 5 applies
the proposed strategy for the design optimization of a turbine blade cooling structure. Conclusions
and perspectives are finally summarized in Section 6.

2. Basics of Bayesian optimization

This section provides an overview of the fundamental concepts of a typical BO framework. BO for
structural design involves a systematic process for efficiently exploring the design space and identi-
fying optimal solutions while minimizing computational costs. It begins with the formulation of the
optimization taskminx∈�f (x)where f is the structural response to optimize with and� is the design
space.

In the initial stage, an exploration of the design space is conducted using an initial set of designs
generated through techniques like Latin hypercube sampling or random sampling. These designs
are then evaluated using simulation runs, which quantify the performance of each design based on
criteria such as stress distribution, displacement, weight, or cost.

To navigate the design space efficiently, Bayesian optimization relies on surrogate modelling. A
surrogatemodel, often based onGP regression, approximates the objective function. This model cap-
tures the relationship between the design variables and the objective function, allowing for efficient
exploration. It provides not only predictions of the objective function but also estimates of uncer-
tainty. GP is defined by a mean function μ(x) and a covariance function k(x, x′). A common choice
for the covariance function is the Radial Basis Function (RBF) kernel, which is defined as

kRBF(x, x′) = σ 2
k exp

(
−||x − x′||2

2�2

)
. (1)

With the surrogate model in place, an acquisition function is used to guide the selection of the
next design to evaluate. The acquisition function balances exploration (sampling from regions of
high uncertainty) and exploitation (sampling from regions likely to yield optimal designs). Expected
Improvement (EI) is a common acquisition function, defined as

EI(x) = E
[
max(f (x∗)− f (x), 0)

]
, (2)

where x∗ is the current best design, and the expectation is taken under the GP posterior distribution
of f at x.
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When extending BO to handle constraints, the optimization task is reformulated as

min
x∈� f (x) subject to cj(x) ≤ 0, j = 1, . . . , J. (3)

Each constraint function cj(x) in Equation (3) is modelled with its individual GP, yielding poste-
rior means μj(x) and variances σ 2

j (x). A feasibility probability PF(x) is developed to quantify the
satisfaction of constraints as

PF(x) =
J∏

j=1
�

(
−μj(x)
σj(x)

)
, (4)

where � is the cumulative distribution function of the standard normal distribution. The EI
acquisition with constraints (EIC) is then defined as

EIC(x) = EI(x) · PF(x), (5)

which is adopted to guide the selection of valuable simulation runs.
The selected designs are evaluated using the simulation runs, and the results are used to update the

surrogate model. Bayesian optimization iterates until a termination criterion is met, such as reaching
a predefined number of iterations or achieving a satisfactory level of convergence.

3. The proposed Bayesian optimization for categorical configurations

This section discusses the proposed Con-Cat kernel for fusing datasets from different configura-
tions, the subspace activation scheme using the half-Cauchy distribution and the overall framework
of Bayesian optimization.

3.1. The Con-Cat kernel for non-stationary surrogatemodelling

The GP has been well-accepted for surrogate modelling of sparse datasets. The correlation between
design variables is modelled through the kernel function of the GP. This article proposes the Con-Cat
kernel, a novel GP kernel designed tomerge continuous (xcon) and categorical (xcat) variables adeptly
into a cohesive framework. This kernel is crucial for approximating the target response values f (xh),
where xh = [xcon, xcat] represents the mixed input space.

The inputs to the Con-Cat kernel, denoted as xh and x′
h, are are defined as

xh = [xcon, xcat] = [xcon, i] , i = 1, 2, . . . ,N

x′
h = [x′

con, x
′
cat
] = [x′

con, j
]
, j = 1, 2, . . . ,N,

(6)

where i represents xh belonging to the ith category, j represents x′
h belonging to the jth category and

N denotes the total number of categories.
The Con-Cat kernel is articulated through two primary components, where k1(xh, x′

h) emphasizes
the inter-configuration correlation and k2(xh, x′

h) focuses on the intra-configuration correlation as

kh
(
xh, x′

h
) = (1 − λ)k1

(
xh, x′

h
)+ λk2

(
xh, x′

h
)
, (7)

where the trade-off between k1(xh, x′
h) and k2(xh, x′

h) is controlled by a parameter λ ∈ [0, 1], which
is optimized jointly during GP training.

The first component k1(xh, x′
h) is engineered to compute the inter-category similarity while

retaining the sensitivity to the continuous variables’ nuances as

k1
(
xh, x′

h
) = k1

(
[xcon, i] ,

[
x′
con, j
]) = kRBF

(
xcon, x′

con
) · mij (8)
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M =

⎡
⎢⎢⎢⎣
m11 m12 · · · m1N
· · · m22 · · · m2N
...

...
. . .

...
· · · · · · · · · mNN

⎤
⎥⎥⎥⎦

′

(9)

where kRBF(xcon, x′
con) is the RBF kernel, which captures the correlation between continuous variables

xcon and x′
con · (mij) is the element of matrixM in the ith row and jth column, representing the corre-

lation between the ith and jth categories, ranging between zero and one.M is a positive semi-definite
matrix encapsulating the similarities across categories and enabling a unified view of the design space
as the correlationmij are trainable weights obtained duringGP training. A larger value ofmij indicates
that the ith and jth categories are more similar, and vice versa.

The second component k2(xh, x′
h) aims to capture the intra-category similarities emphasizing the

distinct variations within each categorical setting, defined as

k2
(
xh, x′

h
) = k2

(
[xcon, i] ,

[
x′
con, j
]) =

N∑
q=1

k(q)RBF
(
xcon, x′

con
) · δ(q)ij (10)

δ
(q)
ij =

{
1, if i = j
0, else,

(11)

where q represents the categorical variable type and δ
(q)
ij is a switch function as defined in

Equation (11). In evaluating the correlation betweenmixed variables xh and x′
h, a correlation of zero is

assigned if xh and x′
h do not share the same category. This mechanism effectively sets up separate GPs

for different categories, facilitating the adaptation to the non-stationary smoothness of the objective
function under each category without inter-category information exchange.

3.2. Subspace activation using half-Cauchy distribution

Integrating priors into GPmodelling significantly enhances the versatility of function representation.
By carefully selecting priors, particularly through kernel function choices, function attributes such as
smoothness and periodicity can be manipulated adeptly, as noted by Chen and Wang (2018). This
flexibility allows GPs to handle a broad spectrum of data patterns adeptly, highlighting their strength
as a non-parametric method. Additionally, priors act as a form of regularization in GPmodels, aiding
in the prevention of overfitting to training data through strategic prior distribution selection, thereby
boosting the model’s generalization ability. This feature is especially vital in situations with sparse
data or high noise levels, underlining the role of prior distributions in bolstering the robustness of
GPs against overfitting.

In the realm of high-dimensional optimization, leveraging priors within GP modelling can iden-
tify low-effective-dimensional structures within high-dimensional functions. GP-based surrogate
models are utilized, incorporating a subspace activation prior on kernel hyperparameters. This
approach induces a sparse structure in theRBFkernel, efficiently pinpointing crucial low-dimensional
subspaces via active dimensions. Specifically, the model is defined as

kRBF(x, x′) = σ 2
k exp

(
− 1
2�2

||x − x′||2
)

= σ 2
k exp

(
−1
2

D∑
i=1

ρi(xi − x′
i)
2
)
, (12)

where ρi for i = 1, . . . ,D are inverse squared length scales representing the smoothness and impor-
tance of the ith dimension and D represents the dimensionality of the input space.
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Building on this, the subspace activation prior is applied over the kernel hyperparameters, notably
the inverse squared length scales ρi, to discern the key low-dimensional subspaces indicated by active
dimensions rapidly. The following prior distributions are developed as

length scales : ρi ∼ HC(0,α) for i = 1, . . . ,D

kernel variance : σ 2
k ∼ LN (0, 102)

function values : f ∼ N (0,Kψxx)
observations : y ∼ N (f , σ 21N

)
. (13)

The half-Cauchy (HC) and log-normal (LN ) distributions allow for parameter variability across a
wide range, accommodating diverse data characteristics and averting overly deterministic parameter
inferences in sparse-sample scenarios. The probability density functions of the half-Cauchy and log-
normal distributions are given as

Half − Cauchy : PDF1(x; x0, σ) = 2
πσ

1
1 + (x − x0)2/σ 2

Log − Normal : PDF2(x;μ, σ) = 1
x
√
2πσ 2

e−(ln x−μ)2/2σ 2 .
(14)

The hyperparameters of the GP in Equations (12) and (13) are determined by employing Maximum
A-Posteriori (MAP) estimation, which maximizes the posterior distribution of the hyperparameters
given the observed data:

ψ̂MAP = argmax
ψ

{
log p(y|X,ψ)+ log p(ψ)

}
, (15)

where ψ represents the hyperparameters of the GP, y is the vector of observed target values and X is
the matrix of input features.

The inverse square length scales ρi in Equations (12) and (13) are influenced by the half-Cauchy
prior in Equation (14) and Figure 1, leading them to tend towards zero. As a result, most dimensions
are turned off. The half-Cauchy prior’s distribution exhibits heavy-tailed properties. Consequently,
ample evidence in the observed values y will shift the posterior of ρi towards higher values by the
MAP estimation in Equation (15), effectively turning on the respective dimensions.

Figure 1. Probability density distribution functions of Half-Cauchy distribution (left) and Lognormal distribution (right) with dif-
ferent standard deviations. The location parameter x0 of the Half-Cauchy distribution is set to zero, and the mean μ of the normal
distribution obtained by the logarithmic transformation of the log-normal distribution is set to zero.
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3.3. Overview of the proposed Bayesian optimization framework

This section delineates the overarching structure of the Bayesian optimization framework devised
for structural optimization with categorical configurations. The framework, detailed in Algorithm 1,
adopts surrogate modelling with optimization of the acquisition function to pinpoint the optimal
solution within a constrained evaluation budget, adhering to specified constraints.

Algorithm 1 The proposed adaptive sampling for handling categorical configurations
Input: Objective function fobj; constraint functions gj for j = 1, 2, . . . , J; total evaluation budget

T > m; and initial query set x1:m from the DoE Dt using the LHS method and evaluations
of objective and constraint function fobj(x1:m), gj(x1:m) for j = 1, 2, . . . , J.

Output: Solution of the problem minx∈�′ f (x) over design space �′of mixed variables with con-
straints.

1 while the stopping criterion is not satisfied do
2 Build the surrogate model of the objective function to obtain the mean f̂ and standard devia-

tion prediction sf at all given points {x} from the DoEDt . Build the surrogate models for every
constraint to obtain the mean ĝj and standard deviation prediction sgj at all given points {x} for
j = 1, 2, . . . , J from the DoEDt . Construct the acquisition function with EIC from the surrogate
models; maximize the acquisition function with EIC using multi-restart gradient-based opti-
mizer to select the next sample point xt . Add xt , f (xt), gj(xt) for j = 1, 2, . . . , J to the DoEDt+1;
increment t.

3 Identify the optimal solution x∗ from Dt that has the lowest objective function value f (x∗) while
satisfying all constraints. Return x∗ and f (x∗).

Initiating with a Design of Experiments (DoE) Dt through Latin Hypercube Sampling (LHS),
the strategy establishes an initial query set xh,1:m within the mixed space �′ that serves as the
basis for subsequent evaluations of the objective function fobj(x1:m) and J constraint functions gj for
j = 1, 2, . . . , J.

GP models, leveraging the novel Con-Cat kernel introduced in Section 3.1, are iteratively refined
from the DoEDt . These models are adept at predicting the mean and standard deviation of the afore-
mentioned functions at new points. In the Con-Cat kernel, the subspace activation prior is applied to
theRBF kernels, dictating that all hyperparametersρ are optimized. This setup allows the closed-form
computation of the observed data’s marginal likelihood.

The strategy iteratively updates the DoEDt by incorporating new samples, each iteration drawing
closer to the optimal solution that minimizes the objective function while satisfying all constraints.
The process leverages the surrogate models to construct and optimize the acquisition function,
systematically identifying the next sampling point, thereby refining the search within the design
space.

In addressing the challenge of maximising the acquisition function within highly non-stationary
spaces, this framework adopts a multi-point restart gradient-based optimizer for searching the opti-
mumacquisition function values. Comparedwith heuristic algorithms such as genetic algorithms, the
multi-point restart gradient-based algorithm canmore accurately identify directions of improvement,
even in complex, multi-dimensional spaces characterized by non-stationarity. The efficient search of
acquisition function values could further enhance the convergence speed of the design optimization
framework.

The BO framework proposed here is for categorical and continuous high-dimensional spaces by
enhancingmixed data representation, facilitating efficient high-dimensional optimization and ensur-
ing thorough optimization of the acquisition function. This strategy not only adapts to complex
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correlations within mixed data but also dynamically adjusts to new data without compromising the
model’s capability of capturing the essential features of the objective function, thereby streamlining
the optimization process in engineering applications.

4. Numerical evaluations

This section presents numerical validation of the proposed BO strategy based on six mathematical
functions and one finite element simulation. The efficacy of the proposed approach is demonstrated
through comparison with seven benchmark optimization strategies: StandardBO (Snoek, Larochelle,
and Adams 2012), Sparse Axis-Aligned Subspace BO (SAASBO) (Eriksson and Jankowiak 2021),
Additive Latent Embedding BO (ALEBO) (Letham et al. 2020), Multilayer Perceptron Gaussian Pro-
cess BO (MPGPBO) (Wilson et al. 2016), Latin Hypercube Sampling BO (LHSBO) (Shields and
Zhang 2016), Continuous and Categorical BO (CoCaBO) (Ru et al. 2020) and Multi-armed Bandit
BO (BanditBO) (Nguyen et al. 2020).

To address the challenge of categorical variables,One-hot encodingwas employed for StandardBO,
SAASBO, ALEBO, MPGPBO and LHSBO, enabling them to handle categorical variables effectively.
One-hot encoding transforms each categorical variable into a binary vector, where each category is
represented by a unique binary vector. This allows the optimization algorithms to process categorical
variables as numerical inputs, facilitating their integration into the optimization process.

4.1. Evaluation setup

The selection of subsequent data points was based on maximizing the expected improvement with
constraints (EIC). The optimization process was repeated with 10 sets of initial samples for a com-
prehensive evaluation. Each optimization strategy was allocated the same number of iterations (i.e.
100), with the initial points set to 10 for each category.

Two metrics were adopted for assessing convergence performance: the Mean Error (ME) for
convergence speed and the Median Deviation (MD) for algorithm robustness. A lower ME indi-
cates faster convergence, while a lower MD suggests higher robustness, essential for minimization
problems.

To compare the performance of the proposed method against benchmarks, the Promotion Rate
(PR) metric was introduced. This metric combines measures of convergence speed and robustness
relative to the theoretical optimization potential:

PR =
(
0.5 · (ME2 − ME1)+ 0.5 · (MD2 − MD1)

UB − LB

)
× 100%, (16)

whereME1 andMD1 represent themean andmedian of the final convergence results of the proposed
scheme, while ME2 and MD2 represent other baselines for comparison. For mathematical functions,
the global minimum served as the theoretical Lower Bound (LB) for optimization efficacy. In engi-
neering applications, direct computation of the global minimum is often impractical; therefore, the
best optimization result across all methods was used as LB, and the average initial value was used as
the theoretical upper bound (UB). UB − LB quantifies the optimal optimization range achievable by
all methods.

The weights of convergence speed and robustness on the impact of PR were set to 0.5 each in
Equation (16). A higher PR value indicates superior performance of the proposed scheme, demon-
strating its effectiveness in achieving faster convergence and greater robustness compared to the
baseline methods.
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4.2. Mathematical functions

4.2.1. Mathematical function 1
Function 1 explores a high-dimensional space with continuous and categorical variables, where the
first three continuous variables and one categorical dimension are pivotal owing to their significant
impact on the function’s output, while the remaining 16 dimensions are deemed less significant and
can be considered as noise. This setup tests the proposed method’s ability to discern and prioritize
influential dimensions for categorical–continuous design variables.

f1 (xcon, xcat) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
3∑

i=1
x2i , xcat = A

3∑
i=1

1.2 ∗ sin (2πxi) , xcat = B

3∑
i=1

{
0.1 ∗ sin (2πxi)− 0.25 ∗ pdf (xi, 0.5, 0.05)

}
, xcat = C

3∑
i=1

{0.1 ∗ sin (2πxi)− 1.0} , xcat = D

(17)

pdf (x,μ, σ) = 1√
2πσ

exp
(

− (x − μ)2

2σ 2

)
(18)

xcat = x0 ∈ [A,B,C,D], xcon = [x1, x2, . . . , x19] ∈ [0, 1]d. (19)

4.2.2. Mathematical function 2
Function 2, a variant of the Branin function adjusted for high-dimensional optimization with cat-
egorical choices, tests the method’s performance in handling complex landscapes. The inclusion of
different categorical configurations (A,B,C,D) introduces varying difficulty levels and explores the
algorithm’s flexibility. The first two continuous variables and one categorical dimension are consid-
ered important owing to their significant impact on the function’s output, while the remaining 47
dimensions are deemed less significant and can be considered as noise.

f2 (xcon, xcat) =

⎧⎪⎪⎨
⎪⎪⎩
Branin (15 ∗ x1 − 5, 15 ∗ x2) /200 − 4.0, xcat = A
Branin (10 − 15 ∗ x1, 15 − 15 ∗ x2) /100 − 4.0, xcat = B
Branin (15 ∗ x1 − 51, 15 − 15 ∗ x2) /10 − 5.0, xcat = C
Branin (10 − 15 ∗ x1, 15 ∗ x2)− 6.0, xcat = D

(20)

Branin(x1, x2) = a
(
x2 − bx21 + cx1 − r

)2 + s(1 − t) cos (x1)+ s

a = 1, b = 5.1/
(
4π2) , c = 5/π , r = 6, s = 10, t = 1/(8π)

(21)

xcat = x0 ∈ [A,B,C,D], xcon = [x1, x2, . . . , x49] ∈ [0, 1]d. (22)

4.2.3. Mathematical function 3
Function 3, inspired by the Hartmann-6 function, extends the challenge to a higher-dimensional
space with continuous variables. It further complicates the optimization task with multiple peaks and
valleys, evaluating the algorithm’s precision in locating globalminima amidst numerous local optima.
The first six continuous variables and one categorical dimension are pivotal owing to their significant
impact on the function’s output, while the remaining 93 dimensions are deemed less significant and
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can be considered as noise.

f3 (xcon, xcat) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
1.94

⎡
⎣2.58 +

4∑
i=1

αi exp

⎛
⎝−

6∑
j=1

Aij
(
xj − Pij

)2⎞⎠
⎤
⎦ , xcat = A

−
4∑

i=1
αi exp

⎛
⎝−

6∑
j=1

Aij
(
xj − Pij

)2⎞⎠+
6∑

j=1
xj, xcat = B

−
4∑

i=1
αi exp

⎛
⎝−

6∑
j=1

Aij
(
xj − Pij

)2⎞⎠ ∗
⎛
⎝ 6∑

j=1
xj − 2

⎞
⎠ , xcat = C

− 1
1.94

⎡
⎣2.58 +

4∑
i=1

αi exp

⎛
⎝−

6∑
j=1

Aij
(
xj − Pij

)2⎞⎠
⎤
⎦ , xcat = D

(23)

α = (1.0, 1.2, 3.0, 3.2)T

A =

⎛
⎜⎜⎝

10 3 17 3.50 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎞
⎟⎟⎠ (24)

P = 10−4

⎛
⎜⎜⎝
1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎞
⎟⎟⎠

xcat = x0 ∈ [A,B,C,D], xcon = [x1, x2, . . . , x99] ∈ [0, 1]d. (25)

4.2.4. Mathematical function 4
Function 4 is a variant of the Ackley function, tailored for high-dimensional optimization with cate-
gorical choices. This function evaluates themethod’s performance in navigating complex landscapes.
The inclusion of different categorical configurations (A,B,C,D) introduces varying levels of difficulty,
thereby testing the algorithm’s adaptability. All variables, including the continuous and categorical
dimensions, are considered crucial and effective due to their significant impact on the function’s
output.

f4 (xcon, xcat) =

⎧⎪⎪⎨
⎪⎪⎩
Ackley (xcon) , xcat = A
Ackley (xcon + 1)+ 1, xcat = B
Ackley (xcon + 2)+ 2, xcat = C
Ackley (xcon + 3)+ 3, xcat = D

(26)

Ackley(x) = −a exp

⎛
⎝−b

√√√√1
d

d∑
i=1

x2i

⎞
⎠− exp

(
1
d

d∑
i=1

cos (cxi)

)
+ a + e

a = 20, b = 0.2, c = 2π , d = 49 (27)

xcat = x0 ∈ [A,B,C,D], xcon = [x1, x2, . . . , x49] ∈ [−5, 5]d. (28)

4.2.5. Mathematical function 5
Function 5 is a modified version of the Rosenbrock function, adapted for high-dimensional opti-
mization with categorical choices. This function assesses the method’s capability in handling intri-
cate landscapes. The presence of different categorical configurations (A,B,C,D) introduces varying
degrees of complexity, challenging the algorithm’s flexibility. All variables, including the continuous
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and categorical dimensions, are deemed essential and effective owing to their substantial influence
on the function’s output.

f5 (xcon, xcat) =

⎧⎪⎪⎨
⎪⎪⎩

1
107 Rosenbrock (xcon) , xcat = A
1
107 (Rosenbrock (xcon + 1)+ 1) , xcat = B
1
107 (Rosenbrock (xcon + 2)+ 2) , xcat = C
1
107 (Rosenbrock (xcon + 3)+ 3) , xcat = D

(29)

Rosenbrock(x) =
d∑

i=1

[
100
(
xi+1 − x2i

)2 + (1 − xi)2
]

d = 48 (30)

xcat = x0 ∈ [A,B,C,D], xcon = [x1, x2, . . . , x49] ∈ [−5, 10]d. (31)

4.2.6. Mathematical function 6
Function 6 is a modified Rastrigin function, designed for high-dimensional optimization with cat-
egorical choices. This function tests the method’s effectiveness in managing complex landscapes.
The inclusion of various categorical configurations (A,B,C,D) presents different levels of diffi-
culty, exploring the algorithm’s versatility. All variables, including the continuous and categorical
dimensions, are considered pivotal and effective owing to their significant impact on the function’s
output.

f6 (xcon, xcat) =

⎧⎪⎪⎨
⎪⎪⎩

1
103 Rastrigin (xcon) , xcat = A
1
103
(
Rastrigin (xcon + 1)+ 1

)
, xcat = B

1
103
(
Rastrigin (xcon + 2)+ 2

)
, xcat = C

1
103
(
Rastrigin (xcon + 3)+ 3

)
, xcat = D

(32)

Rastrigin(x) = Ad +
d∑

i=1

[
x2i − A cos (2πxi)

]
A = 10, d = 49 (33)

xcat = x0 ∈ [A,B,C,D], xcon = [x1, x2, . . . , x49] ∈ [−5, 5]d. (34)

4.2.7. Evaluation results of mathematical functions
The optimization outcomes across various benchmarks are detailed in Figures 2 and 3. The con-
vergence performance metrics are outlined in Tables 1–6. For mathematical functions 1, 2 and 3 in
Equations (17), (20) and (23), the ranges [LB,UB] achieved by the proposedmethod are [−6,−3.06],
[−5.60,−3.92] and [−5.80,−0.245], respectively. For mathematical functions 4, 5 and 6 in Equa-
tions (26), (29) and (32), the ranges [LB,UB] obtained by the proposed method are [4.05, 10.13],
[0.00, 0.48] and [0.36, 0.93], respectively. In Table 7, the proposed method consistently demonstrated
higher prediction accuracy compared to other methods, as reflected in the normalized RMSE val-
ues. These results underscore the proposed strategy’s superior performance, as evidenced by optimal
mean and median outcomes across all tests. While ALEBO showed moderate effectiveness, Stan-
dardBO lagged significantly behind. The proposed approach notched improvements ranging from
7.49% to 85.08% over StandardBO, SAASBO, LHSBO, MPGPBO , ALEBO, CoCaBO and BanditBO
across the board for these mathematical functions. Given StandardBO and BanditBO’s underperfor-
mance and the high cost of experimentation in design optimization scenarios, they were subsequently
removed from the baseline comparisons.
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Figure 2. The optimization results of different baselines on three mathematical functions (1, 2 and 3) using a DoE of 40 points
over 10 independent replications. For each baseline, the mean value of the best minimum found at a given iteration is depicted
as a convergence curve in the top row. The distribution over the final approximate minimum after 100 iterations is encoded as a
box plot in the bottom row, with horizontal bars corresponding to 5%, 50% and 95% quantiles. The proposed method is labelled
‘Proposed’.

Figure 3. The optimization results of different baselines on three Mathematical functions (4, 5 and 6) using a DoE of 40 points over
10 independent replications. For each baseline, the mean value of the best minimum found at a given iteration is depicted as a
convergence curve in top row. The distribution over the final approximateminimum after 100 iterations is encoded as a box plot in
bottom row, with horizontal bars corresponding to 5%, 50% and 95% quantiles. The proposed method is labelled ‘Proposed’.

Table 1. Performance metrics for evaluating Mathematical function 1.

Proposed
method

Standard
BO SAASBO LHSBO MPGPBO ALEBO CoCaBO BanditBO

Mean result −5.26 −3.25 −3.57 −3.49 −3.32 −4.93 −3.81 −3.37
Median result −5.97 −2.99 −3.00 −3.20 −3.02 −5.87 −3.59 −3.08
PR 85.08% 79.34% 77.40% 83.24% 7.49% 65.26% 81.45%

Note: The values for the Proposedmethod are in bold to highlight its superior performance. Specifically, the Proposedmethod shows
the best results in mean and median metrics compared to the other methods.
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Table 2. Performance metrics for evaluating Mathematical function 2.

Proposed
method

Standard
BO SAASBO LHSBO MPGPBO ALEBO CoCaBO BanditBO

Mean result −5.54 −4.76 −4.99 −4.90 −4.97 −5.22 −5.09 −4.89
Median result −5.57 −4.72 −4.89 −4.87 −4.83 −5.33 −4.97 −4.77
PR 48.30% 36.34% 39.69% 38.69% 16.51% 30.95% 42.85%

Note: The values for the Proposedmethod are in bold to highlight its superior performance. Specifically, the Proposedmethod shows
the best results in mean and median metrics compared to the other methods.

Table 3. Performance metrics for evaluating Mathematical function 3.

Proposed
method

Standard
BO SAASBO LHSBO MPGPBO ALEBO CoCaBO BanditBO

Mean result −4.39 −1.78 −2.16 −1.32 −2.28 −1.78 −2.66 −2.04
Median result −5.29 −1.70 −1.82 −1.11 −1.98 −1.52 −2.40 −1.82
PR 55.77% 51.28% 65.24% 48.76% 57.42% 41.58% 52.35%

Note: The values for the Proposedmethod are in bold to highlight its superior performance. Specifically, the Proposedmethod shows
the best results in mean and median metrics compared to the other methods.

Table 4. Performance metrics for evaluating Mathematical function 4.

Proposed
method

Standard
BO SAASBO LHSBO MPGPBO ALEBO CoCaBO BanditBO

Mean result 4.36 8.93 9.04 7.59 9.51 6.97 6.74 9.65
Median result 4.32 8.93 9.01 7.56 9.55 6.84 6.60 9.69
PR 75.44% 77.00% 53.16% 85.28% 42.14% 38.26% 87.65%

Note: The values for the Proposedmethod are in bold to highlight its superior performance. Specifically, the Proposedmethod shows
the best results in mean and median metrics compared to the other methods.

Table 5. Performance metrics for evaluating Mathematical function 5.

Proposed
method

Standard
BO SAASBO LHSBO MPGPBO ALEBO CoCaBO BanditBO

Mean result 0.013 0.167 0.175 0.062 0.304 0.237 0.044 0.313
Median result 0.014 0.160 0.175 0.063 0.291 0.237 0.041 0.310
PR 31.26% 33.74% 10.24% 59.16% 46.66% 6.10% 62.15%

Note: The values for the Proposedmethod are in bold to highlight its superior performance. Specifically, the Proposedmethod shows
the best results in mean and median metrics compared to the other methods.

Table 6. Performance metrics for evaluating Mathematical function 6.

Proposed
method

Standard
BO SAASBO LHSBO MPGPBO ALEBO CoCaBO BanditBO

Mean result 0.599 0.681 0.726 0.651 0.743 0.628 0.618 0.761
Median result 0.601 0.678 0.729 0.647 0.747 0.692 0.624 0.760
PR 13.87% 22.38% 8.56% 25.47% 10.44% 3.66% 28.08%

Note: The values for the Proposedmethod are in bold to highlight its superior performance. Specifically, the Proposedmethod shows
the best results in mean and median metrics compared to the other methods.

4.3. Simply supported beamdesign optimization

This study extends the proposedBayesianOptimization strategy to the simulation-based design prob-
lem of a simply supported beam as shown in Figure 4. This beam, characterized by fixed supports at
both ends, spans 10 meters and bears a uniformly distributed load of 10,000N on its top surface. The
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Table 7. Comparison of normalized RMSE for different Gaussian processmodels on sixmathemat-
ical functions based on 200 training samples and 100 testing samples.

Proposed
method GP–MLE GP–Category MPGP

Mathematical function 1 0.32 0.63 0.57 0.74
Mathematical function 2 0.43 0.52 0.53 0.70
Mathematical function 3 0.24 0.90 0.36 1.11
Mathematical function 4 0.21 0.81 0.45 1.05
Mathematical function 5 0.26 0.84 0.42 1.68
Mathematical function 6 0.19 1.23 0.65 1.83

Notes: The values for the Proposedmethod are in bold to highlight its superior performance. Specif-
ically, the Proposedmethod shows the best results inmean andmedianmetrics compared to the
other methods.
We compare: (Proposed method) Gaussian Process using our proposed Con-Cat kernel and
employing MAP estimation; (GP-MLE) Standard Gaussian Process fitted using Maximum Likeli-
hood Estimation (MLE) with one-hot encoding for categorical variables; (GP-Category) Separate
Gaussian Process models for each category, using MLE; (MPGP) Multilayer Perceptron Gaussian
Process with one-hot encoding and MLE.

Figure 4. Constraints, loads and four different cross-sectional shapes of the simply supported beam. The upper part of the figure
shows the constraints and loads of the supported beam, while the lower part displays the four different cross-sectional shapes of
the supported beam.

design challenge involves adjusting shape parameters–namely, the side length of the square cross-
section, the cross-section shape, and the material removal ratio–to minimize maximum deformation
in Figure 5 while adhering to a mass constraint of 30 tons.

The design space encompasses three key variables as shown in Table 8: the side length of the cross-
section, the material removal ratio, and the cross-section shape, the latter being a categorical variable
with four configurations: solid, square-removed, circle-removed, and cross. The objective is to deter-
mine the optimal combination of these parameters to achieve the lowest possible deformation under
given constraints and loads, as illustrated in the optimization model equation and detailed in the
design space table .

The proposed approach considers the varied impact of the cross-section’s side length andmaterial
removal ratio across different shapes, aligning with the Gaussian process kernel’s capability to handle
categorical variables. The optimization framework aims to find the minimal deformation configura-
tion, constrained by a maximummass limit, using a mathematical model that integrates these design
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Figure 5. Deformations of simply supported beams with different cross-sectional shapes.

Table 8. Design space for the simply supported beam.

Variable Unit Range Meaning of variable

BM_P1 mm [1.0,2.0] Side length of the outer profile
BM_P2 [0.2,0.8] Material removal ratio
BM_P3 {A, B, C,D} Shape configuration of the cross section

considerations as follows:

Find
{
minY = F(X)
X = (x1, x2, x3)

s.t.

⎧⎨
⎩
xij ≤ xi ≤ xim (i = 1, 2)
x3 ∈ (v1, v2, v3, v4)
mass = M(X) ≤ 30t.

(35)

The range [LB, UB] for the simply supported beam design is established between [34.64, 39.93].
Detailed optimization outcomes from various benchmarks are depicted in Figure 6, and performance
metrics are consolidated in Table 9. Notably, ALEBO’s performance was hindered by its less pre-
cise handling of boundary conditions, leading to a significant number of samples falling outside the
feasible domain. This characteristic adversely affected its performance, particularly in constrained
optimization scenarios. In contrast, the proposed strategy excelled, achieving the best mean and
median results, underscoring its effectiveness. While SAASBO showed moderate performance, both
ALEBO and LHSBO lagged considerably. The proposed approach marked a pronounced improve-
ment, showcasing enhancements ranging from7.05% to 128.45%over themethodologies of SAASBO,
LHSBO,MPGPBO , ALEBO and CoCaBO in the optimization of the simply supported beam design.

5. Design optimization for the turbine stator blade cooling structure

5.1. Turbine stator blade cooling challenges

In the high-stress environment of gas turbines, where operational conditions can exceed pressures
of 40 bar and temperatures of 1000K, component durability is paramount. The turbine stator blade,
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Figure 6. The optimization results of different baselines on the simply supported beam design optimization were obtained over
five independent replications. For each baseline, the mean value of the best minimum found at a given iteration is depicted as a
convergence curve (left). The distribution over the final approximate minimum after 100 iterations is encoded as a box plot (right),
with horizontal bars corresponding to 5%, 50% and 95% quantiles. The proposed method is labelled ‘Proposed’.

Table 9. Performance indicators of convergence results from different baselines of simply supported beam design
optimization.

Proposed
method SAASBO LHSBO MPGPBO ALEBO CoCaBO

Mean result 35.07 35.60 36.87 36.01 41.54 35.65
Median result 35.08 35.29 36.91 36.10 42.20 35.63
PR 7.05% 34.34% 18.63% 128.45% 10.72%

Note: The values for the Proposed method are in bold to highlight its superior performance. Specifically, the Proposed
method shows the best results in mean and median metrics compared to the other methods.

a critical component, must withstand intense heat, stress and aerodynamic loads. Cooling strate-
gies, such as internal and film cooling, are essential to prevent blade degradation or melting, utilizing
‘cooler’ air bled from the compressor casing (G. Zhang et al. 2022; Nagaiah and Geiger 2014). This
study focuses on optimizing the shape and configuration parameters of the turbine stator blade to
enhance cooling efficiency.

Figure 7 demonstrates a typical structure of the turbine stator blade and finite element analysis
result. The proposed approach addresses the design challenges by exploring four different cooling
configurations (A,B,CandD) as depicted in Figure 8, each with unique features aimed at improving
cooling efficiency. Configuration A, with a U-shaped cooling channel, serves as the baseline. Con-
figurations B and D introduce additional cooling baffles to increase surface contact with the cooling
medium, whereas Configurations C and D incorporate extra cooling holes to form a protective cool-
ing film on the blade’s surface. These designs aim to balance cooling performance with the structural
integrity and weight constraints of the blade.

5.2. Design optimizationwith different configurations

In this article, the primary focus is on the performance of the optimization algorithm itself. All
algorithms were subjected to the same experimental setup, as follows.

Given the complexity of the physical fields inside a gas turbine and considering the experimental
costs, a simplified approachwas employed in the simulation software. Thematerial selection assumed
that the blades and assembly parts were made of directionally solidified (DS) GTD111 nickel-based
alloy with high tensile strength. The linear elastic model was set with a reference temperature of 310K
and a Poisson’s ratio of 0.33, comparable to other stainless steels.
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Figure 7. Structure of the turbine stator blade (left) and finite element analysis result for surface temperature (right). The colour
scale on the right indicates the surface temperature in kelvins (K).

Figure 8. Structure of the turbine stator blade and finite element analysis result of surface temperature. The top row shows the
four different structures of the turbine stator blade, while the bottom row displays the finite element analysis result for the surface
temperature of the turbine stator blade. Configuration A is the original configuration. In configurations B and D, additional cooling
baffles were set for the turbine blades, and in configurations C and D, additional cooling holes were set for the turbine blades. The
colour scale indicates the surface temperature in kelvins (K).

The complex turbulent flows within the cooling ducts were not simulated. Instead, the average
Nusselt number correlation (Bredberg 2002) was used to calculate the heat transfer coefficient. The
cooling fluid was assumed to be air at a pressure of 30 bar and a temperature of 650K. The heat flux on
the stator blade surfaces was calculated using the heat transfer coefficient. The pressure and suction
sides were approximated as two flat plates using the local heat transfer coefficient for external forced
convection. The combustion gases were approximated as air at a pressure of 30 bar and a temperature
of 1150K, with a corresponding speed of sound of approximately 650m/s.

The design variables for the turbine stator blade are shown in Table 10. The design space comprises
19 continuous variables influencing the serpentine cooling channel’s dimensions and orientations,
and one categorical variable determining the cooling pipe’s configuration. The objective function
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Table 10. Design space for the turbine stator blade.

Variable Unit Range Meaning of variable

TS_P1 mm [3, 6] Width of 1st cooling baffle
TS_P2 mm [7, 9] Width of 2nd cooling baffle
TS_P3 mm [10, 12] Width of 3rd cooling baffle
TS_P4 mm [4, 6] Width of 4th cooling baffle
TS_P5 mm [6, 8] Width of 5th cooling baffle
TS_P6 mm [10, 120] Height of 1st cooling baffle
TS_P7 mm [10, 120] Height of 2nd cooling baffle
TS_P8 mm [10, 120] Height of 3rd cooling baffle
TS_P9 mm [10, 120] Height of 4th cooling baffle
TS_P10 mm [10, 120] Height of 5th cooling baffle
TS_P11 mm [-30, 30] Rotation angle of 1st baffle around the z-axis
TS_P12 mm [-30, 30] Rotation angle of 2nd baffle around the z-axis
TS_P13 mm [-30, 30] Rotation angle of 3rd baffle around the z-axis
TS_P14 mm [-30, 30] Rotation angle of 4th baffle around the z-axis
TS_P15 mm [-30, 30] Rotation angle of 5th baffle around the z-axis
TS_P16 mm [4, 6] Diameter of the cooling hole
TS_P17 mm [50, 100] Length of the additional cooling baffle
TS_P18 mm [3, 6] Width of the additional cooling baffle
TS_P19 mm [20, 120] Height of the additional cooling baffle
TS_P20 {A, B, C,D} Shape configuration of the cooling pipe

aims to minimize the average surface temperature of the cooling channel, indicating enhanced cool-
ing performance. The optimization model is constrained by the blade’s maximum allowable mass,
ensuring the design’s feasibility for real-world application. In this study, enhancing the cooling of
the turbine blade may necessitate the use of more expensive materials, thereby increasing costs.
Additionally, increasing the blade’s mass can affect the overall weight of the turbine, impacting the
efficiency and fuel consumption of the gas turbine. The total mass of the blade was constrained not to
exceed 10.80 kg in the experiments. Upon completion of the experiments, a Pareto front was obtained
that included both the average temperature of the blade cooling channel and the total mass of the
blade.

Find
{
minY = G(X)
X = (x1, x2, . . . , x19, x20)

(36)

Figure 9. The optimization results for different baselines on the turbine stator blade design optimization using a DoE of 40 points
over five independent replications. For each baseline, the mean value of the best minimum found at a given iteration is depicted as
a convergence curve (left). The distribution over the final approximateminimum after 100 iterations is encoded as a box plot (right),
with horizontal bars corresponding to the 5%, 50% and 95% quantiles. The proposed method is labelled ‘Proposed’.
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Table 11. Performance indicators of convergence results from different baselines of turbine stator blade design optimization.

Proposed
method SAASBO LHSBO MPGPBO ALEBO CoCaBO

Mean result 839.90 857.54 851.42 844.53 857.00 845.19
Median result 839.17 862.69 852.61 845.95 857.80 844.55
PR 70.56% 42.79% 19.56% 61.25% 18.29%

Note: The values for the Proposedmethod are in bold to highlight its superior performance. Specifically, the Proposedmethod shows
the best results in mean and median metrics compared to the other methods.

s.t.

⎧⎨
⎩
xij ≤ xi ≤ xim(i = 1, 2, . . . , 19)
x20 ∈ (v1, v2, v3, v4)
mass = M(X) ≤ 10.80 kgs.

The optimization problem for this study is defined by Equation (36). The optimization results for
different baselines are shown in Figure 9 and the performance metrics of the convergence results are
shown in Table 11. The proposed strategy exhibits the best performance as both its mean andmedian
results are optimal. Notably, the proposedmethod achieves the lowest average temperature, signifying
the highest cooling efficiency among tested configurations. The results, as summarized in the perfor-
mance indicators table, highlight the proposed strategy’s significant improvements over conventional
methods such as SAASBO, LHSBO, MPGPBO , ALEBO and CoCaBO, with improvements ranging
from 18.29% to 70.56%.

Figure 10. Pareto front obtained by the proposed method, showing the trade-off between the average temperature of the blade
cooling channel and the total mass of the blade. The optimal solution, which meets the weight constraint and achieves the lowest
average temperature, is indicated on the Pareto front.
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The Pareto front obtained by the proposed method, which includes both the average temperature
of the blade cooling channel and the total mass of the blade, is shown in Figure 10. The sample point
with the lowest average temperature of the blade cooling channel that meets the weight constraint
was selected as the optimal solution. The optimal solution configuration is identified as D, with an
average temperature of 836.77K and a total mass of 10.71 kg.

Furthermore, an independent complete simulation of the optimal solution was conducted using
the average Nusselt number correlation to calculate the heat transfer coefficient, as a substitute for
complex turbulentmodelswithin the cooling ducts. Additionally, the predictive accuracy of the surro-
gatemodel usedwas verified. These results, as shown in Figure 11, confirm the validity of the proposed
approach.

This engineering application of the proposed Bayesian optimization method to turbine stator
blade cooling structure design exemplifies the method’s potential in addressing complex, real-world
engineering challenges. By systematically optimizing the cooling structure’s design parameters, the
proposed method not only enhances cooling efficiency but also ensures compliance with critical
weight constraints, showcasing a significant advancement in turbine blade design optimization.

Figure 11. (a) Optimal cooling channel configuration. The layout of the cooling channel designed for maximum cooling effi-
ciency, meeting the highest cooling efficiency and mass constraints, with the cooling channel highlighted. (b) Heat exchange
boundary. The boundary where heat exchange occurs between the turbine stator blade and the cooling air, highlighted. (c) Sur-
face temperaturedistribution. The surface temperature distribution of the turbine stator blade under the optimal cooling channel
configuration, with an average surface temperature of the cooling channel at 836.77K. (d) Prediction accuracy of the optimal sur-
rogate model. The prediction accuracy of the optimal surrogate model, GP with Con-Cat kernel, using 400 training data points to
predict 100 test data points, with a predicted normalized RMSE of 0.021.
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6. Conclusions

This article tackles the complex challenge of designing intricate structures, emphasizing the critical
importance of choosing among various geometric configurations. A novel sampling-efficient opti-
mization strategy is proposed that adeptly navigates the complexities of categorical configurations and
high-dimensional continuous variables in a supervisedmanner. The proposedmethodology leverages
the Con-Cat kernel, which effectively bridges the gap between different configurations, enhancing
the Gaussian process’s capability for surrogate modelling. The proposed Con-Cat kernel represents a
generalization of standard kernels, achieving equivalence in situations that involve only continuous
variables. By employing half-Cauchy distributions as priors for Gaussian process modelling, criti-
cal design variables are efficiently pinpointed without the need for additional trainable parameters.
This method does not add any extra trainable parameters, making it particularly beneficial for sparse
datasets and ensuring robust and accurate modelling.

Through rigorous numerical evaluations across three mathematical functions and a simulation-
based design problem—the design optimization of a simply supported beam—the proposed strategy
has proven superior, demonstrating improvements ranging from 7.49% to 85.08% over established
methods such as StandardBO, SAASBO, LHSBO, MPGPBO , ALEBO, CoCaBO and BanditBO.
Furthermore, when applied to the optimization of turbine blade cooling structures, the proposed
method showcased significant enhancements in cooling efficiency, outperforming alternative strate-
gies with improvements between 18.29% and 70.56%. These findings not only advance the theoretical
understanding of Bayesian optimization in handling complex design spaces but also demonstrate the
practical efficacy of the proposed method in real-world engineering design challenges.
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