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A B S T R A C T

In this paper, a novel adaptive quality-based multi-fidelity (AQBMF) surrogate framework is introduced to 
maximize the utilization of low-fidelity (LF) data from various domains. The main goal of the proposed method is 
to adaptively select and combine LF data, by assessing its quality, to create the most accurate surrogate. The core 
idea lies in interpreting the quality levels of LF data sources as the relative importance of LF surrogates that serve 
as basis functions in a multi-fidelity (MF) surrogate. Based on this approach, the proposed AQBMF surrogate 
framework comprises four main stages. In the first stage, a newly defined augmented MF formulation is con
structed, initially assuming equal importance for all LF data sources. In the second stage, LF surrogates are 
ranked by importance through the proposed MF basis screening method. In the third stage, promising candidate 
surrogates are systematically constructed based on the importance ranking of the LF surrogates. During this 
stage, both the selection and filtering of LF data, as well as the hierarchical and ensemble combination-based MF 
methods are considered. In the last stage, the best surrogate is selected from the candidates using the proposed 
algorithm. Various benchmark test results demonstrate the superior performance of the proposed framework. 
Finally, engineering application results show that the proposed AQBMF surrogate achieves higher accuracy than 
existing ones within the same computational budget.

1. Introduction

A surrogate model is a data-driven mathematical model that ap
proximates the response of a real-world physical system [1]. Once 
constructed, the surrogate models can quickly predict responses, making 
them highly effective for processes such as optimization [2–6], uncer
tainty propagation [7,8], and sensitivity analysis [9], which are often 
resource- and time-intensive. Despite these advantages, obtaining suf
ficient data remains a significant challenge when the behavior of the 
physical system is highly complex or its responses are costly to obtain.

To alleviate this problem, the multi-fidelity (MF) surrogate method 
emerges as a promising strategy, aggregating auxiliary data from diverse 
sources of varying accuracy levels to make accurate predictions [10,11]. 
The MF surrogate model is a data fusion technique that uses a large 
number of inexpensive, less accurate low-fidelity (LF) samples to quickly 
capture overall trends and corrects them with a small number of costly, 

high-accuracy high-fidelity (HF) samples [10,11]. Due to their charac
teristic of complementarily leveraging data with different fidelity levels 
to create synergy, MF strategies successfully deliver rapid and accurate 
solutions to complex real-world problems [12–18].

In real-world scenarios, it is common to encounter MF datasets 
containing LF data from multiple sources. Depending on whether the 
fidelity levels of multiple LF data sources are known in advance as prior 
information, MF surrogates can be broadly classified into (1) hierar
chical and (2) ensemble combination approaches. The former method, 
especially in early studies, assumes that the fidelity levels are known in 
advance, so all LF resources are combined in a hierarchical manner and 
then HF data is utilized for calibration. Representative surrogates are 
scaling function-based methods [19], Co-Kriging [11], hierarchical 
Kriging (HK) [20], improved hierarchical Kriging (IHK) [21], general
ized hierarchical Co-Kriging (GCK) [22], MF surrogate based on design 
variable correlations (MFS-DVC) [23], and ensemble learning based MF 
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surrogate (EL-MFS) [24]. However, when the fidelity level of LF data is 
not known in advance, applying hierarchical combination methods be
comes impossible, prompting more recent studies to address this issue. 
In such cases, as in the latter approach, all LF resources are combined in 
an ensemble manner, while HF data is utilized for correction. Methods 
like linear regression MF surrogate (LR-MFS) [25], extended Co-Kriging 
(ECK) [26], variance-weighted sum MF surrogate (VWS-MFS) [27], non- 
hierarchical Co-Kriging (NHLF-Co-Kriging) [28], extended hierarchical 
Kriging (EHK) [29], local correlation-weighted fusion-based MF surro
gate (LCWF-MFS) [30], and weighted-sum of multi-HK (WSMHK) [31] 
fall under this approach. However, in practice, differences in fidelity 
levels may exist among LF sources, even if they are not explicitly labeled. 
This suggests that in certain situations, hierarchical MF models may 
offer advantages over ensemble-based ones. In particular, the definition 
of non-hierarchical relationships is often ambiguous in industrial set
tings. For instance, suppose there are two LF sources, and the first has a 
slightly higher correlation with the HF data than the second. In such a 
case, it is unclear whether the two LF sources should be treated in a 
hierarchical or ensemble manner. This ambiguity makes it difficult to 
determine which type of MF modeling—hierarchical or ensemble—is 
more appropriate. Moreover, there are cases where both LF sources have 
weak correlations with the HF data individually. Yet, when combined in 
a hierarchical manner, their joint information may result in a much 
stronger correlation. Although such scenarios are realistic, existing 
ensemble-based MF methods have not considered them. In other words, 
when fidelity information is unavailable, existing methods do not pro
vide guidance on which approach—hierarchical or ensemble—is more 
reasonable.

Besides, existing MF methods have another critical limitation that 
they unconditionally use all LF data sources without scrutiny. Contrary 
to the common assumption in many MF studies that LF data is always 
informative, in practice, low-quality LF data can negatively impact the 
MF surrogate model. For example, if the quality of LF data is poor, it can 
be detrimental to identifying the overall trend when constructing an MF 
surrogate. Moreover, even if high-quality LF data is available, a lack of 
sufficient LF data can hinder the construction of an accurate MF surro
gate. For example, LF data may be of good quality but generated long 
ago, making it impossible to reproduce, thereby hindering trend iden
tification due to insufficient LF data when constructing an MF surrogate. 
These situations are frequently encountered in industrial environments. 
In the worst-case scenario, the accuracy of the MF surrogate may fall 
below that of a single-fidelity (SF) surrogate constructed solely with HF 
samples. Therefore, careful consideration is required when applying the 
MF method. Existing studies have utilized discriminant metrics such as 
normalized cross validation error (NCVE) [32], maximum likelihood 
estimation (MLE) [32], Pearson correlation coefficient (PCC) [19,33]. In 
addition, attempts have been made to address this issue by excluding 
only highly biased LF data sources when building the MF surrogates 
[34]. However, these studies still have the limitation that they only 
consider the effect of a single LF data source among multiple LF data 
sources to determine whether to use that LF source. In particular, even if 
individual LF sources do not contribute much to the MF surrogate, using 
them together can sometimes produce a synergistic effect, which has not 
been fully considered in existing research. In other words, existing 
studies have not considered the potential coupling effects of multiple LF 
sources while determining whether to utilize them.

From the review of existing literature surveys, two ongoing chal
lenges stand out when dealing with multiple LF data sources whose fi
delity levels are not pre-defined. Firstly, there is no research on choosing 
the appropriate MF combination method. Specifically, there is a need for 
studies focusing on choosing between hierarchical and ensemble 
combination-based MF methods. Secondly, there is a lack of research on 
MF methods that consider the quality of the LF data sources. This in
volves identifying combinations of LF data sources that produce syner
gistic effects and pinpointing LF data sources to disregard or overlook. 
To the authors’ best knowledge, existing approaches have not effectively 

addressed both of these two challenges related to the flexible utilization 
of LF data.

In this paper, a novel adaptive quality-based multi-fidelity (AQBMF) 
surrogate framework is proposed. This framework introduces a higher- 
level decision-making paradigm for the flexible and effective utiliza
tion of multiple LF data sources. The key innovation of this study lies in 
proposing a unified and adaptive framework that constructs the best 
surrogate model for a given scenario. Unlike conventional approaches 
that focus on improving specific surrogate formulations, the proposed 
method guides the selection and application of surrogate strat
egies—such as hierarchical-based, quality-aware ensemble-based, or 
even SF models—based on the characteristics and quality of the avail
able data. To systematically orchestrate multiple data sources, the core 
idea involves treating the quality levels of LF data sources as the relative 
significance of the LF surrogates, which serve as basis functions, also 
known as trend functions, for the MF surrogate. Based on this idea, the 
proposed AQBMF method consists of four main stages: (1) construction 
of an augmented MF formulation, (2) MF basis screening, (3) candidate 
surrogate generation, and (4) best surrogate selection. The effectiveness 
of the proposed method is demonstrated through various numerical and 
engineering examples.

The main contributions of the proposed method can be summarized 
as follows: 

• A novel AQBMF surrogate method is introduced, providing a higher- 
level paradigm for adaptive selection and combination of LF sources, 
particularly when prior fidelity information is unavailable.

• The proposed framework systematically incorporates multiple LF 
sources through a four-stage procedure, by treating LF data quality as 
the relative importance (ranking) of basis functions in the MF 
surrogate.

• The proposed method achieves superior performance compared to 
existing approaches under limited computational budgets through 
systematic surrogate model generation.

The remainder of this paper is structured as follows. Section 2 pro
vides a comprehensive review of conventional MF surrogates and basis 
screening methods. Section 3 provides a step-by-step explanation of the 
newly proposed AQBMF surrogate framework. In Section 4, the supe
riority of the proposed method is validated through various numerical 
examples. Finally, Section 5 concludes the paper and outlines potential 
avenues for future research.

2. Review of conventional methods

This section provides a concise overview of the fundamental infor
mation underpinning the proposed research. Section 2.1 introduces the 
basic concept of Gaussian process surrogates and their related formu
lations. Additionally, Section 2.2 explains the basis selection method 
along with its accompanying algorithm.

2.1. Gaussian process surrogates

Assuming that a set of input and output data is given, the Kriging 
model [35–37], also known as a Gaussian process model, can be con
structed. In the Kriging method, the random function Y(x) consists of a 
summation of deterministic and stochastic parts, which can be expressed 
as 

Y(x) = f(x)Tβ+Z(x) (1) 

where f(x)Tβ reflects the trend of the true function, f(x) is a design 
matrix based on pre-selected basis functions (e.g., polynomial basis 
functions), β is a coefficient vector of the corresponding basis functions, 
and Z(x) is the zero-mean Gaussian process with a process variance of 
σ̂2. Then, the mean predictor ŷ(x) and its mean-squared error (MSE) 
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s2(x) can be obtained by applying the Kriging theory [35]. Here, if 
f(x)Tβ becomes 1× β, it can be called ordinary Kriging [37].

When dealing with datasets with multiple fidelity levels defined, it 
becomes feasible to build an MF surrogate model, such as hierarchical 
Kriging (HK) [20]. If there are MF datasets with N + 1 levels, LF infor
mation replaces the traditional polynomial basis functions in the trend 
function of the MF surrogate model. Therefore, the stationary random 
process corresponding to the true function can be written as 

Yi(x) =
{

f(x)Tβ + Zi(x), i = 1,
si− 1 ŷLF,i− 1(x) + Zi(x), i = 2,…, N + 1,

(2) 

where s and ŷLF(x) are the scaling factor and mean prediction of LF 
surrogate, respectively, and subscript i means the corresponding value 
belongs to the ith level, where i = 1 and i = N + 1 indicate the lowest and 
highest fidelity levels, respectively.

More recently, to cope with the problems where there is no prior 
information about fidelity levels among multiple LF models (i.e., i = 1,
…, N), MF surrogate models combining ensemble LF models with HF 
data have been introduced [26–30]. One of the representative methods 
is the extended hierarchical Kriging (EHK) [29], which can be repre
sented as 

YN+1(x) =
∑N

i=1
wi ŷLF,i(x)+ZN+1(x) (3) 

where wi is the weight factor.

2.2. Basis selection method

This section explains the method for selecting basis functions when 
constructing surrogate models. In general, selecting appropriate basis 
functions has a significant impact on improving the performance of the 
surrogate model. As mentioned earlier in Section 2.1, in the Kriging 
method, a response typically comprises two main components, the mean 
structure and the stochastic parts. In ordinary Kriging, the mean struc
ture is assumed to be constant, while in universal Kriging, it is typically 
constructed as a first- or second-order polynomial function. Therefore, 
the choice of basis functions in the mean structure part plays a critical 
role in determining the performance of Kriging. Several research studies 
have explored different approaches for selecting these basis functions, 
such as blind Kriging [38], dynamic Kriging [39], and basis screening 
Kriging [40]. Among them, the basis screening Kriging method [40] is 
known for being more accurate and efficient than other approaches. The 
algorithm for this technique can be summarized as follows: 

Step 1: Set a maximum order for polynomial basis functions.
Step 2: Estimate the significance of individual basis functions.
Step 3: Gradually add the basis functions based on their estimated 
importance, constructing the candidate basis function set.
Step 4: Identify the optimal basis function set from the candidate set 
using cross-validation error.

3. Proposed AQBMF surrogate framework

In this section, a novel AQBMF surrogate framework that fully le
verages LF data is proposed. Firstly, the approach to reinterpreting the 
MF surrogate model from the perspective of basis functions is intro
duced. Secondly, the proposed MF framework is illustrated step-by-step. 
Sequentially, a validation metric and the overall procedure of the pro
posed method are described.

3.1. Thoughts on the MF surrogate

This section elaborates on our insights into the MF surrogate model. 
In real-world industrial settings, it is common to encounter a lack of HF 

data required to develop predictive models in the current domain, as 
shown in Fig. 1. In such cases, leveraging low-cost LF data from various 
domains to construct data fusion models, such as MF surrogates, can be a 
promising solution. Many previous studies have successfully applied MF 
surrogates with the support of high-quality LF data that effectively 
reflect the underlying physics. However, it cannot be guaranteed that 
such LF information will always be beneficial for HF data. In the worst 
scenario, poor-quality LF data can even degrade the overall surrogate 
performance. Moreover, it can be challenging even for physics domain 
experts to distinguish the quality levels of LF data sources. Therefore, it 
is essential to develop data-driven methods that automatically deter
mine how to effectively utilize multiple LF data sources.

To address these challenges, in this study, we focus on the formu
lation of Kriging and HK in terms of basis functions in surrogate models. 
As mentioned earlier in Section 2.1, both data-driven models are divided 
into a mean structure part and a stochastic part, where the mean 
structure takes the form of a multiplication of the basis function set and 
the coefficient vector. Afterwards, the estimated hyper-parameters 
through MLE depend on how the basis function set is configured, 
naturally influencing the values of the coefficient vector and other 
components. Here, when the polynomial function set is employed as 
basis functions, it becomes a Kriging model. On the other hand, utilizing 
an LF data-driven surrogate that efficiently captures the system’s trend 
as basis functions results in an HK model. Therefore, MF surrogate 
modeling can be redefined as an efficient surrogate modeling approach 
that utilizes high-quality basis vectors. In other words, Kriging is a 
special case of HK where the basis function is a polynomial function.

Based on these insights, the use of multiple LF data sources can be 
addressed by translating from a physical perspective to a surrogate 
model perspective. Generally, LF data contribute to the construction of 
an MF surrogate in the form of LF surrogates. Moreover, the perfor
mance of these LF surrogates directly impacts the performance of the MF 
surrogate as basis functions. Therefore, this study interprets the quality 
levels of LF data sources as the relative importance of basis functions 
within the MF surrogate, which can be summarized as follows: 

• High-quality LF sources can be considered important basis functions 
in the surrogate model.

• Low-quality LF sources can be regarded as less important basis 
functions in the surrogate model.

Here, when MF surrogates such as scaling function-based methods (e. 
g., the comprehensive approach [19]) are used instead of the HK model 
mainly employed in this study, the importance of the basis function can 
be interpreted as the importance of the trend function.

To better understand the proposed insights, Fig. 2 illustrates surro
gate models using various LF data sources. Fig. 2 clearly shows that the 
performance of surrogate models can vary, even with the same set of HF 
samples, depending on the quality of LF data sources (i.e., basis vectors). 

Fig. 1. Data collected from various source domains.
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Table 1 lists the related LF surrogates and values of normalized root 
mean-squared error (NRMSE). When comparing Figs. 2(a) & (b), the two 
models appear to have similar shapes, and Table 1 confirms that their 
accuracy is identical. This indicates that in the HK model I, when the LF 
model has yLF,1 = 1, it is consistent with the ordinary Kriging model. In 
other words, it is worth noting once again that ordinary Kriging is a 
special case of HK with a basis where yLF,1 = 1. Fig. 2(c) and Table 1
demonstrate a decrease in the accuracy of the HK model II when a poor 
quality LF model (yLF,2) is used as the basis. Conversely, when a rela
tively good quality LF model (yLF,3) serves as the basis, the accuracy of 
the HK model III appears to increase, as shown in Fig. 2(d) and Table 1. 
Therefore, the basis functions can be considered important in the order 
of yLF,3, yLF,1, and yLF,2, indicating that the LF data sources are of high 
quality in the same order. Furthermore, when the comprehensive 
approach is applied instead of the HK method, the NRMSE values for the 
four cases in Fig. 2 are 0.1381, 0.1381, 0.15509, and 0.09906, respec
tively, and the importance ranking of trend functions remains consistent 
with the HK model results. In summary, the accuracy of the MF surro
gate can fluctuate based on the quality of the LF surrogate used as the 

basis function, highlighting the importance of high-quality basis vectors 
in surrogate modeling. In light of these insights, this study approaches 
the quality of LF data from the perspective of the importance of basis 
functions in MF surrogates, developing strategies for their utilization 
and combination. The detailed strategies will be explained in Section 
3.2.

3.2. Main concept of the proposed method

The main concept of the proposed AQBMF method is to maximize the 
performance of the surrogate by appropriately utilizing multiple LF data 
sources, whose fidelity levels are not known in advance. This study is 
based on the insights from Section 3.1, which interprets the quality 
levels of LF data sources as the relative importance of basis functions in 
the MF surrogate model. The proposed AQBMF surrogate framework 
consists of four main stages. In the first stage, the proposed augmented 
MF surrogate formulation is constructed by integrating all available LF 
information. The second stage involves estimating the importance of LF 
surrogates using the proposed MF basis screening method. In the third 
stage, based on the relative importance of LF surrogates, promising 
candidate surrogates are systematically generated. Finally, in the fourth 
stage, the proposed surrogate selection algorithm chooses the best sur
rogate from the candidates. The detailed strategies for each stage will be 
explained in the following sections. Additionally, it should be noted that 
the term ensemble method in this study refers to weight-based ensemble 
combination in Eq. (3), rather than ensemble learning, which involves 
combining different types of surrogate models.

3.2.1. Augmented MF formulation
The first stage constructs an augmented MF formulation based on HK 

theory. The core idea of the proposed formulation is to initially assume 
that all basis functions are equally important, enabling the representa

Fig. 2. Visualization of a 1D analytical function using (a) ordinary Kriging model, (b) HK model I with yLF = 1, (c) HK model II with poor quality basis, and (d) HK 
model III with good quality basis.

Table 1 
Performance results of illustrative examples.

LF model εNRMSE

Fig. 2(a) − 1.381 × 10-1

Fig. 2(b)*
yLF,1 = 1 1.381 × 10-1

Fig. 2(c)*
yLF,2 = 5sin(6.5x) − 1.5 1.859 × 10-1

Fig. 2(d)* yLF,3 = 0.4yHF + 10
(
0.4x4 + 0.1x2 + 0.2x + 0.2

)
− 10 1.856 × 10-2

* The HF model used in Fig. 2 is yHF = (6x − 2)2sin(12x − 4).
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tion of both SF and MF surrogates. To incorporate the SF surrogate, the 
proposed formulation adopts the classic polynomial basis functions. 
Furthermore, to handle multiple LF data sources, an ensemble MF 
combination technique is employed. Reflecting these ideas, the pro
posed augmented MF formulation is defined as 

Y(x) =
∑p+N

k=1
βaug,kfaug,k(x) + Z(x)

= f aug(x)
Tβaug + Z(x)

(4) 

where p is the number of used polynomial basis functions, faug(x) is an 
expanded design matrix, and βaug is a coefficient vector of the corre

sponding basis functions. Note that faug(x) =
[
f1(x), ..., fp(x), ŷ 

LF,1(x), ..., ŷLF,N(x)
]T

, which contains the polynomial and LF functions 

for SF and MF surrogates, respectively.
Suppose that the inputs of LF and HF data are denoted as SLF ∈

RnLF×dm and SHF ∈ RnHF×dm, respectively, and corresponding outputs are 
YLF ∈ RnLF and YHF ∈ RnHF , respectively, where nLF, nHF, and dm are the 
number of LF data, HF data, and dimensions, respectively. Then, the 
vector form representing random response Y

(
SHF,i

)
at nHF sampled in

puts in Eq. (4) can be expressed as 

Y = Faugβaug +Z (5) 

where 

Y =

⎡

⎢
⎢
⎣

Y
(
SHF,1

)

Y
(
SHF,2

)

⋮
Y
(
SHF,nHF

)

⎤

⎥
⎥
⎦, Faug =

⎡

⎢
⎢
⎢
⎣

faug
(
SHF,1

)T

faug
(
SHF,2

)T

⋮
faug

(
SHF,nHF

)T

⎤

⎥
⎥
⎥
⎦
, Z =

⎡

⎢
⎢
⎣

Z
(
SHF,1

)

Z
(
SHF,2

)

⋮
Z
(
SHF,nHF

)

⎤

⎥
⎥
⎦, (6) 

and Faug is defined as (nHF × (p + N)) expanded design matrix.
From Eq. (4), the predictor and its MSE are derived by minimizing 

the MSE of the stochastic process while satisfying the unbiasedness 
constraint. It is worth noting that the proposed formulation has the same 
structure as the standard Kriging or HK. The only difference lies in the 
augmentation of the existing expanded design matrix. Therefore, it is 
possible to directly apply the same procedure as in Kriging or HK theory 
to Eq. (4). The predictor and its MSE for the proposed formulation at x 
can be formulated as 

ŷ(x) = faug(x)
T β̂aug + r(x)TR− 1( YHF − Faug β̂aug

)
(7) 

and 

s2(x) = σ̂2
[

1 − r(x)TR - 1r(x)

+
(

FT
augR

- 1r(x) − faug(x)
)T(

FT
augR

- 1Faug

)− 1(
FT

augR
- 1r(x)

− faug(x)
)]

(8) 

where β̂aug =
(

FT
augR− 1Faug

)− 1
FT

augR− 1YHF, σ̂2
=

{(
YHF − Faug β̂aug

)T 

R− 1
(

YHF − Faug β̂aug

)}

/nHF, R is the (nHF × nHF) correlation matrix be

tween observed HF input points, and r(x) is the (nHF × 1) correlation 
vector between untried and sampled HF input points. Here, when N = 0, 
the proposed formulation reduces to the standard SF Kriging with only 
polynomial basis functions. On the other hand, when p = 0, it corre
sponds to EHK, which combines all LF data in an ensemble manner. 
Therefore, the proposed augmented formulation makes it possible to 
flexibly handle both SF and MF surrogates depending on the selection of 
basis functions.

3.2.2. MF basis screening
In the second stage, the proposed MF basis screening method is 

performed to determine the quality (i.e., importance) of each LF data 
source. The proposed method assesses the individual influence of each 
basis function of the MF surrogate. Specifically, it integrates the poly
nomial and LF basis functions collected in Section 3.2.1 to generate the 
augmented vector of basis functions (i.e., faug(x)), followed by esti
mating the importance of each individual basis function. The impact of 
each basis function is estimated using a new metric called the ranking 
measure (RM). In the proposed measure, NCVE is used to estimate the 
accuracy of the surrogate constructed with the selected basis functions, 
drawing inspiration from the basis selection method described in Section 
2.2. In other words, a lower NCVE indicates a more accurate surrogate, 
whereas a higher NCVE implies a less accurate one. Additionally, the 
PCC is employed to evaluate how effectively the selected basis functions 
contribute meaningful LF correlation for building the MF surrogate. As 
discussed in Sections 2.1 and 3.1, the selected basis functions serve to 
represent the general trend of the MF surrogate. Therefore, as reported 
in previous studies [19,33], a higher PCC value indicates a more desir
able basis function for constructing an MF surrogate, while a lower PCC 
suggests that the basis function is less suitable for use. Therefore, the 
proposed RM consists of NCVE and PCC indicators, which can be defined 
as 

Iα =
εNCVE,α⃒
⃒
⃒̃rα

⃒
⃒
⃒

(9) 

where Iα, εNCVE,α, and r̃α are the RM, NCVE, and PCC values of the MF 
surrogate model built exclusively with each αth basis function, respec
tively, and related formulations are provided in Appendix A. In general, 

the smaller εNCVE,α and the larger 
⃒
⃒
⃒̃rα

⃒
⃒
⃒, the greater is the impact of the 

corresponding basis function. Therefore, a smaller RM indicates higher 
importance for the corresponding basis function, while a larger RM 
suggests lower importance. For example, consider N = 3 and p = 1 with 

fp(x) = 1, forming faug(x) =
[
1, ŷLF,1(x), ŷLF,2(x), ŷLF,3(x)

]T
. If the RM 

value is highest for ŷLF,3(x) and lowest for ŷLF,2(x), then the importance 
of the basis functions is ranked in the order of ̂yLF,2(x) as most important, 
followed by ŷLF,1(x), and finally ŷLF,3(x).

3.2.3. Establishment of candidate MF surrogates
In the third stage, multiple candidate surrogates are constructed 

based on the estimated ranking of LF surrogates obtained in Section 
3.2.2. The candidate MF surrogates include SF, hierarchical-based MF, 
and ensemble-based MF surrogates. To identify the best surrogate, 
metrics such as NCVE, PCC, and RM are used for each candidate, and 
their formulas are provided in Appendix A.

Firstly, the candidate SF surrogate is created using only HF data with 
a polynomial basis function of 1. In other words, an ordinary Kriging 
model with faug(x) = 1, as described in Eq. (1), is employed. This sur
rogate does not utilize any of the collected LF data sources. If all LF data 
sources are ultimately deemed unnecessary, this surrogate will be 
selected as the final model.

Secondly, the candidate hierarchical combination-based MF surro
gate is constructed using HF data, LF data, and Eq. (2). In this process, 
fidelity levels are treated as the importance of the basis functions, as 
estimated in Section 3.2.2. Therefore, LF surrogate is created using data 
with the lowest fidelity level, and each subsequent surrogate is refined 
using the next higher fidelity data. This process continues until the 
highest fidelity data (i.e., HF data) is incorporated, resulting in the 
candidate hierarchical MF surrogate. For example, assume that LF 
source 2 (ŷLF,2(x)), LF source 1 (ŷLF,1(x)), and LF source 3 (ŷLF,3(x)) are 
ranked by importance, with LF source 2 as the most important and LF 
source 3 as the least important. Then, an SF surrogate is first created 
using LF source 3, and it is subsequently updated hierarchically in the 
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order of LF source 1, LF source 2, and finally HF data, resulting in the 
construction of the candidate hierarchical MF surrogate.

Thirdly, the candidate ensemble combination-based MF surrogates 
are built using HF data, LF data, and Eq. (4). In this process, LF data 
sources, which are treated as basis functions, are added one by one ac
cording to the basis ranking, resulting in the creation of candidate MF 
surrogates. Specifically, the polynomial basis function 1 is fixed, and the 
remaining basis functions are added in order of their importance, 
resulting in the creation of multiple candidate surrogates. Therefore, 
excluding the polynomial basis function 1, if there are n basis functions, 
n candidate ensemble combination-based MF surrogates are con
structed. Naturally, the last candidate ensemble combination-based MF 
surrogate corresponds to the model using all the basis functions. For 
example, if the basis functions are ranked in importance as LF source 2 
(ŷLF,2(x)), LF source 1 (ŷLF,1(x)), and LF source 3 (ŷLF,3(x)), then three 
candidate ensemble combination-based MF surrogates can be created. In 

this case, the expanded design matrices faug(x) =
[
1, ŷLF,2(x)

]T
, 

faug(x) =
[
1, ŷLF,2(x), ŷLF,1(x)

]T
, and faug(x) =

[
1, ŷLF,2(x), ŷLF,1 (x),

ŷLF,3(x)
]T 

in Eq. (4) are constructed and corresponding three candidate 

ensemble combination-based MF surrogates are generated.
Fig. 3 visually compares the conventional SF, ensemble combination- 

based MF, and the proposed MF surrogate frameworks through illus
trative diagrams involving three LF data sources with unknown fidelity 
levels. Fig. 3(a) shows the conventional SF surrogate uses only 

polynomials and HF data. In addition, Fig. 3(b) describes the conven
tional ensemble combination-based MF surrogate, which combines all 
three LF data sources. However, as shown in Fig. 3(c), the proposed 
method first estimates the fidelity levels of the LF data sources and 
generates candidate SF, hierarchical combination-based MF, and 
ensemble combination-based MF surrogates. Afterwards, in Stage 4, the 
proposed algorithm is applied to select the best model from the candi
date surrogate models.

3.2.4. Best surrogate selection
The final stage involves the selection of the best surrogate from 

multiple candidate surrogates built in Section 3.2.3. The best surrogate 
is determined based on the PCC, NCVE, and RM values. Specifically, the 
strategy for selecting surrogates is categorized according to the PCC, 
which represents the correlation between LF and HF systems. If at least 
one surrogate’s PCC exceeds a pre-defined threshold, it indicates 
favorable conditions for MF surrogate creation and prompts an aggres
sive strategy for adaptively selecting LF basis functions. In this case, the 
best surrogate is determined by comparing the RM values of the selected 
candidate MF surrogates that meet the PCC criterion. However, if all 
surrogates’ PCC values are lower than a pre-defined threshold, a con
servative strategy is adopted, selecting between models that use either 
all or none of the LF basis functions. In this scenario, the best surrogate is 
evaluated by comparing the NCVE value of the candidate SF surrogate 
with the RM values of the two candidate MF surrogates using all LF basis 
functions. This environment is not conducive to MF surrogate creation, 

Fig. 3. Illustrative diagrams of three LF data sources with unknown fidelity levels: (a) conventional SF, (b) conventional MF, and (c) proposed MF surro
gate frameworks.
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therefore the MF surrogate employs RM, which applies a penalty for PCC 
in addition to NCVE. Since the absolute value of PCC is always less than 
or equal to 1, the MF surrogate using RM is less likely to be selected 
compared to the SF surrogate using NCVE. In particular, as the PCC 
decreases, the RM increases, thereby lowering the likelihood of selecting 
the MF surrogate. Conversely, if the RM value of the MF surrogate is 
lower than the NCVE of the SF surrogate despite unfavorable conditions 
for MF surrogate creation, it suggests that choosing the MF surrogate 
would be a reasonable decision. Motivated by this concept, the proposed 
method is developed, the algorithm of which can be summarized as 
follows: 

Step 1: Select the MF surrogate models from multiple candidates 
whose PCC is equal to or greater than the pre-defined PCC threshold 
rmin.
Step 2: If there are selected MF surrogates, choose the one with the 
lowest RM value among them as the best surrogate model.
Step 3: Otherwise, set the comparison metrics as the NCVE for the SF 
surrogate and the RM for the hierarchical and ensemble 
combination-based MF surrogates. In this step, both MF surrogates 
are constructed using all basis functions. Then, select the model with 
the lowest value among these comparison indicators as the best 
surrogate model.

3.3. Validation metric

To assess the global accuracy of the surrogates, the NRMSE is 
adopted in this study. If there is a dataset of ntest pairs of input and 
output test data, denoted as xtest and ytest, respectively, then the NRMSE, 
εNRMSE, can be expressed as 

εNRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ntest

∑ntest

i=1

(
y
(
x(i)

test
)
− ŷ

(
x(i)

test
))2

√

max(ytest) − min(ytest)
(10) 

where x(i)
test is the ith xtest; y

(
x(i)

test
)

and ŷ
(
x(i)

test
)

are the true and predicted 

output values of x(i)
test, respectively.

3.4. Overall procedure

In this section, the workflow of the proposed AQBMF surrogate 
framework is illustrated in Fig. 4, and its algorithm is summarized as 
follows: 

• Step 1: Generate the inputs for the HF system and each LF system via 
design of experiments (DoE). In this study, a well-known Latin hy
percube sampling (LHS) is used.

• Step 2: Obtain the HF and LF outputs based on DoE results.
• Step 3: Build LF surrogate models for each data source.
• Step 4: Construct the augmented MF formulation to create an inte

grated basis function set that includes both the polynomial and LF 
basis functions.

• Step 5: Estimate the importance of individual basis functions using 
the MF basis screening method. In this step, the RM, which is 
composed of PCC and NCVE, is used.

• Step 6: Build all candidate surrogates based on the ranking of the 
basis functions. In this step, SF, hierarchical-based MF, and ensemble 
combination-based MF surrogates are constructed and the corre
sponding metrics—PCC, NCVE, and RM—are also calculated.

• Step 7: Decide on the final surrogate among the candidate surrogates 
using the best surrogate selection algorithm.

• Step 8: Terminate the overall process.

3.5. Discussion about the pros and cons of the proposed method

In this section, the advantages and disadvantages of the proposed 
method compared to existing methods are analyzed. The discussion can 
be summarized as follows: 

(1) The proposed AQBMF surrogate method is recommended for 
situations where LF information from various sources is available, 
but it is uncertain which LF data will be beneficial or which 
combination method will be most effective. If prior knowledge 
about the use of LF data sources is available, the proposed method 
may be somewhat inefficient. However, in real engineering 
problems, it is generally impossible to know in advance which 
data sources and MF combination methods will be most suitable, 

Fig. 4. Flowchart of the proposed AQBMF surrogate framework.
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making the proposed method highly useful for addressing such 
issues.

(2) The proposed strategy becomes more effective as the number of 
LF data sources increases, compared to the approach of gener
ating all possible candidate surrogates, as demonstrated in Ap
pendix B. When all possible combinations are considered, the 
number of candidate surrogates that need to be created increases 
exponentially with respect to the number of LF sources, leading to 
computational times that become nearly prohibitive. In contrast, 
the proposed method increases linearly with respect to the 
number of LF sources, making it significantly more efficient.

(3) The proposed method is a flexible method that considers cases 
ranging from not using any LF data sources to using all of them. In 
particular, existing studies on creating MF surrogates using 
ensemble combination-based LF surrogates [27,30,31] typically 
assume that the sum of the weights for the LF surrogates equals 
one, implying that at least one LF data source must always be 
beneficial. However, sometimes LF data from all sources may not 
be useful, and the proposed method can handle such situations as 
well.

(4) The proposed framework has the advantage of being highly 
extensible, as it can be easily integrated with existing techniques 
or advanced methods yet to be developed. For example, it can be 
extended to various data-driven modeling techniques beyond the 
Gaussian process surrogates used in this study. If the surrogate 
employed is a regression model (e.g., neural networks; see 
[41,42]) rather than an interpolation model (e.g., Kriging), 
metrics such as the coefficient of determination (R2) or NRMSE 
can be used instead of NCVE for ranking LF surrogates. In such 
cases, the concept of basis importance could be interpreted as the 
importance of trend functions. Moreover, in scenarios involving 
image data from multiple sources, the proposed framework can 
be combined with generative artificial intelligence (AI) models to 
construct more flexible and high-performing systems [43,44]. 
Within the proposed framework, fidelity levels can be interpreted 
as labels, and the AI model architecture can be adapted accord
ingly to a hierarchical or ensemble form. Data quality can be 
accounted for by adjusting the weights of the loss functions, 
allowing lower-quality data to have less influence during 
training.

(5) The performance of the proposed method has the drawback of 
being indirectly influenced by the performance of the adopted MF 
methodology. This is because generating an inaccurate MF sur
rogate can result in an unreliable estimate of the importance of LF 
data sources. Therefore, if a state-of-the-art MF surrogate is 
developed, the performance of the proposed method is expected 
to improve further.

4. Results

In this section, the effectiveness of the proposed AQBMF surrogate 
method is evaluated using numerical tests, comparing its performance to 
existing approaches. In the first numerical example, a demonstrative 
example is used to verify that the proposed method works effectively. In 
the second numerical example, the performance of the proposed algo
rithm is assessed using benchmark test functions with various charac
teristics. The third numerical example illustrates the practical utility of 
the proposed method by applying it to a real-world engineering prob
lem. Particularly, it is important to note that all problems assume a 
common scenario in industrial environments where the fidelity levels 
among LF data sources are initially unknown. For all numerical exam
ples, the proposed method is compared to three existing approaches: 

• Method 1: Use only HF data without utilizing any LF data sources (e. 
g., Ordinary Kriging).

• Method 2: Combine all available LF data in an ensemble manner (e. 
g., EHK [29], NHLF-Co-Kriging [28], and WSMHK-OWSdiag [31]). 
More specifically, these three methods are implemented as compar
ative ensemble-based MF approaches, referred to as Method 2–1 
(EHK), Method 2–2 (NHLF-Co-Kriging), and Method 2–3 (WSMHK- 
OWSdiag), respectively.

• Method 3: Determine whether to use the single LF data source based 
on the conventional MF dataset selection algorithm provided in 
Appendix C (e.g., Ordinary Kriging or HK).

• Proposed: Utilize LF information by adaptively selecting LF data 
sources and MF combination methods (e.g., Ordinary Kriging, HK, or 
EHK).

Here, it is worth noting once again that the term “ensemble method” 
in this study specifically means the weight-based ensemble combination 
in Eq. (3), rather than ensemble learning, which integrates different 
types of surrogates. During the surrogate creation, initial sample points 
are generated using LHS with a maximin criterion through 103 iterations 
[4,12]. To validate the accuracy of the surrogate models, test samples 
generated by LHS are used, equal to 200 times the number of design 
variables. Details on the implementation of the surrogate construction 
are provided in Appendix A. In low-dimensional cases, a surrogate-based 
modified PCC [16] is employed. In high-dimensional cases (e.g., when 
the dimensionality is greater than 10), due to the curse of dimension
ality, a nested DoE [11,16] is generated and the conventional sampling- 
based PCC [19,33] is applied. Furthermore, the threshold parameter rmin 
is set to 0.85, referring to previous studies [16,33,45]. The entire 
computational process is run on a PC equipped with 12th Gen Intel® 
Core™ i7-12700 K and 32 GB RAM.

4.1. Demonstrative example

The aim of this section is to illustrate the process of the proposed 
AQBMF framework through a demonstrative example. The formulation 
of an adopted 1D function can be expressed as 

yHF = sin(x) + 0.2x + (x − 5)2
/

16 + 0.5,

yLF,1 = (x − 0.5)(x − 4)(x − 9)
/

20 + 2,
yLF,2 = sin(x) + 0.2x + 0.5,

0⩽x⩽10

(11) 

which includes one HF function (yHF) and two LF functions (yLF,1 and 
yLF,2). The observed HF and LF sample points are located at [0.0808, 
3.101, 6.037, 8.983]T and [0.0, 0.5, 1.0,…, 9.5, 10.0]T, respectively, as 
shown in Fig. 5. All LF models share the same sample points. Therefore, 
the datasets DHF, DLF,1, and DLF,2 are constructed, with the subscript 
indicating the source of each dataset. In this problem setting, the pro
posed method is compared with Methods 1, 2–1, and 3.

Fig. 5 presents visualizations of the results for the conventional and 
the proposed methods. The surrogates generated by Methods 1, 2–1, and 
3 show noticeable discrepancies from the true function. In contrast, the 
surrogate created using the proposed method closely approximates the 
true HF function. In addition, detailed quantitative results comparing 
the existing and proposed methods are presented in Table 2. As previ
ously mentioned, Method 1 uses only HF data, while Method 2–1 
combines LF data in an ensemble manner and then calibrates it with HF 
data. Method 3 is equivalent to Method 1 because the traditional MF 
dataset selection algorithm does not select any LF data. This happens 
because the number of HF data points is limited, making it difficult to 
accurately calculate the PCC in the conventional MF dataset selection 
algorithm. However, unlike existing methods, the proposed approach 
begins by treating the two LF data sources as equally important in Stage 
1. In Stage 2, it evaluates their relative significance and identifies yLF,2 as 
a more influential LF data source – serving as a basis function – than 
yLF,1. Based on this ranking, Stage 3 generates a set of candidate 
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surrogates, which also includes ensemble combination-based MF sur
rogates similar to those used in Method 2–1. Finally, Stage 4 selects the 
best-performing surrogate, which in this case corresponds to the one 
constructed using the hierarchical combination strategy. Based on the 
explicit analytical expressions in Eq. (11), it can be intuitively inferred 
that yLF,2 is more advantageous for yHF than yLF,1, which is consistent 
with the results of the proposed method. Therefore, unlike Method 2–1, 
which uniformly combines all LF sources, the AQBMF framework 
adaptively prioritizes and combines LF data based on estimated quality, 
thereby preventing performance degradation. However, such informa
tion is typically unknown beforehand in black-box systems, and the 
proposed method demonstrates robust performance even in the absence 
of prior knowledge. In other words, these findings imply that the pro
posed algorithm can provide practical guidelines for effectively utilizing 
multiple LF data sources with unknown fidelity levels. In the next sec
tion, the superiority of the proposed AQBMF method will be evaluated 
through various numerical examples.

4.2. Benchmark test examples

In this section, the performance of the proposed AQBMF framework 
is evaluated using benchmark test functions under various conditions, 
such as system correlations, dimensionality, the number and locations of 
HF samples, the number and locations of LF samples, and the number of 
LF data sources. Details of the adopted benchmark test functions are 
provided in Table 3. The entire process is repeated 50 times with 
different initial sample sets to account for the random effects of the DoE. 
It is also important to note that these numerical tests assume a common 
scenario where it is not known in advance which LF data will be bene
ficial and which will not be. The numerical results for the various sce
narios are presented in Fig. 6 and Tables 4–9. In addition, ρ represents 
the proportion of utilized LF data sources relative to the total available 
LF data sources, and Msel denotes the selection count vector for each 
candidate surrogate model. The upper bars represent the average values 
of the corresponding variables (e.g., εNRMSE, ρ).

Firstly, the results for P1 are presented in Fig. 6 and Table 4. In these 
problems, it is assumed that nLF for each source is sufficient, making the 
LF models fairly accurate. The objective of this test is to compare the 
accuracy of the six approaches as nHF increases and the HF sample lo
cations change. As shown in Fig. 6(a), when nHF is 4, Method 1 out
performs Methods 2–1 and 2–2, but as nHF increases to 5 and 6, as shown 
in Figs. 6(b) & (c), Methods 2–1, 2–2, and 2–3 becomes more accurate 
than Method 1. Method 3 utilizes very little LF information across all 
three cases, resulting in outcomes that are nearly identical to those of 
Method 1. However, the proposed method consistently provides more 
accurate results than both Method 1 and all three Method 2 approaches 
across all cases. A detailed analysis indicates that the proposed method 
identifies yLF,2 as more informative than yLF,1 in constructing MF sur
rogates across all 50 repetitions. Notably, the calculated value of ρ after 
applying the proposed algorithm shows that LF sources are utilized in 
more than 75 % of the cases. In particular, the number of times each 
candidate surrogate model (Msel) was selected is summarized as follows. 
The first column of Msel represents models using only HF data. The 
second column corresponds to models using only yLF,2. The third column 
represents ensemble combination-based MF models using both yLF,2 and 
yLF,1, and the fourth column corresponds to hierarchical combination- 

Fig. 5. Comparison of the plot results for surrogates created with four different approaches.

Table 2 
Performance comparison results for the demonstrative example.

nHF* Importance ranking** Final MF combination*** εNRMSE

Method 1 4 − DHF 2.759 × 10− 1

Method 2–1 4 − (DLF,1 + DLF,2) → DHF 6.616 × 10− 1

Method 3 4 − DHF 2.759 × 10− 1

Proposed 4 (DLF,2, DLF,1) DLF,1 →DLF,2 →DHF 6.835 × 10− 3

* Since all LF information is assumed to be given, all nHF values are the same.
** LF data sources are listed in order of importance from the most important (left) to the least important (right).
*** Final combination process is represented, where the plus (+) and arrow (→) indicate the ensemble and hierarchical combination approaches, respectively.

Table 3 
Information on the adopted problems.

Label Name* dm nHF nLF of each source

P1 Test function 1 1 4/5/6 (20, 20)
P2 Test function 2 1 4/5/6 (20, 20)
P3 Test function 3 1 4/5/6 (20,20)
P4 Test function 4 2 10 (40, 40)/(40, 20)/ (20, 40)
P5 Test function 5 4 16 (60, 60, 120, 120)
P6 Test function 6 6 24 (120, 120, 120)
P7 Test function 7 8 32 (160, 160)
P8 Test function 8 12 48 (120, 240)

* Detailed expressions of the benchmark test functions can be found in Appendix 
D.
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based MF models using yLF,1, yLF,2, and HF data sequentially. According 
to Msel results, the majority of cases involve constructing MF surrogates 
using only yLF,2 as the LF data source (25, 26, and 20 out of 50 cases in 
each respective scenario), or building MF surrogates by hierarchically 
combining yLF,1, yLF,2, and HF data in sequence (23, 24, and 28 out of 50 
cases in each respective scenario). In other words, the proposed method 
adaptively utilizes LF models, effectively distinguishing useful LF in
formation and achieving superior performance.

Secondly, the performance results for P2 are shown in Table 5. In this 
case, it is also assumed that nLF is sufficient, and the six methods are 
evaluated as nHF increases. The main feature of this problem is that 
neither yLF,1 nor yLF,2 (i.e., any LF data source) are beneficial to yHF. This 

information is not known in advance, and the numerical results in all 
cases indicate that Method 1 outperforms Methods 2–1, 2–2, and 2–3. 
This aligns with the problem’s characteristics, where it is more advan
tageous not to use all LF sources. Method 3 effectively differentiates the 
use of LF data sources and produces results nearly identical to Method 1. 
The proposed method, with a ρ value close to 0 in all cases, does not use 
any LF sources, yielding results similar to Methods 1 and 3. This shows 
that the proposed method selectively avoids using LF sources when they 
are not informative.

Thirdly, the performance results for P3 are listed in Table 6. In this 
case, nLF is also assumed to be sufficient, and the six methods are eval
uated as nHF increases. A key feature of this problem is that while the 

Fig. 6. Performance comparison results for P1 when (a) nHF = 4, (b) nHF = 5, and (c) nHF = 6.

Table 4 
Performance comparison results for P1.

nHF = 4 nHF = 5 nHF = 6
εNRMSE ρ(Msel) εNRMSE ρ(Msel) εNRMSE ρ(Msel)

Method 1 0.1916 0.0 0.1448 0.0 0.0137 0.0
Method 2–1 0.8439 1.0 0.0033 1.0 1.517 × 10-5 1.0
Method 2–2 0.9233 1.0 0.0038 1.0 0.0031 1.0
Method 2–3 0.0864 1.0 0.0229 1.0 2.555 × 10-5 1.0
Method 3 0.1864 0.01 0.1331 0.09 0.0074 0.24
Proposed 0.0591 0.75 (0,25,2,23)* 0.0033 0.74 (0,26,0,24)* 1.442 × 10-5 0.80 (0,20,2,28)*

* The number in parentheses represents the number of surrogates selected from 50 repetitions, in the following order: SF surrogate, the set of ensemble combination- 
based MF surrogates added one by one based on the basis ranking, and the hierarchical-based MF surrogate.

Table 5 
Performance comparison results for P2.

nHF = 4 nHF = 5 nHF = 6
εNRMSE ρ(Msel) εNRMSE ρ(Msel) εNRMSE ρ(Msel)

Method 1 0.1776 0.0 0.1208 0.0 0.1011 0.0
Method 2–1 1.0011 1.0 0.2279 1.0 0.1519 1.0
Method 2–2 0.7502 1.0 0.3235 1.0 0.1281 1.0
Method 2–3 0.2451 1.0 0.1450 1.0 0.1163 1.0
Method 3 0.1776 0.0 0.1208 0.0 0.1011 0.0
Proposed 0.2204 0.09 (44,3,3,0)* 0.1208 0.0 (50,0,0,0)* 0.1107 0.04 (47,2,1,0)*

* The number in parentheses represents the number of surrogates selected from 50 repetitions, in the following order: SF surrogate, the set of ensemble combination- 
based MF surrogates added one by one based on the basis ranking, and the hierarchical-based MF surrogate.

Table 6 
Performance comparison results for P3.

nHF = 4 nHF = 5 nHF = 6
εNRMSE ρ(Msel) εNRMSE ρ(Msel) εNRMSE ρ(Msel)

Method 1 0.1579 0.0 0.1135 0.0 0.0478 0.0
Method 2–1 8.886 × 10-5 1.0 4.37 × 10-6 1.0 4.05 × 10-6 1.0
Method 2–2 8.881 × 10-5 1.0 8.57 × 10-6 1.0 1.34 × 10-5 1.0
Method 2–3 0.759 1.0 0.0517 1.0 0.0068 1.0
Method 3 0.1554 0.47 0.1121 0.07 0.0478 0.0
Proposed 8.886 × 10-5 1.0 (0,0,50,0)* 4.37 × 10-6 1.0 (0,0,50,0)* 4.05 × 10-6 1.0 (0,0,50,0)*

* The number in parentheses represents the number of surrogates selected from 50 repetitions, in the following order: SF surrogate, the set of ensemble combination- 
based MF surrogates added one by one based on the basis ranking, and the hierarchical-based MF surrogate.
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correlations between yHF and yLF,1, as well as between yHF and yLF,2, are 
relatively weak, combining yLF,1 and yLF,2 results in a strong correlation 
with yHF. Generally, this information is not known in advance. Under 
these circumstances, the numerical results indicate that the three 
Method 2 approaches outperforms Method 1 in nearly all cases. This 
finding aligns with the characteristics and trends associated with prob
lems where utilizing all LF sources is advantageous. Method 3 exhibits 
performance similar to that of Method 1, as it fails to effectively 
distinguish the use of LF data sources and, even if it could, fundamen
tally does not consider the combination of LF data sources. The proposed 
method incorporates all LF sources, thereby yielding results identical to 
those of Method 2–1. Furthermore, the ρ value obtained from the pro
posed method is 1 in all cases, indicating that the final model selected 
utilizes all LF sources. Notably, the proposed algorithm identifies the 
ensemble combination-based MF model − corresponding to the third 
column of Msel − as the optimal surrogate for this problem, rather than 
the hierarchical combination-based model in the fourth column. This 
result demonstrates the effective applicability of the proposed method.

Fourthly, the performance results for P4 are presented in Table 7. In 

these numerical examples, nHF is fixed at 10, while the combinations of 
nLF are varied to compare the performances of the six methods. A key 
characteristic of both problems is the strong correlation between yHF and 
yLF,1, while the correlation between yHF and yLF,2 is relatively weak. 
Additionally, there is a slight correlation between yLF,1 and yLF,2. This 
implies that the fidelity levels can be distinguished in the increasing 
order of yLF,2, yLF,1, and yHF, though this prior knowledge is assumed to 
be unknown beforehand. As listed in Table 7, when nLF is 40 for both LF 
sources, the three Method 2 approaches and the proposed method yield 
more accurate results than Method 1, indicating that LF sources provide 
useful information. Moreover, when nLF is (40, 20), the accuracy de
creases compared to the previous case, but the three Method 2 ap
proaches and the proposed method still perform similarly and better 
than Method 1. However, when nLF is (20, 40), Methods 2–1 and 2–2 
perform worse than Method 1, while the proposed method continues to 
deliver the best results among the six approaches. This implies that yLF,2 
provides detrimental information to yHF, and the superior performance 
of Methods 2–1 and 2–2 over Method 1 in the earlier cases is due to yLF,1. 
Thus, it can be confirmed that yLF,1 has a more positive influence on yHF 
than yLF,2. Specifically, when nLF is (40, 20), nLF for yLF,1 is sufficient to 
mitigate the negative impact of yLF,2. In addition, the performance of 
Method 3 is superior to Method 1 since it selects a single LF data source; 
however, overall, its superiority compared to the three Method 2 ap
proaches appears unclear. This is because, as previously explained, 
Method 3 does not take into account decisions regarding the selective 
usage of LF data sources or the methods for combining them. However, 
the proposed method identifies yHF as the highest-fidelity source, fol
lowed by yLF,1 and yLF,2, based on the inferred fidelity ranking. It then 
considers the use and combination of all sources to generate multiple 
candidate surrogates and selects the optimal surrogate that outperforms 
traditional approaches. In the proposed method, yLF,1 is used in all cases 
as a mandatory source, as indicated by the first column of Msel being 
0 across all scenarios. Notably, when nLF is (20, 40), the hierarchical- 
based MF model using yLF,2 as the lowest LF source is predominantly 
selected as the final surrogate (37 times out of 50), which corresponds to 
the fourth column of Msel. This can also be easily inferred from the fact 
that ρ of the proposed method, like ρ of the three Method 2 approaches 
when using all LF data sources in an ensemble manner, approaches 
nearly 1, but the proposed method still demonstrates superior perfor
mance over the three Method 2 approaches. These results highlight the 
flexibility of the proposed method in handling varying LF sample sizes 
and effectively utilizing LF sources.

Lastly, additional numerical experiments were conducted on various 
test problems. The results for P5 and P6 are presented in Table 8, and the 
results for P7 and P8 are presented in Table 9. As indicated, the NRMSE 
values for the proposed method are consistently lower than those of 
existing approaches, highlighting the enhanced accuracy of the pro
posed surrogates. This enhanced performance is due to the adaptive 
utilization of LF sources and the effective combination strategies 
employed. Furthermore, these results imply that the proposed approach 
can at least serve as a useful guideline when it is unclear how to utilize 
all available LF data.

Table 7 
Performance comparison results for P4.

dm = 2, nHF = 10 dm = 2, nHF = 10 dm = 2, nHF = 10
nLF = (40, 40) nLF = (40, 20) nLF = (20, 40)
εNRMSE ρ(Msel) εNRMSE ρ(Msel) εNRMSE ρ(Msel)

Method 1 0.0806 0.0 0.0806 0.0 0.0806 0.0
Method 2–1 0.0161 1.0 0.0211 1.0 0.0877 1.0
Method 2–2 0.0495 1.0 0.0484 1.0 0.0877 1.0
Method 2–3 0.0339 1.0 0.0319 1.0 0.0709 1.0
Method 3 0.0244 0.47 0.0244 0.47 0.0721 0.47
Proposed 0.0163 0.84 (0,16,25,9)* 0.0194 0.85 (0,15,21,14)* 0.0322 0.93 (0,7,6,37)*

* The number in parentheses represents the number of surrogates selected from 50 repetitions, in the following order: SF surrogate, the set of ensemble combination- 
based MF surrogates added one by one based on the basis ranking, and the hierarchical-based MF surrogate.

Table 8 
Performance comparison results for P5 and P6.

dm = 4, nHF = 16 dm = 6, nHF = 24
nLF = (60, 60, 120, 120) nLF = (120, 120, 120)
εNRMSE ρ(Msel) εNRMSE ρ(Msel)

Method 1 0.1086 0.0 0.1215 0.0
Method 2–1 0.0917 1.0 0.0732 1.0
Method 2–2 0.1113 1.0 5.0407 1.0
Method 2–3 0.0809 1.0 0.0830 1.0
Method 3 0.0817 0.22 0.0909 0.23
Proposed 0.0808 0.53 

(0,18,14,12,6,0)*
0.0731 0.83 

(0,6,13,31,0)*

* The number in parentheses represents the number of surrogates selected from 
50 repetitions, in the following order: SF surrogate, the set of ensemble 
combination-based MF surrogates added one by one based on the basis ranking, 
and the hierarchical-based MF surrogate.

Table 9 
Performance comparison results for P7 and P8.

dm = 8, nHF = 32 dm = 12, nHF = 48
nLF = (160, 160) nLF = (120, 240)
εNRMSE ρ(Msel) εNRMSE ρ(Msel)

Method 1 0.0153 0.0 0.1502 0.0
Method 2–1 0.0068 1.0 0.1229 1.0
Method 2–2 0.0260 1.0 0.1233 1.0
Method 2–3 0.0089 1.0 0.0960 1.0
Method 3 0.0105 0.46 0.0958 0.50
Proposed 0.0055 0.82 (0,18,3,29)* 0.0904 0.74 (0,26, 3,21)*

* The number in parentheses represents the number of surrogates selected from 
50 repetitions, in the following order: SF surrogate, the set of ensemble 
combination-based MF surrogates added one by one based on the basis ranking, 
and the hierarchical-based MF surrogate.
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In summary, the proposed AQBMF surrogate framework is demon
strated to be a decision-making algorithm that adaptively and effectively 
selects LF sources and combination strategies to create a flexible sur
rogate. Notably, when there is no prior information about which LF 
models are helpful to the HF model or the accuracy levels among the LF 
models, the proposed method shows a stronger impact. Therefore, it can 
be concluded that the proposed AQBMF method is superior to existing 
methods based on the numerical results.

4.3. Real-world engineering example

This section validates the performance of the proposed method using 
a real-world engineering problem [46–48]. This engineering example 
reflects a common scenario encountered in real-world industrial set
tings, where the objective is to maximize the use of existing databases 
when designing and developing new products under a limited budget. 
The selected application is a vehicle model, which is typically optimized 
with respect to various performance criteria, including mass, bending 
stiffness, torsional stiffness, and natural frequency [47]. Among these, 
this study focuses on torsional stiffness, which is widely regarded as one 
of the most critical performance metrics in the optimization process 
[47], as it plays a key role in both vehicle handling and structural 
integrity. Fig. 7 presents three distinct finite element models of a vehicle, 
along with their corresponding boundary and loading conditions, and 
their specifications are summarized in Table 10. Given the limited 
computational budget of the HF model, the objective of this numerical 
test is to construct the most accurate surrogate model by maximizing the 
utilization of available LF data sources.

In this test, there are one HF model and two LF models. The HF 
model, as shown in Figs. 7(a) and (b), is a shell element-based finite 
element model of a car with model type A. As shown in Fig. 7(c), the LF 
model I is created by simplifying the HF model, which is composed of 
shells, into a beam-based model [49], significantly reducing the degrees 
of freedom. The beam cross-section is assumed to be rectangular, with 
the width reflecting the shell’s geometry and the height approximated 
by the shell thickness. In other words, the model type remains the same, 
but the mesh types differ significantly, as listed in Table 10. LF model II, 
on the other hand, is a reference model that also uses shells but has a 
different model type from the HF model, as shown in Fig. 7(d). This 
reference model was previously developed for model type B, and has 

degrees of freedom comparable to those of the HF model, as listed in 
Table 10. LF model I has only 570 degrees of freedom and is extremely 
fast to analyze, with all 280 samples generated in less than a few sec
onds. LF model II consists of previously computed results stored in a 
corporate database, requiring no additional computation. Accordingly, 
both LF datasets are either cost-free or computationally negligible, and 
thus their cost was not considered in the analysis.

All finite element models are primarily made of steel, with a Young’s 
modulus of 210 GPa, a Poisson ratio of 0.3, and a density of 7.89 × 10-6 

kg/mm3, respectively. The inputs for the surrogate models are the shell 
thicknesses of seven structural components, as illustrated in Fig. 7: the 
A-pillar, B-pillar, C-pillar, roof bar, floor bar, forward bar, and rear bar. 
The output is the torsional stiffness of the vehicle, defined as the applied 
torque divided by the resulting relative twist angle. It can be expressed 
as 

yTS =
T

θTS
=

(F × L)
(

tan− 1
(

δleft(t)+δright(t)
L

)) (12) 

where yTS is the torsional stiffness, T denotes the torque applied to the 
front suspensions, θTS is the resulting twist angle, t represents the shell 
thicknesses of the seven components, F is the vertical force on the frontal 
suspension supports, L is the lateral distance between the suspension 
supports, δleft(t) and δright(t) are the vertical displacements at the left and 
right loading points, respectively, obtained via finite element analysis. 
The lower and upper bounds of t are 0.5 mm and 5.0 mm. The applied 
torque T is 2000 N•m. The values of L for the HF model, LF model I, and 
LF model II are 1124 mm, 997 mm, and 1138 mm, respectively. Natu
rally, the corresponding forces F are 1778.8 N, 2005.9 N, and 1770 N, 
respectively, based on previous studies [46,47]. Furthermore, the 
number of samples obtained from LF model I and LF model II is set to 
280 and 70, respectively, while three cases are considered for the 
number of samples from the HF model with values of 7, 14, and 28, as 
represented in Table 10. Therefore, the datasets DHF, DLF,I, and DLF,II are 
constructed, with the subscripts representing their respective sources. In 
this situation, the proposed algorithm determines which information 
from the two LF models is beneficial for supporting the HF model. In this 
study, the HF model is analyzed using the commercial finite element 
analysis (FEA) software OptiStruct [50], while the two LF models are 
analyzed using our in-house MATLAB codes.

Fig. 7. Finite element models of the vehicle: (a) HF model (isometric view), (b) HF model (bottom view), (c) LF model I (isometric view), and (d) LF model II 
(isometric view).
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Table 11 presents the results of surrogate models created using both 
existing and proposed methods for the engineering problem. As listed in 
Table 11, when nHF is 7, the performance varies across the methods. 
When nHF is 14, Methods 2–1, 2–2, and 2–3 show higher accuracy than 
Method 1, whereas when nHF is 28, Method 1 outperforms Methods 2–1, 
2–2, and 2–3. This indicates that LF information is helpful when nHF is 
small, but the contribution of LF information diminishes as nHF in
creases. In addition, Method 3 cannot be applied because there are no 
common sample points between the original LF data and the HF data, 
which means that Method 3 is impractical. In contrast, the proposed 
method produces results that are as accurate as or more accurate than 
the existing methods in all cases, as indicated by its lower NRMSE 
values. Specifically, the proposed method identifies DLF,II as more sig
nificant information than DLF,I for all cases, indicating that LF model II 

provides more useful information for the HF model than LF model I. This 
inference is also supported by the global sensitivity analysis shown in 
Fig. 8, where the overall trend of the Sobol’ indices [9] for the HF model 
is more closely aligned with that of LF model II than with LF model I. In 
other words, the type of elements has a greater impact than the type of 
models in this problem. Based on the estimated quality levels of the LF 
data sources, the proposed method adaptively selects the best surrogate, 
whether it is the ensemble-based MF, hierarchical-based MF, or SF 
surrogate, as the number of HF samples increases to 7, 14, and 28, 
achieving consistently accurate results. In the future, if a more experi
enced expert refines LF model I, its relative importance may increase, 
allowing for more varied results through comparison with LF model II. 
In conclusion, the proposed AQBMF method demonstrates its capability 
as a flexible data-driven decision-making algorithm that maximizes the 

Table 10 
Information on finite element models.

Model type Mesh type Analysis type The number of samples Degrees of freedom Comments

HF model A Shell Torsion 7/14/28 2,190,874 Original model
LF model I A Beam Torsion 280 570 Simplified model
LF model II B Shell Torsion 70 648,478 Reference model

Table 11 
Performance comparison results for the engineering example.

nHF* Importance ranking** Final MF combination*** εNRMSE

Method 1 7 − DHF 0.2181
14 0.08392

0.0424928
Method 2–1 7 − (DLF,I + DLF,II) →DHF 0.1360

0.0794714
0.0491628

Method 2–2 7 − (DLF,I + DLF,II) →DHF 1.7773
14 0.06304
28 0.05378

Method 2–3 7 − (DLF,I + DLF,II) →DHF 0.22801
14 0.06301
28 0.05225

Method 3 − − − −

Proposed 7 (DLF,II, DLF,I) (DLF,I + DLF,II) →DHF  0.1360

14 (DLF,II, DLF,I) DLF,I →DLF,II →DHF 0.05608
28 (DLF,II, DLF,I) DHF 0.04249

* Since all LF information is assumed to be given, all nHF values are the same.
** LF data sources are listed in order of importance from the most important (left) to the least important (right).
*** Final combination process is represented, where the plus (+) and arrow (→) indicate the ensemble and hierarchical combination approaches, 
respectively.

Fig. 8. Global sensitivity analysis results for the three engineering models.
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utilization of multiple LF data sources to enhance surrogate model 
performance compared to existing methods.

5. Conclusions

This study presents a new paradigm, the AQBMF surrogate frame
work, designed to effectively utilize multiple LF data sources with un
known fidelity levels. The proposed method is particularly 
recommended for situations where multiple LF data sources with un
defined fidelity levels are available, but there is uncertainty about which 
sources to select and how to combine them. The core idea of the pro
posed method is to interpret the quality level of LF data sources as the 
relative significance of basis functions in the surrogate model. Based on 
this idea, the proposed approach systematically builds the best surrogate 
in four stages, adaptively selecting LF data sources and MF combination 
methods. The first stage is to construct the augmented MF formulation, 
in which all basis functions are initially assigned equal importance. The 
second stage is to assess the importance of LF surrogates using the 
proposed MF basis screening strategy. The third stage is to build 
promising candidate surrogates based on the estimated ranking of LF 
surrogates. The last stage is to select the best surrogate among the 
candidate surrogates. The numerical results confirm that the proposed 
method not only adaptively utilizes the LF data sources but also 
appropriately employs the MF combination method. The first numerical 
results demonstrate the flexible application process of the proposed 
approach step-by-step through a 1D example. The second numerical 
results verify that the performance of the proposed method outperforms 
that of conventional methods through various benchmark test functions. 
The final numerical results show that the proposed data-driven decision 
algorithm generates a more accurate surrogate than other approaches in 
the same computational efficiency setting using a real-world engineer
ing example.

In the future, each sub-stage of the proposed framework could be 
replaced or integrated with more advanced techniques, further 
enhancing overall performance. For instance, a new metric could be 
developed to more precisely assess the utility of LF sources even with a 
limited number of HF data points. Moreover, the proposed AQBMF 
method is expected to be extended to achieve more robust performance 
in problems where strong nonlinear correlations exist between LF and 
HF models [51,52]. Finally, the proposed method will be incorporated 
into sequential sampling processes (e.g., Bayesian optimization) to 
further broaden its applicability [53].
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Appendix A. Implementation details

In this section, the two implementation details necessary for generating fair and reliable numerical results are provided. The methods employed in 
constructing the surrogates and the procedures for calculating the PCC metrics are explained sequentially.

Firstly, scaling techniques are used to mitigate potential performance degradation in the surrogate model caused by variations in the ranges of 
design variables. In this study, standardization techniques [4] are applied to both inputs and outputs. The hyperparameter range for the Gaussian 
spatial correlation function is set to [10-6, 102] [4,12], and the pattern search algorithm is employed with various initial points to estimate the 
hyperparameters [4,12]. In this study, all surrogates are constructed using our in-house MATLAB codes, referring to Ref. [54].

Secondly, raw data-based and prediction-based PCC metrics [16] are computed as 

r = fcorr

(
Ycommon

S,LF , Ycommon
S,HF

)
(13) 

and 

r̃ = fcorr

(
ỸLF, ỸMF

)
(14) 

respectively, where Pearson correlation function fcorr, represented as 

fcorr(YA, YB) =

⎛

⎜
⎜
⎜
⎜
⎝

∑n
k=1

(
YAk − YA

)(
YBk − YB

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1

(
YAk − YA

)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1

(
YBk − YB

)2

√

⎞

⎟
⎟
⎟
⎟
⎠

(15) 

where YA and YB are output sets of n sampled points from each data group, with the upper bar indicating the mean of the respective sets. In addition, 
Ycommon

S,LF and Ycommon
S,HF are the outputs for sampled common LF and HF inputs, respectively, and ỸLF( = ŷLF(SD)) and ỸMF( = ŷMF(SD)) are the predicted 

values for LF and MF surrogates over the entire design area, respectively, where SD represents the sample points over the entire design domain. In this 
study, SD is generated using LHS with a sample size that is 100 times the number of design variables. In particular, when obtaining PCC for the 
candidate ensemble combination-based MF surrogates in Section 3.2.3, faug(x)

T β̂aug and ŷ(x) in Eq. (7) are used for calculating ỸLF and ỸMF, 

respectively. This is because the sum of the weighted LF information (i.e., faug(x)
T β̂aug) reflects the trend of the MF surrogate.
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Thirdly, the NCVE value (i.e., εNCVE) [55], especially for leave-one-out error, is calculated as 

εNCVE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
nHF

∑nHF

j=1

(
yj − ŷ − j

(
SHF,j

))2
√

max(YHF) − min(YHF)
(16) 

where SHF and YHF are the inputs and outputs of HF data, respectively; nHF is the number of HF data; yj is the output of SHF,j; ŷ− j
(
SHF,j

)
is the predicted 

HF output of SHF,j from the surrogate built without SHF,j and yj; max(YHF) and min(YHF) are the maximum and minimum outputs of the observed HF 
data, respectively.

Appendix B. Computational complexity of the proposed method

This section discusses the computational complexity of the proposed method. To obtain a rough estimate in Big-O notation, assume that there are 
NS LF sources, each with nLF samples, and that the HF dataset has nHF samples. Under these assumptions, the computational complexity of conven
tional EHK is NS × O

(
n3

LF
)
+ O

(
n3

HF
)
, because each LF surrogate is trained once and then calibrated with the HF data. In the proposed method, four 

stages are considered, as mentioned earlier in Section 3.2. In Stage 1, NS LF surrogates are constructed, thereby requiring a computational complexity 
of NS × O

(
n3

LF
)
. Stage 2 requires NS × O

(
n3

HF
)

for basis screening. The dominant cost comes from computing NCVE for the N basis functions, which can 
be efficiently evaluated via the inversion of partitioned matrix [36]. In Stage 3, (2 + NS) candidate surrogates are systematically constructed as listed 
in Table 12, yielding a computational complexity of (2 + NS)× O

(
n3

HF
)
. In addition, the computational cost of Stage 4 is negligible since all key metrics 

required to select the best surrogate have already been computed in Stage 3. Therefore, the total computational complexity of the proposed method is 
NS × O

(
n3

LF
)
+ (2 + 2NS)× O

(
n3

HF
)
. Here, given that nHF is generally small, the influence of the additional (2NS) × O

(
n3

HF
)

in the proposed method 
decreases as nLF increases relative to nHF. However, when the importance ranking of the basis functions is unknown and all possible cases are 
considered, the advantage of the proposed method becomes more evident. Specifically, as indicated in Table 12, if all combinations are considered, the 
computational complexity becomes NS × O

(
n3

LF
)
+

(
NS!+ 2NS

)
× O

(
n3

HF
)
, so 

(
NS!+ 2NS

)
× O

(
n3

HF
)

term can no longer be ignored. The detailed counts 
for each combination are presented in Table 12, and the comparison is visualized in Fig. 9. These results show that while the number of candidate 
surrogate combinations in all cases increases factorially with respect to NS, the proposed method increases linearly, making it much more efficient. In 
other words, when the importance of the LF basis functions is not given, exploring all possible cases makes the computation almost prohibitive due to 
the exponential increase in the number of combinations.

Table 12 
The number of candidate surrogate combinations when LF source # = NS (NS ≥ 2).

Conventional All Proposed

SF surrogate − 1 1
Hierarchical-based MF surrogate − NS! 1
Ensemble-based MF surrogate 1 2Ns – 1 

(=NsC1 + NsC2 +… + NsCNs)
NS

Total 1 NS! + 2Ns 2 + NS

Fig. 9. Comparison of candidate surrogate combinations with respect to the number of LF sources (logarithmic scale on y-axis)

Appendix C. Conventional MF dataset selection algorithm

This section explains the conventional MF dataset selection algorithm [16,19], which can be summarized as follows: 
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(1) Select the LF data source with the highest |r| value from the available LF data sources.
(2) If the chosen |r| exceeds the predefined threshold rmin, designate the corresponding MF surrogate as the best model. Otherwise, select the SF 

surrogate as the best model.

Appendix D. Benchmark test functions

The benchmark test functions used in this study are adopted or modified from Refs. [28] and [55] and their expressions are summarized in 
Table 13.

Table 13 
Formulations of the analytical test functions.

Test function # Expression

Test function 1 yHF(x) = sin(x) + 0.2x + (x − 5)2
/16 + 0.5

yLF,1(x) = (x − 0.5)(x − 4)(x − 9)/20 + 2
yLF,2(x) = sin(x) + 0.2x + 0.5

x ∈ [0, 10]1

Test function 2 yHF(x) = (6x − 2)2sin(12x − 4)
yLF,1(x) = (x − 0.5)(x − 4)(x − 9)/20 + 2

yLF,2(x) =
(
cos(18x)

(
2x2 − 1

) )
/15

x ∈ [0, 1]1

Test function 3 yHF(x) = 0.4(6x − 2)2sin(12x − 4) + 10
(
0.4x3 + 0.1x2 + 0.2x + 0.2

)

yLF,1(x) = 0.4(6x − 2)2sin(12x − 4) + 4x3 − 10ex

yLF,2(x) = 9
(
0.1x2 + 0.2x + 0.2

)
+ 8ex

x ∈ [0, 1]1

Test function 4 yHF(x) = 4x2
1 − 2.1x4

1 + x6
1/3 + x1x2 − 4x2

2 + 4x4
2

yLF,1(x) = yHF(0.7x1, 0.8x2) + x1x2 − 65
yLF,2(x) = yHF(0.8x1 , 0.6x2) − x4

1 + 32
x ∈ [ − 2, 2]2

Test function 5
yHF(x) =

∑dm
i=1

x2
i

4000
−
∏dm

i=1
cos

(
xi
̅̅
i

√

)

+ 1

yLF,1(x) =
∏dm

i=1
xisin

(
xi
̅̅
i

√

)

+ 1

yLF,2(x) =
∑dm

i=1
x2

i
7

−
∏dm

i=1
cos

(
xi
̅̅
i

√

)

+ 1

yLF,3(x) =
∑dm

i=1
x2

i
4000

−
∏dm

i=1
cos

(xi

i

)
+ 1

yLF,4(x) =
∑dm

i=1
x2

i
2000

−
∏dm

i=1
0.2cos

(
xi
̅̅
i

√

)

+ 1

x ∈ [ − 2, 2]4

Test function 6 yHF(x) = [100
(
x2 − x2

1
)2

+ (x1 − 1)2
+ 100

(
x3 − x2

2
)2

+ (x2 − 1)2
+ 100

(
x4 − x2

3
)2

+ (x3 − 1)2

+100
(
x5 − x2

4
)2

+ (x4 − 1)2 + 100
(
x6 − x2

5
)2

+ (x5 − 1)2
]/100000

yLF,1(x) =
[(

x4
2 + 50x2

1
)
+
(
x4

3 + 50x2
2
)
+
(
x4

4 + 50x2
3
)
+
(
x4

5 + 50x2
4
)
+
(
x4

6 + 50x2
5
) ]

/100000

yLF,2(x) =
∑dm

i=1
ix2

i

yLF,3(x) =
∑dm

i=1
x2

i
4000

−
∏dm

i=1
cos

(
xi
̅̅
i

√

)

+ 1

x ∈ [ − 5, 10]6

Test function 7 yHF(x) = ysub(x) + 0.01x2
1x8 + x1x7/x3+x1x6/x2+x2

1x4

yLF,1(x) = 0.01x2
1x8 + x1x7/x3+x1x6/x2+x2

1x4

yLF,2(x) = 0.0001ysub(x) + x1x5/4x2 + x1x8/x4 + x3
1x7

where ysub(x) = 2πx3(x4 − x6)/
(
log(x2/x1)(1 + 2x7x4)/log(x2/x1)x2

1x8
)
+ x3/x5 )

x1 ∈ [0.05, 0.15]; x2 ∈ [100, 50000]; x3 ∈ [63070, 115600];
x4 ∈ [990, 1110]; x5 ∈ [63.1, 116]; x6 ∈ [700, 820];

x7 ∈ [1120, 1680]; x8 ∈ [9855, 12045];
Test function 8 yHF(x) =

∑dm/4
i=1

[
(x4i− 3 + 10x4i− 2)

2
+ 5(x4i− 1 − x4i)

2
+ (x4i− 2 − 2x4i− 1)

4
+ 10(x4i− 3 − x4i)

4
]

yLF,1(x) =
∑dm/4

i=1

[
(x4i− 3 + 10x4i− 2)

2
+ 5(x4i− 1 − x4i)

2
+ (x4i− 2 − 2x4i− 1)

4
+ 8(x4i− 3 − x4i)

4
]

yLF,2(x) =
∑dm/4

i=1

[
(x4i− 3 + 10x4i− 2)

2
+ 4(x4i− 1 − x4i)

2
+ (x4i− 2 − 2x4i− 1)

4
+ 5(x4i− 3 − x4i)

4
]

x ∈ [ − 5, 5]12

Data availability

Data will be made available on request.
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