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ARTICLE INFO ABSTRACT

Keywords: In this paper, a novel adaptive quality-based multi-fidelity (AQBMF) surrogate framework is introduced to
Adaptive quality-based multi-fidelity (AQBMF) maximize the utilization of low-fidelity (LF) data from various domains. The main goal of the proposed method is
surrogate

to adaptively select and combine LF data, by assessing its quality, to create the most accurate surrogate. The core
idea lies in interpreting the quality levels of LF data sources as the relative importance of LF surrogates that serve
as basis functions in a multi-fidelity (MF) surrogate. Based on this approach, the proposed AQBMF surrogate
framework comprises four main stages. In the first stage, a newly defined augmented MF formulation is con-
structed, initially assuming equal importance for all LF data sources. In the second stage, LF surrogates are
ranked by importance through the proposed MF basis screening method. In the third stage, promising candidate
surrogates are systematically constructed based on the importance ranking of the LF surrogates. During this
stage, both the selection and filtering of LF data, as well as the hierarchical and ensemble combination-based MF
methods are considered. In the last stage, the best surrogate is selected from the candidates using the proposed
algorithm. Various benchmark test results demonstrate the superior performance of the proposed framework.
Finally, engineering application results show that the proposed AQBMF surrogate achieves higher accuracy than

Multiple low-fidelity data sources
Multi-fidelity combination method
Data quality

Basis function

existing ones within the same computational budget.

1. Introduction

A surrogate model is a data-driven mathematical model that ap-
proximates the response of a real-world physical system [1]. Once
constructed, the surrogate models can quickly predict responses, making
them highly effective for processes such as optimization [2-6], uncer-
tainty propagation [7,8], and sensitivity analysis [9], which are often
resource- and time-intensive. Despite these advantages, obtaining suf-
ficient data remains a significant challenge when the behavior of the
physical system is highly complex or its responses are costly to obtain.

To alleviate this problem, the multi-fidelity (MF) surrogate method
emerges as a promising strategy, aggregating auxiliary data from diverse
sources of varying accuracy levels to make accurate predictions [10,11].
The MF surrogate model is a data fusion technique that uses a large
number of inexpensive, less accurate low-fidelity (LF) samples to quickly
capture overall trends and corrects them with a small number of costly,

high-accuracy high-fidelity (HF) samples [10,11]. Due to their charac-
teristic of complementarily leveraging data with different fidelity levels
to create synergy, MF strategies successfully deliver rapid and accurate
solutions to complex real-world problems [12-18].

In real-world scenarios, it is common to encounter MF datasets
containing LF data from multiple sources. Depending on whether the
fidelity levels of multiple LF data sources are known in advance as prior
information, MF surrogates can be broadly classified into (1) hierar-
chical and (2) ensemble combination approaches. The former method,
especially in early studies, assumes that the fidelity levels are known in
advance, so all LF resources are combined in a hierarchical manner and
then HF data is utilized for calibration. Representative surrogates are
scaling function-based methods [19], Co-Kriging [11], hierarchical
Kriging (HK) [20], improved hierarchical Kriging (IHK) [21], general-
ized hierarchical Co-Kriging (GCK) [22], MF surrogate based on design
variable correlations (MFS-DVC) [23], and ensemble learning based MF
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surrogate (EL-MFS) [24]. However, when the fidelity level of LF data is
not known in advance, applying hierarchical combination methods be-
comes impossible, prompting more recent studies to address this issue.
In such cases, as in the latter approach, all LF resources are combined in
an ensemble manner, while HF data is utilized for correction. Methods
like linear regression MF surrogate (LR-MFS) [25], extended Co-Kriging
(ECK) [26], variance-weighted sum MF surrogate (VWS-MFS) [27], non-
hierarchical Co-Kriging (NHLF-Co-Kriging) [28], extended hierarchical
Kriging (EHK) [29], local correlation-weighted fusion-based MF surro-
gate (LCWF-MFS) [30], and weighted-sum of multi-HK (WSMHK) [31]
fall under this approach. However, in practice, differences in fidelity
levels may exist among LF sources, even if they are not explicitly labeled.
This suggests that in certain situations, hierarchical MF models may
offer advantages over ensemble-based ones. In particular, the definition
of non-hierarchical relationships is often ambiguous in industrial set-
tings. For instance, suppose there are two LF sources, and the first has a
slightly higher correlation with the HF data than the second. In such a
case, it is unclear whether the two LF sources should be treated in a
hierarchical or ensemble manner. This ambiguity makes it difficult to
determine which type of MF modeling—hierarchical or ensemble—is
more appropriate. Moreover, there are cases where both LF sources have
weak correlations with the HF data individually. Yet, when combined in
a hierarchical manner, their joint information may result in a much
stronger correlation. Although such scenarios are realistic, existing
ensemble-based MF methods have not considered them. In other words,
when fidelity information is unavailable, existing methods do not pro-
vide guidance on which approach—hierarchical or ensemble—is more
reasonable.

Besides, existing MF methods have another critical limitation that
they unconditionally use all LF data sources without scrutiny. Contrary
to the common assumption in many MF studies that LF data is always
informative, in practice, low-quality LF data can negatively impact the
MF surrogate model. For example, if the quality of LF data is poor, it can
be detrimental to identifying the overall trend when constructing an MF
surrogate. Moreover, even if high-quality LF data is available, a lack of
sufficient LF data can hinder the construction of an accurate MF surro-
gate. For example, LF data may be of good quality but generated long
ago, making it impossible to reproduce, thereby hindering trend iden-
tification due to insufficient LF data when constructing an MF surrogate.
These situations are frequently encountered in industrial environments.
In the worst-case scenario, the accuracy of the MF surrogate may fall
below that of a single-fidelity (SF) surrogate constructed solely with HF
samples. Therefore, careful consideration is required when applying the
MF method. Existing studies have utilized discriminant metrics such as
normalized cross validation error (NCVE) [32], maximum likelihood
estimation (MLE) [32], Pearson correlation coefficient (PCC) [19,33]. In
addition, attempts have been made to address this issue by excluding
only highly biased LF data sources when building the MF surrogates
[34]. However, these studies still have the limitation that they only
consider the effect of a single LF data source among multiple LF data
sources to determine whether to use that LF source. In particular, even if
individual LF sources do not contribute much to the MF surrogate, using
them together can sometimes produce a synergistic effect, which has not
been fully considered in existing research. In other words, existing
studies have not considered the potential coupling effects of multiple LF
sources while determining whether to utilize them.

From the review of existing literature surveys, two ongoing chal-
lenges stand out when dealing with multiple LF data sources whose fi-
delity levels are not pre-defined. Firstly, there is no research on choosing
the appropriate MF combination method. Specifically, there is a need for
studies focusing on choosing between hierarchical and ensemble
combination-based MF methods. Secondly, there is a lack of research on
MF methods that consider the quality of the LF data sources. This in-
volves identifying combinations of LF data sources that produce syner-
gistic effects and pinpointing LF data sources to disregard or overlook.
To the authors’ best knowledge, existing approaches have not effectively
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addressed both of these two challenges related to the flexible utilization
of LF data.

In this paper, a novel adaptive quality-based multi-fidelity (AQBMF)
surrogate framework is proposed. This framework introduces a higher-
level decision-making paradigm for the flexible and effective utiliza-
tion of multiple LF data sources. The key innovation of this study lies in
proposing a unified and adaptive framework that constructs the best
surrogate model for a given scenario. Unlike conventional approaches
that focus on improving specific surrogate formulations, the proposed
method guides the selection and application of surrogate strat-
egies—such as hierarchical-based, quality-aware ensemble-based, or
even SF models—based on the characteristics and quality of the avail-
able data. To systematically orchestrate multiple data sources, the core
idea involves treating the quality levels of LF data sources as the relative
significance of the LF surrogates, which serve as basis functions, also
known as trend functions, for the MF surrogate. Based on this idea, the
proposed AQBMF method consists of four main stages: (1) construction
of an augmented MF formulation, (2) MF basis screening, (3) candidate
surrogate generation, and (4) best surrogate selection. The effectiveness
of the proposed method is demonstrated through various numerical and
engineering examples.

The main contributions of the proposed method can be summarized
as follows:

e A novel AQBMF surrogate method is introduced, providing a higher-
level paradigm for adaptive selection and combination of LF sources,
particularly when prior fidelity information is unavailable.

e The proposed framework systematically incorporates multiple LF
sources through a four-stage procedure, by treating LF data quality as
the relative importance (ranking) of basis functions in the MF
surrogate.

e The proposed method achieves superior performance compared to
existing approaches under limited computational budgets through
systematic surrogate model generation.

The remainder of this paper is structured as follows. Section 2 pro-
vides a comprehensive review of conventional MF surrogates and basis
screening methods. Section 3 provides a step-by-step explanation of the
newly proposed AQBMF surrogate framework. In Section 4, the supe-
riority of the proposed method is validated through various numerical
examples. Finally, Section 5 concludes the paper and outlines potential
avenues for future research.

2. Review of conventional methods

This section provides a concise overview of the fundamental infor-
mation underpinning the proposed research. Section 2.1 introduces the
basic concept of Gaussian process surrogates and their related formu-
lations. Additionally, Section 2.2 explains the basis selection method
along with its accompanying algorithm.

2.1. Gaussian process surrogates

Assuming that a set of input and output data is given, the Kriging
model [35-37], also known as a Gaussian process model, can be con-
structed. In the Kriging method, the random function Y(x) consists of a
summation of deterministic and stochastic parts, which can be expressed
as

Y(x) = f(x)'B+Z(x) (€]

where f(x)"p reflects the trend of the true function, f(x) is a design
matrix based on pre-selected basis functions (e.g., polynomial basis
functions), f is a coefficient vector of the corresponding basis functions,
and Z(x) is the zero-mean Gaussian process with a process variance of

2. Then, the mean predictor y(x) and its mean-squared error (MSE)
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s%(x) can be obtained by applying the Kriging theory [35]. Here, if
f(x)"p becomes 1 x f, it can be called ordinary Kriging [37].

When dealing with datasets with multiple fidelity levels defined, it
becomes feasible to build an MF surrogate model, such as hierarchical
Kriging (HK) [20]. If there are MF datasets with N + 1 levels, LF infor-
mation replaces the traditional polynomial basis functions in the trend
function of the MF surrogate model. Therefore, the stationary random
process corresponding to the true function can be written as

: fx)'B + Zi(x), i=1,
¥ilx) = {si—l_/y\LF,i—l(x)‘i’Zi(x), i=2,..,N+1, 2
where s and yir(x) are the scaling factor and mean prediction of LF
surrogate, respectively, and subscript i means the corresponding value
belongs to the i™ level, wherei=1and i = N + 1 indicate the lowest and
highest fidelity levels, respectively.

More recently, to cope with the problems where there is no prior
information about fidelity levels among multiple LF models (i.e.,i = 1,
..., N), MF surrogate models combining ensemble LF models with HF
data have been introduced [26-30]. One of the representative methods
is the extended hierarchical Kriging (EHK) [29], which can be repre-
sented as

N

Yyi1(x) = Z Wi¥1ri(X) + Zn:1 (x) 3
i=1

where w; is the weight factor.

2.2. Basis selection method

This section explains the method for selecting basis functions when
constructing surrogate models. In general, selecting appropriate basis
functions has a significant impact on improving the performance of the
surrogate model. As mentioned earlier in Section 2.1, in the Kriging
method, a response typically comprises two main components, the mean
structure and the stochastic parts. In ordinary Kriging, the mean struc-
ture is assumed to be constant, while in universal Kriging, it is typically
constructed as a first- or second-order polynomial function. Therefore,
the choice of basis functions in the mean structure part plays a critical
role in determining the performance of Kriging. Several research studies
have explored different approaches for selecting these basis functions,
such as blind Kriging [38], dynamic Kriging [39], and basis screening
Kriging [40]. Among them, the basis screening Kriging method [40] is
known for being more accurate and efficient than other approaches. The
algorithm for this technique can be summarized as follows:

Step 1: Set a maximum order for polynomial basis functions.

Step 2: Estimate the significance of individual basis functions.

Step 3: Gradually add the basis functions based on their estimated
importance, constructing the candidate basis function set.

Step 4: Identify the optimal basis function set from the candidate set
using cross-validation error.

3. Proposed AQBMF surrogate framework

In this section, a novel AQBMF surrogate framework that fully le-
verages LF data is proposed. Firstly, the approach to reinterpreting the
MF surrogate model from the perspective of basis functions is intro-
duced. Secondly, the proposed MF framework is illustrated step-by-step.
Sequentially, a validation metric and the overall procedure of the pro-
posed method are described.

3.1. Thoughts on the MF surrogate

This section elaborates on our insights into the MF surrogate model.
In real-world industrial settings, it is common to encounter a lack of HF
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data required to develop predictive models in the current domain, as
shown in Fig. 1. In such cases, leveraging low-cost LF data from various
domains to construct data fusion models, such as MF surrogates, can be a
promising solution. Many previous studies have successfully applied MF
surrogates with the support of high-quality LF data that effectively
reflect the underlying physics. However, it cannot be guaranteed that
such LF information will always be beneficial for HF data. In the worst
scenario, poor-quality LF data can even degrade the overall surrogate
performance. Moreover, it can be challenging even for physics domain
experts to distinguish the quality levels of LF data sources. Therefore, it
is essential to develop data-driven methods that automatically deter-
mine how to effectively utilize multiple LF data sources.

To address these challenges, in this study, we focus on the formu-
lation of Kriging and HK in terms of basis functions in surrogate models.
As mentioned earlier in Section 2.1, both data-driven models are divided
into a mean structure part and a stochastic part, where the mean
structure takes the form of a multiplication of the basis function set and
the coefficient vector. Afterwards, the estimated hyper-parameters
through MLE depend on how the basis function set is configured,
naturally influencing the values of the coefficient vector and other
components. Here, when the polynomial function set is employed as
basis functions, it becomes a Kriging model. On the other hand, utilizing
an LF data-driven surrogate that efficiently captures the system’s trend
as basis functions results in an HK model. Therefore, MF surrogate
modeling can be redefined as an efficient surrogate modeling approach
that utilizes high-quality basis vectors. In other words, Kriging is a
special case of HK where the basis function is a polynomial function.

Based on these insights, the use of multiple LF data sources can be
addressed by translating from a physical perspective to a surrogate
model perspective. Generally, LF data contribute to the construction of
an MF surrogate in the form of LF surrogates. Moreover, the perfor-
mance of these LF surrogates directly impacts the performance of the MF
surrogate as basis functions. Therefore, this study interprets the quality
levels of LF data sources as the relative importance of basis functions
within the MF surrogate, which can be summarized as follows:

e High-quality LF sources can be considered important basis functions
in the surrogate model.

e Low-quality LF sources can be regarded as less important basis
functions in the surrogate model.

Here, when MF surrogates such as scaling function-based methods (e.
g., the comprehensive approach [19]) are used instead of the HK model
mainly employed in this study, the importance of the basis function can
be interpreted as the importance of the trend function.

To better understand the proposed insights, Fig. 2 illustrates surro-
gate models using various LF data sources. Fig. 2 clearly shows that the
performance of surrogate models can vary, even with the same set of HF
samples, depending on the quality of LF data sources (i.e., basis vectors).

HF data

A A

LF source 3

LF source 1 LF source 2

Fig. 1. Data collected from various source domains.
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Fig. 2. Visualization of a 1D analytical function using (a) ordinary Kriging model, (b) HK model I with y;r = 1, (c) HK model II with poor quality basis, and (d) HK
model III with good quality basis.

Table 1
Performance results of illustrative examples.
LF model ENRMSE
Fig. 2(a) - 1.381 x 107!
Fig. 2(b)* Yy =1 1.381 x 107!
Fig 200+ T2 T 5sin(6.5x) —1.5 1.859 x 107!
Fig. o(d)yr  Yws = Odymr + 10(0.4x* +0.1x* + 0.2+ 0.2) ~10  1.856 x 10

* The HF model used in Fig. 2 is yur = (6x — 2)%sin(12x — 4).

Table 1 lists the related LF surrogates and values of normalized root
mean-squared error (NRMSE). When comparing Figs. 2(a) & (b), the two
models appear to have similar shapes, and Table 1 confirms that their
accuracy is identical. This indicates that in the HK model I, when the LF
model has y;p; = 1, it is consistent with the ordinary Kriging model. In
other words, it is worth noting once again that ordinary Kriging is a
special case of HK with a basis where y;r; = 1. Fig. 2(c) and Table 1
demonstrate a decrease in the accuracy of the HK model II when a poor
quality LF model (yir,2) is used as the basis. Conversely, when a rela-
tively good quality LF model (yir,3) serves as the basis, the accuracy of
the HK model III appears to increase, as shown in Fig. 2(d) and Table 1.
Therefore, the basis functions can be considered important in the order
of yir,3, Yir,1, and yir 2, indicating that the LF data sources are of high
quality in the same order. Furthermore, when the comprehensive
approach is applied instead of the HK method, the NRMSE values for the
four cases in Fig. 2 are 0.1381, 0.1381, 0.15509, and 0.09906, respec-
tively, and the importance ranking of trend functions remains consistent
with the HK model results. In summary, the accuracy of the MF surro-
gate can fluctuate based on the quality of the LF surrogate used as the

basis function, highlighting the importance of high-quality basis vectors
in surrogate modeling. In light of these insights, this study approaches
the quality of LF data from the perspective of the importance of basis
functions in MF surrogates, developing strategies for their utilization
and combination. The detailed strategies will be explained in Section
3.2.

3.2. Main concept of the proposed method

The main concept of the proposed AQBMF method is to maximize the
performance of the surrogate by appropriately utilizing multiple LF data
sources, whose fidelity levels are not known in advance. This study is
based on the insights from Section 3.1, which interprets the quality
levels of LF data sources as the relative importance of basis functions in
the MF surrogate model. The proposed AQBMF surrogate framework
consists of four main stages. In the first stage, the proposed augmented
MF surrogate formulation is constructed by integrating all available LF
information. The second stage involves estimating the importance of LF
surrogates using the proposed MF basis screening method. In the third
stage, based on the relative importance of LF surrogates, promising
candidate surrogates are systematically generated. Finally, in the fourth
stage, the proposed surrogate selection algorithm chooses the best sur-
rogate from the candidates. The detailed strategies for each stage will be
explained in the following sections. Additionally, it should be noted that
the term ensemble method in this study refers to weight-based ensemble
combination in Eq. (3), rather than ensemble learning, which involves
combining different types of surrogate models.

3.2.1. Augmented MF formulation

The first stage constructs an augmented MF formulation based on HK
theory. The core idea of the proposed formulation is to initially assume
that all basis functions are equally important, enabling the representa-
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tion of both SF and MF surrogates. To incorporate the SF surrogate, the
proposed formulation adopts the classic polynomial basis functions.
Furthermore, to handle multiple LF data sources, an ensemble MF
combination technique is employed. Reflecting these ideas, the pro-
posed augmented MF formulation is defined as

p+N

Y(x) = k=1 ﬁaug.kfaugvk (x) + Z(x)
= faug (x)Tﬂaug + Z(x)

4

where p is the number of used polynomial basis functions, f,,(x) is an
expanded design matrix, and g, is a coefficient vector of the corre-

), o).

T
, which contains the polynomial and LF functions

sponding basis functions. Note that f,(x) =

LE1(X), ..., Yirn (%)
for SF and MF surrogates, respectively.

Suppose that the inputs of LF and HF data are denoted as Sir €
R4 and Syp € R™r*4m | respectively, and corresponding outputs are
Yir € R™ and Yyr € R™F, respectively, where nig, ngp, and dm are the
number of LF data, HF data, and dimensions, respectively. Then, the
vector form representing random response Y(Syp;) at nyp sampled in-
puts in Eq. (4) can be expressed as

Y = Fougbog + Z ©)
where
Y (Shr. faug (SHF,I)I ZESHF.I;
Y= Y(S:HFZ  Fog = | fue(Suw2) | 7 | Z\Sur2 6)
Y(SHF.H“F ) faug (SI-.IF.nHF ) B Z(SHF,"UF )

and F, is defined as (ngr x (p + N)) expanded design matrix.

From Eq. (4), the predictor and its MSE are derived by minimizing
the MSE of the stochastic process while satisfying the unbiasedness
constraint. It is worth noting that the proposed formulation has the same
structure as the standard Kriging or HK. The only difference lies in the
augmentation of the existing expanded design matrix. Therefore, it is
possible to directly apply the same procedure as in Kriging or HK theory
to Eq. (4). The predictor and its MSE for the proposed formulation at x
can be formulated as

y\(x) = faug(x)Tﬁaug + r(‘x)TR_l (YHF - Faug/ﬁ\aug) (7)
and
s2(x) =58> {1 —r(x)"R "'r(x)

+ (FL R () ~ @) (FiugR " Fuug)  (FLR ()

~faug (x)) } (®)

7 T p-1 L pe1 ~2 7 T
where ﬂaug = (FaugR Faug) FaugR Yur, 07 = (YHF _Faugﬁaug>

R! (YHF - Faugﬁaug) }/nHF, R is the (npgr x ngr) correlation matrix be-

tween observed HF input points, and r(x) is the (ngr x 1) correlation
vector between untried and sampled HF input points. Here, when N = 0,
the proposed formulation reduces to the standard SF Kriging with only
polynomial basis functions. On the other hand, when p = 0, it corre-
sponds to EHK, which combines all LF data in an ensemble manner.
Therefore, the proposed augmented formulation makes it possible to
flexibly handle both SF and MF surrogates depending on the selection of
basis functions.
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3.2.2. MF basis screening

In the second stage, the proposed MF basis screening method is
performed to determine the quality (i.e., importance) of each LF data
source. The proposed method assesses the individual influence of each
basis function of the MF surrogate. Specifically, it integrates the poly-
nomial and LF basis functions collected in Section 3.2.1 to generate the
augmented vector of basis functions (i.e., f,,,(x)), followed by esti-
mating the importance of each individual basis function. The impact of
each basis function is estimated using a new metric called the ranking
measure (RM). In the proposed measure, NCVE is used to estimate the
accuracy of the surrogate constructed with the selected basis functions,
drawing inspiration from the basis selection method described in Section
2.2. In other words, a lower NCVE indicates a more accurate surrogate,
whereas a higher NCVE implies a less accurate one. Additionally, the
PCC is employed to evaluate how effectively the selected basis functions
contribute meaningful LF correlation for building the MF surrogate. As
discussed in Sections 2.1 and 3.1, the selected basis functions serve to
represent the general trend of the MF surrogate. Therefore, as reported
in previous studies [19,33], a higher PCC value indicates a more desir-
able basis function for constructing an MF surrogate, while a lower PCC
suggests that the basis function is less suitable for use. Therefore, the
proposed RM consists of NCVE and PCC indicators, which can be defined
as

_ ENCVE«a

I, 9

’FIX

where I,, encviq, and 7, are the RM, NCVE, and PCC values of the MF
surrogate model built exclusively with each o™ basis function, respec-
tively, and related formulations are provided in Appendix A. In general,

the smaller encve, and the larger |7,

, the greater is the impact of the

corresponding basis function. Therefore, a smaller RM indicates higher
importance for the corresponding basis function, while a larger RM
suggests lower importance. For example, consider N = 3 and p = 1 with

_ﬁ,(x) = 1, fOI'Il’liIlg faug(x) = [1 s yLF,l (x),f/LF_z (x),yu:‘g (x) T. If the RM
value is highest for y;r 3(x) and lowest for y52(x), then the importance
of the basis functions is ranked in the order of yr > (x) as most important,
followed by yir1(x), and finally yrr3(x).

3.2.3. Establishment of candidate MF surrogates

In the third stage, multiple candidate surrogates are constructed
based on the estimated ranking of LF surrogates obtained in Section
3.2.2. The candidate MF surrogates include SF, hierarchical-based MF,
and ensemble-based MF surrogates. To identify the best surrogate,
metrics such as NCVE, PCC, and RM are used for each candidate, and
their formulas are provided in Appendix A.

Firstly, the candidate SF surrogate is created using only HF data with
a polynomial basis function of 1. In other words, an ordinary Kriging
model with fog(x) = 1, as described in Eq. (1), is employed. This sur-
rogate does not utilize any of the collected LF data sources. If all LF data
sources are ultimately deemed unnecessary, this surrogate will be
selected as the final model.

Secondly, the candidate hierarchical combination-based MF surro-
gate is constructed using HF data, LF data, and Eq. (2). In this process,
fidelity levels are treated as the importance of the basis functions, as
estimated in Section 3.2.2. Therefore, LF surrogate is created using data
with the lowest fidelity level, and each subsequent surrogate is refined
using the next higher fidelity data. This process continues until the
highest fidelity data (i.e., HF data) is incorporated, resulting in the
candidate hierarchical MF surrogate. For example, assume that LF
source 2 (Y15 2(x)), LF source 1 (¥1r1(x)), and LF source 3 (J1r3(x)) are
ranked by importance, with LF source 2 as the most important and LF
source 3 as the least important. Then, an SF surrogate is first created
using LF source 3, and it is subsequently updated hierarchically in the
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order of LF source 1, LF source 2, and finally HF data, resulting in the
construction of the candidate hierarchical MF surrogate.

Thirdly, the candidate ensemble combination-based MF surrogates
are built using HF data, LF data, and Eq. (4). In this process, LF data
sources, which are treated as basis functions, are added one by one ac-
cording to the basis ranking, resulting in the creation of candidate MF
surrogates. Specifically, the polynomial basis function 1 is fixed, and the
remaining basis functions are added in order of their importance,
resulting in the creation of multiple candidate surrogates. Therefore,
excluding the polynomial basis function 1, if there are n basis functions,
n candidate ensemble combination-based MF surrogates are con-
structed. Naturally, the last candidate ensemble combination-based MF
surrogate corresponds to the model using all the basis functions. For
example, if the basis functions are ranked in importance as LF source 2
(Y1r2(x)), LF source 1 (¥ir1(x)), and LF source 3 (¥1r3(x)), then three
candidate ensemble combination-based MF surrogates can be created. In

T
this case, the expanded design matrices f,.q(x) = [l,yu:_z(x)] ,

Fug®) = 1910200, 7010)] s and fugx) = 1710200, 501 ()

T
pryg(x)] in Eq. (4) are constructed and corresponding three candidate

ensemble combination-based MF surrogates are generated.

Fig. 3 visually compares the conventional SF, ensemble combination-
based MF, and the proposed MF surrogate frameworks through illus-
trative diagrams involving three LF data sources with unknown fidelity
levels. Fig. 3(a) shows the conventional SF surrogate uses only
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polynomials and HF data. In addition, Fig. 3(b) describes the conven-
tional ensemble combination-based MF surrogate, which combines all
three LF data sources. However, as shown in Fig. 3(c), the proposed
method first estimates the fidelity levels of the LF data sources and
generates candidate SF, hierarchical combination-based MF, and
ensemble combination-based MF surrogates. Afterwards, in Stage 4, the
proposed algorithm is applied to select the best model from the candi-
date surrogate models.

3.2.4. Best surrogate selection

The final stage involves the selection of the best surrogate from
multiple candidate surrogates built in Section 3.2.3. The best surrogate
is determined based on the PCC, NCVE, and RM values. Specifically, the
strategy for selecting surrogates is categorized according to the PCC,
which represents the correlation between LF and HF systems. If at least
one surrogate’s PCC exceeds a pre-defined threshold, it indicates
favorable conditions for MF surrogate creation and prompts an aggres-
sive strategy for adaptively selecting LF basis functions. In this case, the
best surrogate is determined by comparing the RM values of the selected
candidate MF surrogates that meet the PCC criterion. However, if all
surrogates’ PCC values are lower than a pre-defined threshold, a con-
servative strategy is adopted, selecting between models that use either
all or none of the LF basis functions. In this scenario, the best surrogate is
evaluated by comparing the NCVE value of the candidate SF surrogate
with the RM values of the two candidate MF surrogates using all LF basis
functions. This environment is not conducive to MF surrogate creation,

| Unknown fidelity level |

(a)

—’{ Identification of LF fidelity levels

l

‘ LF data 1 | LF data 2 ‘ LF data 3

(b)

LF data 2 > LF data 1 > LF data 3 }—|

/

\

| Polynomial | | LFdata2 | | LFdata2 | | LFdata2 | LFdatal | | LFdata2 | LFdatal | LF data3 |

] ] l

I HF data | ‘ HF data ‘ ‘ HF data |

] l

‘ SF model | ‘ MF model ‘ ‘ MF model |

MF model

|

NG |

/

| Best surrogate selection algorithm |

| Final surrogate |

Fig. 3. Illustrative diagrams of three LF data sources with unknown fidelity levels: (a) conventional SF, (b) conventional MF, and (c) proposed MF surro-

gate frameworks.
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therefore the MF surrogate employs RM, which applies a penalty for PCC
in addition to NCVE. Since the absolute value of PCC is always less than
or equal to 1, the MF surrogate using RM is less likely to be selected
compared to the SF surrogate using NCVE. In particular, as the PCC
decreases, the RM increases, thereby lowering the likelihood of selecting
the MF surrogate. Conversely, if the RM value of the MF surrogate is
lower than the NCVE of the SF surrogate despite unfavorable conditions
for MF surrogate creation, it suggests that choosing the MF surrogate
would be a reasonable decision. Motivated by this concept, the proposed
method is developed, the algorithm of which can be summarized as
follows:

Step 1: Select the MF surrogate models from multiple candidates
whose PCC is equal to or greater than the pre-defined PCC threshold
T'min-

Step 2: If there are selected MF surrogates, choose the one with the
lowest RM value among them as the best surrogate model.

Step 3: Otherwise, set the comparison metrics as the NCVE for the SF
surrogate and the RM for the hierarchical and ensemble
combination-based MF surrogates. In this step, both MF surrogates
are constructed using all basis functions. Then, select the model with
the lowest value among these comparison indicators as the best
surrogate model.

3.3. Validation metric

To assess the global accuracy of the surrogates, the NRMSE is
adopted in this study. If there is a dataset of neg pairs of input and
output test data, denoted as Xest and Yiest, respectively, then the NRMSE,
ENRMSE, can be expressed as

Ttest

o 5 0t e

Ttest

(10)

ERMISE = max(ytest) - min(.ytest)

where x2, is the i xes; y(x@st) and ?(xg)st) are the true and predicted

output values of x@st, respectively.
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3.4. Overall procedure

In this section, the workflow of the proposed AQBMF surrogate
framework is illustrated in Fig. 4, and its algorithm is summarized as
follows:

o Step 1: Generate the inputs for the HF system and each LF system via
design of experiments (DoE). In this study, a well-known Latin hy-
percube sampling (LHS) is used.

e Step 2: Obtain the HF and LF outputs based on DoE results.

Step 3: Build LF surrogate models for each data source.

e Step 4: Construct the augmented MF formulation to create an inte-
grated basis function set that includes both the polynomial and LF
basis functions.

e Step 5: Estimate the importance of individual basis functions using

the MF basis screening method. In this step, the RM, which is

composed of PCC and NCVE, is used.

Step 6: Build all candidate surrogates based on the ranking of the

basis functions. In this step, SF, hierarchical-based MF, and ensemble

combination-based MF surrogates are constructed and the corre-
sponding metrics—PCC, NCVE, and RM—are also calculated.

Step 7: Decide on the final surrogate among the candidate surrogates

using the best surrogate selection algorithm.

e Step 8: Terminate the overall process.

3.5. Discussion about the pros and cons of the proposed method

In this section, the advantages and disadvantages of the proposed
method compared to existing methods are analyzed. The discussion can
be summarized as follows:

(1) The proposed AQBMF surrogate method is recommended for
situations where LF information from various sources is available,
but it is uncertain which LF data will be beneficial or which
combination method will be most effective. If prior knowledge
about the use of LF data sources is available, the proposed method
may be somewhat inefficient. However, in real engineering
problems, it is generally impossible to know in advance which
data sources and MF combination methods will be most suitable,

!

:l Proposed method
i

Generate initial HF inputs

Generate initial LF inputs
for each system model

1

!

Obtain the outputs
of HF inputs

Obtain the outputs
of LF inputs

1

Build the LF surrogates

Construct an augmented MF formulation

Estimate the rank of LF surrogates
using an MF basis screening method

{

)

Build a candidate
SF surrogate

Build a candidate
hierarchical-based MF surrogate

Build candidate
ensemble-based MF surrogates

Select the best MF surrogate

Fig. 4. Flowchart of the proposed AQBMF surrogate framework.
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making the proposed method highly useful for addressing such
issues.

(2) The proposed strategy becomes more effective as the number of
LF data sources increases, compared to the approach of gener-
ating all possible candidate surrogates, as demonstrated in Ap-
pendix B. When all possible combinations are considered, the
number of candidate surrogates that need to be created increases
exponentially with respect to the number of LF sources, leading to
computational times that become nearly prohibitive. In contrast,
the proposed method increases linearly with respect to the
number of LF sources, making it significantly more efficient.

(3) The proposed method is a flexible method that considers cases
ranging from not using any LF data sources to using all of them. In
particular, existing studies on creating MF surrogates using
ensemble combination-based LF surrogates [27,30,31] typically
assume that the sum of the weights for the LF surrogates equals
one, implying that at least one LF data source must always be
beneficial. However, sometimes LF data from all sources may not
be useful, and the proposed method can handle such situations as
well.

(4) The proposed framework has the advantage of being highly
extensible, as it can be easily integrated with existing techniques
or advanced methods yet to be developed. For example, it can be
extended to various data-driven modeling techniques beyond the
Gaussian process surrogates used in this study. If the surrogate
employed is a regression model (e.g., neural networks; see
[41,42]) rather than an interpolation model (e.g., Kriging),
metrics such as the coefficient of determination (R%) or NRMSE
can be used instead of NCVE for ranking LF surrogates. In such
cases, the concept of basis importance could be interpreted as the
importance of trend functions. Moreover, in scenarios involving
image data from multiple sources, the proposed framework can
be combined with generative artificial intelligence (AI) models to
construct more flexible and high-performing systems [43,44].
Within the proposed framework, fidelity levels can be interpreted
as labels, and the AI model architecture can be adapted accord-
ingly to a hierarchical or ensemble form. Data quality can be
accounted for by adjusting the weights of the loss functions,
allowing lower-quality data to have less influence during
training.

(5) The performance of the proposed method has the drawback of
being indirectly influenced by the performance of the adopted MF
methodology. This is because generating an inaccurate MF sur-
rogate can result in an unreliable estimate of the importance of LF
data sources. Therefore, if a state-of-the-art MF surrogate is
developed, the performance of the proposed method is expected
to improve further.

4. Results

In this section, the effectiveness of the proposed AQBMF surrogate
method is evaluated using numerical tests, comparing its performance to
existing approaches. In the first numerical example, a demonstrative
example is used to verify that the proposed method works effectively. In
the second numerical example, the performance of the proposed algo-
rithm is assessed using benchmark test functions with various charac-
teristics. The third numerical example illustrates the practical utility of
the proposed method by applying it to a real-world engineering prob-
lem. Particularly, it is important to note that all problems assume a
common scenario in industrial environments where the fidelity levels
among LF data sources are initially unknown. For all numerical exam-
ples, the proposed method is compared to three existing approaches:

e Method 1: Use only HF data without utilizing any LF data sources (e.
g., Ordinary Kriging).
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e Method 2: Combine all available LF data in an ensemble manner (e.
g., EHK [29], NHLF-Co-Kriging [28], and WSMHK-OWSdiag [31]).
More specifically, these three methods are implemented as compar-
ative ensemble-based MF approaches, referred to as Method 2-1
(EHK), Method 2-2 (NHLF-Co-Kriging), and Method 2-3 (WSMHK-
OWSdiag), respectively.
Method 3: Determine whether to use the single LF data source based
on the conventional MF dataset selection algorithm provided in
Appendix C (e.g., Ordinary Kriging or HK).
e Proposed: Utilize LF information by adaptively selecting LF data
sources and MF combination methods (e.g., Ordinary Kriging, HK, or
EHK).

Here, it is worth noting once again that the term “ensemble method”
in this study specifically means the weight-based ensemble combination
in Eq. (3), rather than ensemble learning, which integrates different
types of surrogates. During the surrogate creation, initial sample points
are generated using LHS with a maximin criterion through 10° iterations
[4,12]. To validate the accuracy of the surrogate models, test samples
generated by LHS are used, equal to 200 times the number of design
variables. Details on the implementation of the surrogate construction
are provided in Appendix A. In low-dimensional cases, a surrogate-based
modified PCC [16] is employed. In high-dimensional cases (e.g., when
the dimensionality is greater than 10), due to the curse of dimension-
ality, a nested DoE [11,16] is generated and the conventional sampling-
based PCC [19,33] is applied. Furthermore, the threshold parameter ryi,
is set to 0.85, referring to previous studies [16,33,45]. The entire
computational process is run on a PC equipped with 12th Gen Intel®
Core™ i7-12700 K and 32 GB RAM.

4.1. Demonstrative example
The aim of this section is to illustrate the process of the proposed

AQBMF framework through a demonstrative example. The formulation
of an adopted 1D function can be expressed as

Yur = sin(x) + 0.2x + (x — 5)2/16 +0.5,

ﬁm:u—omu—@u_m/m+; an
Yir2 = sin(x) +0.2x + 0.5,
0<x<10

which includes one HF function (yur) and two LF functions (yr,; and
Yir,2)- The observed HF and LF sample points are located at [0.0808,
3.101, 6.037, 8.983]T and [0.0, 0.5, 1.0,..., 9.5, 10.0]7, respectively, as
shown in Fig. 5. All LF models share the same sample points. Therefore,
the datasets Dyp, Dir,;1, and Digo are constructed, with the subscript
indicating the source of each dataset. In this problem setting, the pro-
posed method is compared with Methods 1, 2-1, and 3.

Fig. 5 presents visualizations of the results for the conventional and
the proposed methods. The surrogates generated by Methods 1, 2-1, and
3 show noticeable discrepancies from the true function. In contrast, the
surrogate created using the proposed method closely approximates the
true HF function. In addition, detailed quantitative results comparing
the existing and proposed methods are presented in Table 2. As previ-
ously mentioned, Method 1 uses only HF data, while Method 2-1
combines LF data in an ensemble manner and then calibrates it with HF
data. Method 3 is equivalent to Method 1 because the traditional MF
dataset selection algorithm does not select any LF data. This happens
because the number of HF data points is limited, making it difficult to
accurately calculate the PCC in the conventional MF dataset selection
algorithm. However, unlike existing methods, the proposed approach
begins by treating the two LF data sources as equally important in Stage
1. In Stage 2, it evaluates their relative significance and identifies y; > as
a more influential LF data source — serving as a basis function - than
yir,1. Based on this ranking, Stage 3 generates a set of candidate
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Fig. 5. Comparison of the plot results for surrogates created with four different approaches.

surrogates, which also includes ensemble combination-based MF sur-
rogates similar to those used in Method 2-1. Finally, Stage 4 selects the
best-performing surrogate, which in this case corresponds to the one
constructed using the hierarchical combination strategy. Based on the
explicit analytical expressions in Eq. (11), it can be intuitively inferred
that y;r 2 is more advantageous for yyr than y;r 1, which is consistent
with the results of the proposed method. Therefore, unlike Method 2-1,
which uniformly combines all LF sources, the AQBMF framework
adaptively prioritizes and combines LF data based on estimated quality,
thereby preventing performance degradation. However, such informa-
tion is typically unknown beforehand in black-box systems, and the
proposed method demonstrates robust performance even in the absence
of prior knowledge. In other words, these findings imply that the pro-
posed algorithm can provide practical guidelines for effectively utilizing
multiple LF data sources with unknown fidelity levels. In the next sec-
tion, the superiority of the proposed AQBMF method will be evaluated
through various numerical examples.

4.2. Benchmark test examples

In this section, the performance of the proposed AQBMF framework
is evaluated using benchmark test functions under various conditions,
such as system correlations, dimensionality, the number and locations of
HF samples, the number and locations of LF samples, and the number of
LF data sources. Details of the adopted benchmark test functions are
provided in Table 3. The entire process is repeated 50 times with
different initial sample sets to account for the random effects of the DoE.
It is also important to note that these numerical tests assume a common
scenario where it is not known in advance which LF data will be bene-
ficial and which will not be. The numerical results for the various sce-
narios are presented in Fig. 6 and Tables 4-9. In addition, p represents
the proportion of utilized LF data sources relative to the total available
LF data sources, and Mg denotes the selection count vector for each
candidate surrogate model. The upper bars represent the average values
of the corresponding variables (e.g., xrmsk, 2)-

Table 2
Performance comparison results for the demonstrative example.

Table 3
Information on the adopted problems.

Label Name* dm Nyr nyr of each source

P1 Test function 1 1 4/5/6 (20, 20)

P2 Test function 2 1 4/5/6 (20, 20)

P3 Test function 3 1 4/5/6 (20,20)

P4 Test function 4 2 10 (40, 40)/(40, 20)/ (20, 40)
P5 Test function 5 4 16 (60, 60, 120, 120)

P6 Test function 6 6 24 (120, 120, 120)

P7 Test function 7 8 32 (160, 160)

P8 Test function 8 12 48 (120, 240)

* Detailed expressions of the benchmark test functions can be found in Appendix
D.

Firstly, the results for P1 are presented in Fig. 6 and Table 4. In these
problems, it is assumed that nyy for each source is sufficient, making the
LF models fairly accurate. The objective of this test is to compare the
accuracy of the six approaches as nyrp increases and the HF sample lo-
cations change. As shown in Fig. 6(a), when ngy is 4, Method 1 out-
performs Methods 2-1 and 2-2, but as nyg increases to 5 and 6, as shown
in Figs. 6(b) & (c), Methods 2-1, 2-2, and 2-3 becomes more accurate
than Method 1. Method 3 utilizes very little LF information across all
three cases, resulting in outcomes that are nearly identical to those of
Method 1. However, the proposed method consistently provides more
accurate results than both Method 1 and all three Method 2 approaches
across all cases. A detailed analysis indicates that the proposed method
identifies y;r 2 as more informative than y;r; in constructing MF sur-
rogates across all 50 repetitions. Notably, the calculated value of p after
applying the proposed algorithm shows that LF sources are utilized in
more than 75 % of the cases. In particular, the number of times each
candidate surrogate model (M) was selected is summarized as follows.
The first column of Mg represents models using only HF data. The
second column corresponds to models using only y;r 2. The third column
represents ensemble combination-based MF models using both y;r > and
Yir,1, and the fourth column corresponds to hierarchical combination-

. e
nyp™ Importance ranking

Final MF combination”""

ENRMSE
Method 1 4 - Dy 2.759 x 107!
Method 2-1 4 - (Dir,1 + Dip2) — Dyp 6.616 x 107!
Method 3 4 - Dy 2.759 x 107!
Proposed 4 (DiF,2, Dir,1) Dyy,1 »Dig,2 =»Dyr 6.835 x 1073

* Since all LF information is assumed to be given, all nyr values are the same.

** LF data sources are listed in order of importance from the most important (left) to the least important (right).
*** Final combination process is represented, where the plus (+) and arrow (—) indicate the ensemble and hierarchical combination approaches, respectively.
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Fig. 6. Performance comparison results for P1 when (a) nyr = 4, (b) nyr = 5, and (c) nyp = 6.
Table 4
Performance comparison results for P1.
My = 4 e = 5 nyr = 6
ENRMSE P(Mse) ENRMSE P(Mgep) ENRMSE P(Mse)

Method 1 0.1916 0.0 0.1448 0.0 0.0137 0.0
Method 2-1 0.8439 1.0 0.0033 1.0 1.517 x 107 1.0
Method 2-2 0.9233 1.0 0.0038 1.0 0.0031 1.0
Method 2-3 0.0864 1.0 0.0229 1.0 2.555 x 10 1.0
Method 3 0.1864 0.01 0.1331 0.09 0.0074 0.24
Proposed 0.0591 0.75 (0,25,2,23)* 0.0033 0.74 (0,26,0,24)* 1.442 x 10°° 0.80 (0,20,2,28)*

* The number in parentheses represents the number of surrogates selected from 50 repetitions, in the following order: SF surrogate, the set of ensemble combination-
based MF surrogates added one by one based on the basis ranking, and the hierarchical-based MF surrogate.

Table 5
Performance comparison results for P2.
Myr = 4 nar = 5 ngr = 6
ENRMSE P(Mse1) ENRMSE P(Mse1) ENRMSE P(Msel)
Method 1 0.1776 0.0 0.1208 0.0 0.1011 0.0
Method 2-1 1.0011 1.0 0.2279 1.0 0.1519 1.0
Method 2-2 0.7502 1.0 0.3235 1.0 0.1281 1.0
Method 2-3 0.2451 1.0 0.1450 1.0 0.1163 1.0
Method 3 0.1776 0.0 0.1208 0.0 0.1011 0.0
Proposed 0.2204 0.09 (44,3,3,0)* 0.1208 0.0 (50,0,0,0)* 0.1107 0.04 (47,2,1,0)*

* The number in parentheses represents the number of surrogates selected from 50 repetitions, in the following order: SF surrogate, the set of ensemble combination-
based MF surrogates added one by one based on the basis ranking, and the hierarchical-based MF surrogate.

Table 6
Performance comparison results for P3.
ngr = 4 ngg =5 nyg =6
ENRMSE P(Mse)) ENRMSE P(Mgep) ENRMSE P(Mgep)
Method 1 0.1579 0.0 0.1135 0.0 0.0478 0.0
Method 2-1 8.886 x 10° 1.0 4.37 x 10°° 1.0 4.05 x 10° 1.0
Method 2-2 8.881 x 10° 1.0 8.57 x 10°° 1.0 1.34 x 10° 1.0
Method 2-3 0.759 1.0 0.0517 1.0 0.0068 1.0
Method 3 0.1554 0.47 0.1121 0.07 0.0478 0.0
Proposed 8.886 x 10° 1.0 (0,0,50,0)* 4.37 x 10°® 1.0 (0,0,50,0)* 4.05 x 10 1.0 (0,0,50,0)*

* The number in parentheses represents the number of surrogates selected from 50 repetitions, in the following order: SF surrogate, the set of ensemble combination-
based MF surrogates added one by one based on the basis ranking, and the hierarchical-based MF surrogate.

based MF models using yir,1, yir,2, and HF data sequentially. According information is not known in advance, and the numerical results in all
to M results, the majority of cases involve constructing MF surrogates cases indicate that Method 1 outperforms Methods 2-1, 2-2, and 2-3.
using only y;r2 as the LF data source (25, 26, and 20 out of 50 cases in This aligns with the problem’s characteristics, where it is more advan-
each respective scenario), or building MF surrogates by hierarchically tageous not to use all LF sources. Method 3 effectively differentiates the
combining yir 1, Yir,2, and HF data in sequence (23, 24, and 28 out of 50 use of LF data sources and produces results nearly identical to Method 1.
cases in each respective scenario). In other words, the proposed method The proposed method, with a p value close to 0 in all cases, does not use
adaptively utilizes LF models, effectively distinguishing useful LF in- any LF sources, yielding results similar to Methods 1 and 3. This shows
formation and achieving superior performance. that the proposed method selectively avoids using LF sources when they
Secondly, the performance results for P2 are shown in Table 5. In this are not informative.
case, it is also assumed that npg is sufficient, and the six methods are Thirdly, the performance results for P3 are listed in Table 6. In this
evaluated as nyp increases. The main feature of this problem is that case, nr is also assumed to be sufficient, and the six methods are eval-
neither y;r 1 nor yir 2 (i.e., any LF data source) are beneficial to yyr. This uated as nygr increases. A key feature of this problem is that while the

10
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Table 7
Performance comparison results for P4.
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dm = 2, ngp = 10

dm = 2, ngp = 10

dm = 2, ngp = 10

nir = (40, 40) nir = (40, 20) nir = (20, 40)
ENRMSE P(Mser) ENRMSE P(Miep) ENRMSE P(Msep)
Method 1 0.0806 0.0 0.0806 0.0 0.0806 0.0
Method 2-1 0.0161 1.0 0.0211 1.0 0.0877 1.0
Method 2-2 0.0495 1.0 0.0484 1.0 0.0877 1.0
Method 2-3 0.0339 1.0 0.0319 1.0 0.0709 1.0
Method 3 0.0244 0.47 0.0244 0.47 0.0721 0.47
Proposed 0.0163 0.84 (0,16,25,9)* 0.0194 0.85 (0,15,21,14)* 0.0322 0.93 (0,7,6,37)*

* The number in parentheses represents the number of surrogates selected from 50 repetitions, in the following order: SF surrogate, the set of ensemble combination-
based MF surrogates added one by one based on the basis ranking, and the hierarchical-based MF surrogate.

Table 8
Performance comparison results for P5 and P6.

dm = 4, ngg = 16
nir = (60, 60, 120, 120)

dm = 6, ngp = 24
ne = (120, 120, 120)

ENRMSE P(Mse) ENRMSE P(Mser)
Method 1 0.1086 0.0 0.1215 0.0
Method 2-1 0.0917 1.0 0.0732 1.0
Method 2-2 0.1113 1.0 5.0407 1.0
Method 2-3 0.0809 1.0 0.0830 1.0
Method 3 0.0817 0.22 0.0909 0.23
Proposed 0.0808 0.53 0.0731 0.83

(0,18,14,12,6,0)* (0,6,13,31,0)*

* The number in parentheses represents the number of surrogates selected from
50 repetitions, in the following order: SF surrogate, the set of ensemble
combination-based MF surrogates added one by one based on the basis ranking,
and the hierarchical-based MF surrogate.

Table 9
Performance comparison results for P7 and P8.

dm = 8, nyp = 32
nir = (160, 160)

dm =12, nyr = 48
nir = (120, 240)

ENRMSE P(Mge1) ENRMSE P(Mse))
Method 1 0.0153 0.0 0.1502 0.0
Method 2-1 0.0068 1.0 0.1229 1.0
Method 2-2 0.0260 1.0 0.1233 1.0
Method 2-3 0.0089 1.0 0.0960 1.0
Method 3 0.0105 0.46 0.0958 0.50
Proposed 0.0055  0.82(0,18,3,20)*  0.0904  0.74 (0,26, 3,21)*

* The number in parentheses represents the number of surrogates selected from
50 repetitions, in the following order: SF surrogate, the set of ensemble
combination-based MF surrogates added one by one based on the basis ranking,
and the hierarchical-based MF surrogate.

correlations between yyrp and y;r 1, as well as between yyr and yyr o, are
relatively weak, combining y;r 1 and y;r 2 results in a strong correlation
with ygr. Generally, this information is not known in advance. Under
these circumstances, the numerical results indicate that the three
Method 2 approaches outperforms Method 1 in nearly all cases. This
finding aligns with the characteristics and trends associated with prob-
lems where utilizing all LF sources is advantageous. Method 3 exhibits
performance similar to that of Method 1, as it fails to effectively
distinguish the use of LF data sources and, even if it could, fundamen-
tally does not consider the combination of LF data sources. The proposed
method incorporates all LF sources, thereby yielding results identical to
those of Method 2-1. Furthermore, the p value obtained from the pro-
posed method is 1 in all cases, indicating that the final model selected
utilizes all LF sources. Notably, the proposed algorithm identifies the
ensemble combination-based MF model — corresponding to the third
column of Mg — as the optimal surrogate for this problem, rather than
the hierarchical combination-based model in the fourth column. This
result demonstrates the effective applicability of the proposed method.

Fourthly, the performance results for P4 are presented in Table 7. In

11

these numerical examples, nyr is fixed at 10, while the combinations of
nir are varied to compare the performances of the six methods. A key
characteristic of both problems is the strong correlation between yyr and
Yyir,1, while the correlation between yur and yir 2 is relatively weak.
Additionally, there is a slight correlation between y;r; and yir 2. This
implies that the fidelity levels can be distinguished in the increasing
order of yir 2, Yir,1, and yur, though this prior knowledge is assumed to
be unknown beforehand. As listed in Table 7, when nf is 40 for both LF
sources, the three Method 2 approaches and the proposed method yield
more accurate results than Method 1, indicating that LF sources provide
useful information. Moreover, when nyr is (40, 20), the accuracy de-
creases compared to the previous case, but the three Method 2 ap-
proaches and the proposed method still perform similarly and better
than Method 1. However, when n;r is (20, 40), Methods 2-1 and 2-2
perform worse than Method 1, while the proposed method continues to
deliver the best results among the six approaches. This implies that y;r o
provides detrimental information to yyr, and the superior performance
of Methods 2-1 and 2-2 over Method 1 in the earlier cases is due to y;z,;.
Thus, it can be confirmed that y;r; has a more positive influence on yur
than y; g ». Specifically, when ny is (40, 20), nyr for yi5 is sufficient to
mitigate the negative impact of yir 2. In addition, the performance of
Method 3 is superior to Method 1 since it selects a single LF data source;
however, overall, its superiority compared to the three Method 2 ap-
proaches appears unclear. This is because, as previously explained,
Method 3 does not take into account decisions regarding the selective
usage of LF data sources or the methods for combining them. However,
the proposed method identifies yyr as the highest-fidelity source, fol-
lowed by y1r,1 and yir,2, based on the inferred fidelity ranking. It then
considers the use and combination of all sources to generate multiple
candidate surrogates and selects the optimal surrogate that outperforms
traditional approaches. In the proposed method, yir,1 is used in all cases
as a mandatory source, as indicated by the first column of Mg being
0 across all scenarios. Notably, when niz is (20, 40), the hierarchical-
based MF model using y;r 2 as the lowest LF source is predominantly
selected as the final surrogate (37 times out of 50), which corresponds to
the fourth column of Mge). This can also be easily inferred from the fact
that p of the proposed method, like p of the three Method 2 approaches
when using all LF data sources in an ensemble manner, approaches
nearly 1, but the proposed method still demonstrates superior perfor-
mance over the three Method 2 approaches. These results highlight the
flexibility of the proposed method in handling varying LF sample sizes
and effectively utilizing LF sources.

Lastly, additional numerical experiments were conducted on various
test problems. The results for P5 and P6 are presented in Table 8, and the
results for P7 and P8 are presented in Table 9. As indicated, the NRMSE
values for the proposed method are consistently lower than those of
existing approaches, highlighting the enhanced accuracy of the pro-
posed surrogates. This enhanced performance is due to the adaptive
utilization of LF sources and the effective combination strategies
employed. Furthermore, these results imply that the proposed approach
can at least serve as a useful guideline when it is unclear how to utilize
all available LF data.
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In summary, the proposed AQBMF surrogate framework is demon-
strated to be a decision-making algorithm that adaptively and effectively
selects LF sources and combination strategies to create a flexible sur-
rogate. Notably, when there is no prior information about which LF
models are helpful to the HF model or the accuracy levels among the LF
models, the proposed method shows a stronger impact. Therefore, it can
be concluded that the proposed AQBMF method is superior to existing
methods based on the numerical results.

4.3. Real-world engineering example

This section validates the performance of the proposed method using
a real-world engineering problem [46-48]. This engineering example
reflects a common scenario encountered in real-world industrial set-
tings, where the objective is to maximize the use of existing databases
when designing and developing new products under a limited budget.
The selected application is a vehicle model, which is typically optimized
with respect to various performance criteria, including mass, bending
stiffness, torsional stiffness, and natural frequency [47]. Among these,
this study focuses on torsional stiffness, which is widely regarded as one
of the most critical performance metrics in the optimization process
[471, as it plays a key role in both vehicle handling and structural
integrity. Fig. 7 presents three distinct finite element models of a vehicle,
along with their corresponding boundary and loading conditions, and
their specifications are summarized in Table 10. Given the limited
computational budget of the HF model, the objective of this numerical
test is to construct the most accurate surrogate model by maximizing the
utilization of available LF data sources.

In this test, there are one HF model and two LF models. The HF
model, as shown in Figs. 7(a) and (b), is a shell element-based finite
element model of a car with model type A. As shown in Fig. 7(c), the LF
model I is created by simplifying the HF model, which is composed of
shells, into a beam-based model [49], significantly reducing the degrees
of freedom. The beam cross-section is assumed to be rectangular, with
the width reflecting the shell’s geometry and the height approximated
by the shell thickness. In other words, the model type remains the same,
but the mesh types differ significantly, as listed in Table 10. LF model II,
on the other hand, is a reference model that also uses shells but has a
different model type from the HF model, as shown in Fig. 7(d). This
reference model was previously developed for model type B, and has

Roof bar (¢,) Rear bar (z,) X«_iz
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degrees of freedom comparable to those of the HF model, as listed in
Table 10. LF model I has only 570 degrees of freedom and is extremely
fast to analyze, with all 280 samples generated in less than a few sec-
onds. LF model II consists of previously computed results stored in a
corporate database, requiring no additional computation. Accordingly,
both LF datasets are either cost-free or computationally negligible, and
thus their cost was not considered in the analysis.

All finite element models are primarily made of steel, with a Young’s
modulus of 210 GPa, a Poisson ratio of 0.3, and a density of 7.89 x 10
kg/mm?3, respectively. The inputs for the surrogate models are the shell
thicknesses of seven structural components, as illustrated in Fig. 7: the
A-pillar, B-pillar, C-pillar, roof bar, floor bar, forward bar, and rear bar.
The output is the torsional stiffness of the vehicle, defined as the applied
torque divided by the resulting relative twist angle. It can be expressed
as

T (FxL)

Yrs = =
TS (tan—l (ﬁleﬂ(t)‘:‘sﬂghl(t)) )

where y7s is the torsional stiffness, T denotes the torque applied to the
front suspensions, Org is the resulting twist angle, t represents the shell
thicknesses of the seven components, F is the vertical force on the frontal
suspension supports, L is the lateral distance between the suspension
supports, Sefi(t) and dyigne(t) are the vertical displacements at the left and
right loading points, respectively, obtained via finite element analysis.
The lower and upper bounds of t are 0.5 mm and 5.0 mm. The applied
torque T is 2000 Nem. The values of L for the HF model, LF model I, and
LF model II are 1124 mm, 997 mm, and 1138 mm, respectively. Natu-
rally, the corresponding forces F are 1778.8 N, 2005.9 N, and 1770 N,
respectively, based on previous studies [46,47]. Furthermore, the
number of samples obtained from LF model I and LF model II is set to
280 and 70, respectively, while three cases are considered for the
number of samples from the HF model with values of 7, 14, and 28, as
represented in Table 10. Therefore, the datasets Dy, Dir,1, and Dyg 1 are
constructed, with the subscripts representing their respective sources. In
this situation, the proposed algorithm determines which information
from the two LF models is beneficial for supporting the HF model. In this
study, the HF model is analyzed using the commercial finite element
analysis (FEA) software OptiStruct [50], while the two LF models are
analyzed using our in-house MATLAB codes.

12)

Fig. 7. Finite element models of the vehicle: (a) HF model (isometric view), (b) HF model (bottom view), (c) LF model I (isometric view), and (d) LF model II

(isometric view).
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Table 10
Information on finite element models.
Model type Mesh type Analysis type The number of samples Degrees of freedom Comments
HF model A Shell Torsion 7/14/28 2,190,874 Original model
LF model I A Beam Torsion 280 570 Simplified model
LF model IT B Shell Torsion 70 648,478 Reference model

Table 11
Performance comparison results for the engineering example.
NyE™ Importance ranking" Final MF combination™™ ENRMSE
Method 1 7 - Dyr 0.2181
14 0.08392
28 0.04249
Method 2-1 7 - (Dt + Dipn) —Dyp 0.1360
14 0.07947
28 0.04916
Method 2-2 7 - (Dir + Dipm) —Dyr 1.7773
14 0.06304
28 0.05378
Method 2-3 7 - (Dugs + Digp) —Dur 0.22801
14 0.06301
28 0.05225
Method 3 - - - -
Proposed 7 (Dig,i, Digy) (Dig;1 + D) —=Duyr 0.1360
14 (DLF,IL DLF,I) DLF,I —>DLF,H —Dyr 0.05608
28 (Dvr,i, Dig,D Dyr 0.04249

* Since all LF information is assumed to be given, all nyr values are the same.

respectively.

Table 11 presents the results of surrogate models created using both
existing and proposed methods for the engineering problem. As listed in
Table 11, when ngg is 7, the performance varies across the methods.
When nyp is 14, Methods 2-1, 2-2, and 2-3 show higher accuracy than
Method 1, whereas when nyg is 28, Method 1 outperforms Methods 2-1,
2-2, and 2-3. This indicates that LF information is helpful when nyp is
small, but the contribution of LF information diminishes as nyg in-
creases. In addition, Method 3 cannot be applied because there are no
common sample points between the original LF data and the HF data,
which means that Method 3 is impractical. In contrast, the proposed
method produces results that are as accurate as or more accurate than
the existing methods in all cases, as indicated by its lower NRMSE
values. Specifically, the proposed method identifies D;gy; as more sig-
nificant information than Dig for all cases, indicating that LF model II

LF data sources are listed in order of importance from the most important (left) to the least important (right).
*** Final combination process is represented, where the plus (+) and arrow (-) indicate the ensemble and hierarchical combination approaches,

provides more useful information for the HF model than LF model I. This
inference is also supported by the global sensitivity analysis shown in
Fig. 8, where the overall trend of the Sobol’ indices [9] for the HF model
is more closely aligned with that of LF model II than with LF model I. In
other words, the type of elements has a greater impact than the type of
models in this problem. Based on the estimated quality levels of the LF
data sources, the proposed method adaptively selects the best surrogate,
whether it is the ensemble-based MF, hierarchical-based MF, or SF
surrogate, as the number of HF samples increases to 7, 14, and 28,
achieving consistently accurate results. In the future, if a more experi-
enced expert refines LF model I, its relative importance may increase,
allowing for more varied results through comparison with LF model II.
In conclusion, the proposed AQBMF method demonstrates its capability
as a flexible data-driven decision-making algorithm that maximizes the

o
~
T

Total Sobol' indices
o =
[\ (9%}
T T

o
i
T

Emz EmD llﬂ

I-H

.

A-pillar B-pillar C-pillar

Roof bar

Floor bar Forward bar Rear bar

Fig. 8. Global sensitivity analysis results for the three engineering models.
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utilization of multiple LF data sources to enhance surrogate model
performance compared to existing methods.

5. Conclusions

This study presents a new paradigm, the AQBMF surrogate frame-
work, designed to effectively utilize multiple LF data sources with un-
known fidelity levels. The proposed method is particularly
recommended for situations where multiple LF data sources with un-
defined fidelity levels are available, but there is uncertainty about which
sources to select and how to combine them. The core idea of the pro-
posed method is to interpret the quality level of LF data sources as the
relative significance of basis functions in the surrogate model. Based on
this idea, the proposed approach systematically builds the best surrogate
in four stages, adaptively selecting LF data sources and MF combination
methods. The first stage is to construct the augmented MF formulation,
in which all basis functions are initially assigned equal importance. The
second stage is to assess the importance of LF surrogates using the
proposed MF basis screening strategy. The third stage is to build
promising candidate surrogates based on the estimated ranking of LF
surrogates. The last stage is to select the best surrogate among the
candidate surrogates. The numerical results confirm that the proposed
method not only adaptively utilizes the LF data sources but also
appropriately employs the MF combination method. The first numerical
results demonstrate the flexible application process of the proposed
approach step-by-step through a 1D example. The second numerical
results verify that the performance of the proposed method outperforms
that of conventional methods through various benchmark test functions.
The final numerical results show that the proposed data-driven decision
algorithm generates a more accurate surrogate than other approaches in
the same computational efficiency setting using a real-world engineer-
ing example.

Appendix A. Implementation details

Advanced Engineering Informatics 69 (2026) 103973

In the future, each sub-stage of the proposed framework could be
replaced or integrated with more advanced techniques, further
enhancing overall performance. For instance, a new metric could be
developed to more precisely assess the utility of LF sources even with a
limited number of HF data points. Moreover, the proposed AQBMF
method is expected to be extended to achieve more robust performance
in problems where strong nonlinear correlations exist between LF and
HF models [51,52]. Finally, the proposed method will be incorporated
into sequential sampling processes (e.g., Bayesian optimization) to
further broaden its applicability [53].
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In this section, the two implementation details necessary for generating fair and reliable numerical results are provided. The methods employed in
constructing the surrogates and the procedures for calculating the PCC metrics are explained sequentially.

Firstly, scaling techniques are used to mitigate potential performance degradation in the surrogate model caused by variations in the ranges of
design variables. In this study, standardization techniques [4] are applied to both inputs and outputs. The hyperparameter range for the Gaussian
spatial correlation function is set to [10’6, 10%] [4,12], and the pattern search algorithm is employed with various initial points to estimate the
hyperparameters [4,12]. In this study, all surrogates are constructed using our in-house MATLAB codes, referring to Ref. [54].

Secondly, raw data-based and prediction-based PCC metrics [16] are computed as

_ ommon ‘ommon
T = feorr <Y§,LF ) YE,HF )

and

r :fcorr (YLF7 YMF)
respectively, where Pearson correlation function feq,, represented as

21 (Ya — Ya) (Ys, — Yp)

S (v R ¢ S (o0

fcorr(YA7 YB) =

13

14

(15)

where Y, and Yy are output sets of n sampled points from each data group, with the upper bar indicating the mean of the respective sets. In addition,
Ygf’f;m and Y " are the outputs for sampled common LF and HF inputs, respectively, and ?LF( = Y1r(Sp)) and ?Mp( = Yur(Sp)) are the predicted

values for LF and MF surrogates over the entire design area, respectively, where Sp, represents the sample points over the entire design domain. In this
study, Sp is generated using LHS with a sample size that is 100 times the number of design variables. In particular, when obtaining PCC for the

candidate ensemble combination-based MF surrogates in Section 3.2.3, faug(x)Tﬁaug and y(x) in Eq. (7) are used for calculating Yir and Yy,

respectively. This is because the sum of the weighted LF information (i.e., f,, (x)Tﬁaug) reflects the trend of the MF surrogate.

14
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Thirdly, the NCVE value (i.e., excyve) [55], especially for leave-one-out error, is calculated as

1 NHE - 2
) ()’} —J'—j(SHF.j)>
A 16)
ENevE = maX(YHF) — min(YHp) (

where Syp and Yy are the inputs and outputs of HF data, respectively; nyy is the number of HF data; yj is the output of Sygj; ¥ (SHF J-) is the predicted
HF output of Syrj from the surrogate built without Syrj and yj; max(Yyr) and min(Yyr) are the maximum and minimum outputs of the observed HF
data, respectively.

Appendix B. Computational complexity of the proposed method

This section discusses the computational complexity of the proposed method. To obtain a rough estimate in Big-O notation, assume that there are
Ng LF sources, each with nj g samples, and that the HF dataset has nyr samples. Under these assumptions, the computational complexity of conven-
tional EHK is Ns x O(nd;) + O(njp), because each LF surrogate is trained once and then calibrated with the HF data. In the proposed method, four
stages are considered, as mentioned earlier in Section 3.2. In Stage 1, N LF surrogates are constructed, thereby requiring a computational complexity
of Ng x O(nfy). Stage 2 requires N5 x O(nd;) for basis screening. The dominant cost comes from computing NCVE for the N basis functions, which can
be efficiently evaluated via the inversion of partitioned matrix [36]. In Stage 3, (2 + Ns) candidate surrogates are systematically constructed as listed
in Table 12, yielding a computational complexity of (2 + Ns) x O(ng;). In addition, the computational cost of Stage 4 is negligible since all key metrics
required to select the best surrogate have already been computed in Stage 3. Therefore, the total computational complexity of the proposed method is
Ng x O(ndp) + (2+ 2Ng) x O(ndy). Here, given that nyy is generally small, the influence of the additional (2Ns) x O(ng;) in the proposed method
decreases as npr increases relative to ngr. However, when the importance ranking of the basis functions is unknown and all possible cases are
considered, the advantage of the proposed method becomes more evident. Specifically, as indicated in Table 12, if all combinations are considered, the
computational complexity becomes Ng x O(nf;) + (Ns! +2%) x O(nd;), so (Ns! + 2M) x O(nf) term can no longer be ignored. The detailed counts
for each combination are presented in Table 12, and the comparison is visualized in Fig. 9. These results show that while the number of candidate
surrogate combinations in all cases increases factorially with respect to Ng, the proposed method increases linearly, making it much more efficient. In
other words, when the importance of the LF basis functions is not given, exploring all possible cases makes the computation almost prohibitive due to
the exponential increase in the number of combinations.

Table 12
The number of candidate surrogate combinations when LF source # = Ng (Ng > 2).
Conventional All Proposed
SF surrogate - 1 1
Hierarchical-based MF surrogate — Ng! 1
Ensemble-based MF surrogate 1 oNs_ 1 Ns
(=nsC1 + nsC2 +... + nsChs)
Total 1 Ng! + 2 2+ Ns
1 07 T T T T T T T T
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Fig. 9. Comparison of candidate surrogate combinations with respect to the number of LF sources (logarithmic scale on y-axis)

Appendix C. Conventional MF dataset selection algorithm
This section explains the conventional MF dataset selection algorithm [16,19], which can be summarized as follows:
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(1) Select the LF data source with the highest |r| value from the available LF data sources.

(2) If the chosen |r| exceeds the predefined threshold rmy;n, designate the corresponding MF surrogate as the best model. Otherwise, select the SF
surrogate as the best model.

Appendix D. Benchmark test functions

The benchmark test functions used in this study are adopted or modified from Refs. [28] and [55] and their expressions are summarized in
Table 13.

Table 13
Formulations of the analytical test functions.
Test function # Expression
Test function 1 Yur(x) = sin(x) + 0.2x + (x — 5)%/16 + 0.5

Yir1(x) = (x — 0.5)(x — 4)(x — 9)/20 + 2
Yir2(x) = sin(x) + 0.2x + 0.5
x [0, 10
Test function 2 Yur(x) = (6x — 2)2sin(12x — 4)
yir1(x) = (x —0.5)(x —4)(x —9)/20 + 2
Yirz2(x) = (cos(18x)(2x* — 1) )/15
xelo, 1!
Test function 3 yir(x) = 0.4(6x — 2)%sin(12x — 4) + 10(0.4x% + 0.1x> + 0.2x + 0.2)
Yir1 (%) = 0.4(6x — 2)%sin(12x — 4) + 4x° — 10e*
Yir2(x) = 9(0.1x* + 0.2x + 0.2) + 8¢"
xelo, 1!
Test function 4 Yir(x) = 43 — 2.1x] +x3/3 + X105 — 4% + 4x}
Yiea(x) = yur(0.7x1, 0.8x2) + x1x2 — 65
Yir2(x) = yur(0.8x1, 0.6x2) —x‘l' +32

xe[-2, 2]
Test function 5 dm X2 dm X;
i (x) = Zi:l 2000~ 11iea©08 (ﬁ) +1

dm . (X
Yiri(x) = Hi:1xism (ﬁ) +1
dm X2 dm Xi
yLF,z(x) = Zi:l? - Hi:lcos <\71) +1

dm X2 dm Xi
Yra(0) =Y 3 2000~ ileUS(f) +1

dm  x? dm Xi
Yira(x) = Zf:lZOLOO —1],.,0-2cos (z) +1
xe[-2 2]*
Test function 6 yur(x) = [100(x5 — x2) + (x1 — 1)% + 100 (35 — x2)* + (x5 — 1)? + 100 (x4 — x2)% + (x5 — 1)2

+100(xs — x2)% + (g — 1)% +100(x6 — 22)* + (x5 — 1)%]/100000

Yir1(X) = [(x3 4+ 50x3) + (x§ +50x3) + (x§ +50x3) + (x +50x3) + (xg¢ + 50x2) | /100000
Yir2(x) = Zg’-’ﬂz

2
Yirs(x) = Zfiﬁ - :1:"1 cos (%) +1
xe[-5, 10°
Test function 7 Yir(X) = Yub (%) + 0.013 x5 -+ X137 /X331 X6 /X2 +33X4
Yir1 (%) = 0.01x3xg + X17 /X3-+X1X6 /X2 +X3X4
Yir2(%) = 0.0001ygup (X) + X1X5 /4% + X1Xg /X4 + X3%7
where ygu (X) = 2mx3 (x4 — x6)/ (log(x2/x1) (1 + 2X7X4) /l0g (2 /%1 )X7 X8 ) + X3 /X5 )
x1 € [0.05, 0.15]; x5 € [100, 50000];x3 € [63070, 115600];
x4 € [990, 1110]; x5 € [63.1, 116];x5 € [700, 820];
x; € [1120, 1680]; x5 € [9855, 12045];

i dm/4
Test function 8 yur(X) = Zi:l [(Xm‘fs + 10x4-2)% + 5(ai1 — xa1)? + (Xai2 — 2xa-1)* + 10(xai_3 — X4i)4]

Yir1(x [ Xai3 + 1045 2)% + 5(x4i1 — Xa1)? + (Xai2 — 2Xgi1)* + 8(xai_3 — X4i)4}

dm/4
)= Zi—l (

dm/4
Yir2(x) = Z:l/ [(Xm;s + 10){41‘:2)2 + 4(x4i-1 — X4i)2 + (Xai-2 — 2X4i71)4 + 5(x4i-3 — X4i)4}

xe[-5, 5"
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