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A multiobjective, reliability-based design optimization method for computationally intensive problems is pro-
posed. In this method we use a genetic algorithm to facilitate the multiobjective optimization. To further improve
the convergence of the genetic algorithm, we augment it with a local search. Reliability analysis is performed using
Monte Carlo simulation. Quadratic design response surfaces are utilized to filter the noise from the Monte Carlo
simulation and facilitate the multidisciplinary design optimization. In addition, response surface approximations
greatly reduce the computational cost. To improve the accuracy of probability computation in the regions of low
probability of failure and to provide useful information for the optimization, oprobabilistic sufficiency factor is used
as an alternative measure of safety. To demonstrate the capabilities of this approach, we employ it to optimize the
NASA rotor67 transonic blade. Numerical results show that with this proposed approach we can obtain a reliable
design with better aerodynamic performance and less weight. Error analysis is also reported so that readers can
understand not only the advantages but also the disadvantages of this approach.

I. Introduction

F OR decades, researchers have used optimization techniques to
improve engine performance. Some focus on a specific disci-

pline; others involve multiple disciplines. For instance, Oyama et al.1

minimized the entropy generation of the NASA rotor67 blade;
Benini2 improved the total pressure ratio and the adiabatic effi-
ciency of the NASA rotor37 blade; Mengistu and Ghaly3 performed
multipoint design of compressor rotors to improve their aerody-
namic performance; Lian and Liou4,5 performed multidisciplinary
and multiobjective optimization of the NASA rotor67 blade with a
coupled genetic algorithm and response surface technique. In this
work, no consideration was given to the uncertainties or random-
ness arising from shape design variables and material properties.
For engine design, however, uncertainties and randomness exist in
shape design variables and material properties. To ensure robust and
reliable designs, we need to account for these uncertainties and this
randomness in the optimization procedure.

Reliability-based design optimization (RBDO) is such a tech-
nique used to investigate uncertainties in design. It provides not
only the performance value but also the confidence range. How-
ever, when computationally demanding models are involved, as
commonly encountered in engineering practice, the application of
RBDO is limited by the large number of analyses required for un-
certainty propagation during the design process. To overcome this
limitation, several alternatives with various degrees of complexity,
such as moment-based methods6,7 and the Monte Carlo simulation
technique (MCS), have been proposed. Moment-based methods are
relatively efficient because they approximate the performance mea-
sure at the most probable point using linear or quadratic functions.
In general, accuracy is a concern when the performance function
exhibits highly nonlinear behavior. It has also been pointed out that
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these methods are not well suited to problems with many compet-
ing critical failure modes.8 Monte Carlo simulation technique is a
simple form of the basic simulation; it provides a useful tool for eval-
uating the risk of complex engineering systems. It has been widely
used in reliability analysis because of its simplicity and robustness,
but it requires a large number of analyses for an accurate estimation
of the probability of failure, especially when the failure probability
is small. In addition, Monte Carlo simulation can produce noisy
responses.8

We propose an approach to these challenges that stems from
RBDO applications. In this method, we use the MCS as the proba-
bility algorithm. We use a design response surface to filter the noise
from Monte Carlo simulation. Response surface approximation also
serves to reduce the computational cost involved. A probabilistic
sufficient factor is used in lieu of probability of failure to improve
the accuracy in regions of low failure probability and to provide
information for the optimization process. A genetic algorithm aug-
mented with a local search is used as the optimization algorithm.
This method is employed to perform RBDO of the NASA rotor67
compressor blade.

This paper is structured as follows: in the first part, we intro-
duce the random variables involved in the design and formulate
the reliability-based design optimization problem; in the second
part, we give a brief introduction of the key components, which
include Monte Carlo simulation, probabilistic sufficient factor, re-
sponse surface approximation, and fluid/structural solvers; after all
these components are introduced, we outline the optimization pro-
cedure. In the numerical analysis, we first present the optimization
results and then discuss the numerical errors involved and give a
quantified estimate.

II. Problem Formulation
The studied rotor, NASA rotor67, is a low-aspect-ratio design

rotor and is the first-stage rotor of a two-stage fan.9 As shown in
Fig. 1, the rotor has 22 blades. Based on the averaged span and
root axial chord, the rotor has an aspect ratio of 1.56. The inlet
and exit tip diameters are 51.4 and 48.5 cm, respectively; the inlet
and exit hub/tip radius ratios are 0.375 and 0.478, respectively. The
rotor solidity, defined as the ratio of the chord length to the spacing
between two adjacent blades, varies from 3.11 at the hub to 1.29
at the tip. The rotor has a design pressure ratio of 1.63 at a mass
flow rate of 33.25 kg/s. The design rotational speed is 16,043 rpm,
which yields a tip speed of 429 m/s and an inlet tip relative Mach
number of 1.38. The square root of the mean square of the airfoil
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Table 1 Properties of Ti-6Al-4V, annealed (genetic)

Young’s Density, Poisson’s Endurance

Variable modulus, GPa kg/m3 ratio limit, MPa

Mean value 115 4470.5 0.34 547.5
σ 1.33 13.83 0.01 6.17

Fig. 1 Test rotor.

surface finish is 0.8 μm or better, and the airfoil surface tolerance
is ±0.04 mm.9

Lian and Liou5 performed deterministic design optimization for
this blade. Here we incorporate uncertainties into the actual design
problem and evaluate its probability of failure. In engineering de-
sign, the probability of failure is usually based on the maximum
stress failure criterion, which states that yielding (failure) occurs
when the von Mises stress exceeds the yield strength. The blade is
made of generic titanium (Ti-6V-4Al),9 whose properties are listed
in Table 1. We notice that the titanium yield limit is in the range
of 786–910 MPa, which is much higher than the mean response of
the maximum stress, 464 MPa. There is no design violation of the
structural constraint if the criterion is based on the yield stress and
a safety factor of 1.5. Furthermore, the blade experiences dynamic
force instead of static force. The use of yield limit makes the RBDO
less meaningful. For demonstrative purposes, the resistance is cho-
sen as the endurance limit that is the maximum stress or range of
stress that can be repeated indefinitely without failure of the ma-
terial. Now the failure criterion states that failure occurs when the
von Mises stress exceeds the endurance limit. In our study, the von
Mises stress is computed under the operating conditions.

Because the blade has a very good surface finish, the impact of the
randomness in shape manufacture can be tightly controlled. There-
fore, we treat design variables that parameterize the blade geometry
as deterministic variables. Later on, we will call them deterministic
design variables. The material density can be measured with good
accuracy and we treat it as deterministic. In our computation it is
set as 4510 kg/m3. The Young’s modulus is a random variable, too;
however, it does not change the value of the von Mises stress, and
we take its nominal value. Therefore, there are two random vari-
ables that will be factored into the RBDO: the Poisson ratio and
the endurance limit. We assume that they have normal distributions
around their means. Because a normal distribution, which is valid
from −∞ to +∞, lacks a physical interpolation, we consider the
random variable as belonging to a range bounded by its mean ±3σ .
Here σ is the standard variation. In the presence of uncertainties,
the maximal von Mises stress, S, and the endurance limit, R, are
random variables in nature. Their randomness is characterized by
their probability density functions, fS(s) and fR(r). The schematic
distribution functions of the endurance limit fR and maximum stress
fS are plotted in Fig. 2.

Fig. 2 Distribution functions of von Mises stress and endurance limit.

The multiobjective reliability-based design optimization problem
can then be defined as follows.

Minimize: W

Maximize: p02/p01

Subject to: Pf (R < S) ≤ Pt

|ṁ − ṁb|/ṁb < 0.05%

dL ≤ d ≤ dU (1)

where W is the blade weight; p02/p01 is the stage pressure ratio;
and Pf is the probability of failure, which is based on the maxi-
mum stress criterion. The criterion states that failure occurs when
the maximum stress S is larger than the resistance R. The variable ṁ
is the compressor mass flow rate; d is the vector of design variables
parameterizing the blade shape; and dL and dU are the lower and
upper bounds of the design variables. The aerodynamic objective
is to maximize the stage pressure ratio and the structural objec-
tive is to minimize the total structural weight. These two objectives
are competing. Improving one objective will jeopardize the other.
This conclusion sounds contradictory to some statements in mul-
tidisciplinary wing design, which state that a thinner wing usually
gives a better aerodynamic performance than a thicker wing. These
statements are usually based on the assumption that flow attaches
to the wing and is considered as inviscous. We study the transonic
compressor blade, which is characterized by shock–boundary in-
teraction and flow separation. The flow inside the compressor is
described by three-dimensional Navier–Stokes equations. A poten-
tial flow solver is not sufficient. In this multiobjective optimization
problem, instead of having a single optimal solution that is better
than all the others in terms of both objectives, our problem has a set
of compromise solutions, among which no solution is better than the
others in terms of both objectives. In the context of multiobjective
optimization, these compromise solutions are called Pareto optimal
solutions. The curve formed by joining these solutions is known as
the Pareto optimal front. This optimization is performed under two
constraints: the aerodynamic one is to maintain a comparable mass
flow rate as the baseline; the structural one is set so that the failure
probability, Pf , is less than a target threshold, Pt .

A new blade design is constructed by imposing a perturbation
blade upon the baseline rotor67 blade. We parameterize the per-
turbation blade instead of the baseline. To do that, we construct
perturbation airfoils at the four span locations (hub, 31%, 62%, and
tip). Each airfoil is defined by a mean camber line and thickness
distribution and is parameterized by a third-order B-spline curve.
The thickness distribution is determined by five design variables
and the camber by three. We linearly interpolate the four airfoils in
the spanwise direction and obtain a perturbation blade. Therefore,
we have 34 design variables in the optimization problem; among
them 32 design variables, which parameterize the blade geometry,
are deterministic and two variables are random.
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III. Monte Carlo Simulation
In reliability analysis, the first step is to decide on performance cri-

teria, random parameters, and functional relationships correspond-
ing to each performance criterion. Such a relationship can be written
as

Z = g(X1, X2, . . . , Xn) (2)

where Z represents the performance criterion, and Xi is the random
variable. The limit state is usually defined as Z = 0, which sets the
boundary between safe and unsafe regions in the random variable
space. If the failure event is defined as g < 0, then the probability of
failure Pf can be calculated as

Pf =
∫

· · ·
∫

g < 0

fX (x1, x2, . . . , xn) dx1 dx2 . . . dxn (3)

where xi is the instantiation of Xi , fX (x1, x2, . . . , xn) is the joint
probability density function (PDF) for the input random variables
X1, X2, . . . , Xn , and the integration is performed over the failure
region g < 0.

Estimating the probability of failure based on Eq. (3) is involved.
First, the joint probability density function does not have an explicit
expression and is usually unknown. Second, it requires multidimen-
sional integration over the failure region. When the failure region
is an implicit function of the performance criterion, the analytical
integration would be very difficult. Moreover, the numerical inte-
gration is also impractical for high-dimensional problems. A com-
monly used simple method in reliability integration is the Monte
Carlo simulation technique. The MCS has evolved as a powerful
tool for evaluating the reliability of complicated engineering prob-
lems. Typically, the Monte Carlo simulation technique consists of
the following six steps10: 1) formulating the problem in terms of
all the random variables; 2) qualifying the probabilistic character-
istics of each random variable in terms of its PDF; 3) sampling the
values of each random variable according to its probabilistic charac-
teristics; 4) evaluating the problem deterministically for each set of
realizations of all the random variables; 5) extracting probabilistic
information from these simulation cycles by counting the number
of failed samples; and 6) estimating the accuracy of the simulation.

With all the random variables assumed to be independent, the
MCS draws samples of the random variables according to their
PDFs and then feeds them into a criterion model to check whether
the criterion is satisfied. An estimation of the probability of failure
can be expressed as

Pf = N f /N (4)

where N is the total number of simulation cycles and N f is the
number of simulation cycles where failure happens. A simulation
cycle is defined as solving the problem deterministically for each
realization. The accuracy of MCS largely depends on the number
of simulation cycles. Its acceptance as a way to compute the fail-
ure probability depends mainly on its efficiency and accuracy. In
general, its estimation accuracy depends on the true probability of
failure and the number of simulation cycles. In a 95% confidence
interval, the percentage error between the true and estimated prob-
ability of failure can be estimated as follows:

ε% =
√(

1 − PT
f

)/(
N × PT

f

) × 200% (5)

where PT
f is the true probability of failure. In our problem we require

the probability of failure of the design to be less than 10−4. Based
on Eq. (5) we can estimate that the percentage error is 20% with
1 million simulation cycles. Therefore, there is a 95% probability
that the probability of failure estimated with the MCS will fall into
the range 10−4 ± 2 × 10−5 with 1 million simulations.

Fig. 3 Probability distribution function of the safety factor.

IV. Probabilistic Sufficiency Factor
Deterministic designs require a conservative safety margin to en-

sure design safety. Usually a nominal safety factor defined in the
following way is used:

nominal SF = RN /SN (6)

where SN and RN are the deterministic (nominal) values of the von
Mises stress and endurance limit, respectively. The SN is usually
below, whereas the RN is above, their respective mean values. The
central safety factor, which is the ratio of the mean values of R and
S, is also commonly used in deterministic design. However, these
measures may be not sufficient to provide information on design
reliability. For that reason, in reliability-based design, the reliability
can be expressed in terms of the probability of failure:

Pf (SF ≤ 1) ≤ Pt (7)

where SF is the safety factor, defined as the ratio of the resistance
to the maximum stress. The concept of probability of failure can be
further elaborated graphically. Figure 3 shows the schematic PDF of
the safety factor SF . The failure criterion states that failure occurs
whenever the resistance is less than the maximum stress, that is,
safety factor is less than 1. Thereupon, the probability of failure is
represented by the area under the curve left of SF = 1.

Direct use of probability of failure in RBDO problems may some-
times cause problems. For instance, the predicted failure probability
can change by several orders of magnitude. For problems with low
failure probability, the MCS predicts zero failure probability, which
does not provide useful information in the optimization procedure.
In addition, for a fixed number of simulation cycles, the error asso-
ciated with estimated probability of failure from the MCS increases
as the probability of failure decreases. Qu and Haftka11 compared
the probability of failure, safety index, and probabilistic sufficiency
factor (PSF) in the application to RBDO problems. They found that
the PSF did not suffer from accuracy problems in regions of low
probability of failure using the MCS and it provided a measure of
safety that could be used more readily than the probability of failure
or the safety index.

The concept of a probabilistic sufficiency factor was introduced
by Birger.12 For a RBDO problem with a known target failure prob-
ability Pt , the PSF is the solution to the following equation:

Pf (SF ≤ Psf) = Pt (8)

The process of finding the solution of PSF can be regarded as the
inverse process of computing the probability of failure, in which we
compute the failure of probability by integrating the area under the
curve to the left of SF = 1. Here we need to find the value of SF

such that the integrated area under the curve on the left of it is equal
to Pt . The concept can be better illustrated using Fig. 3. If Psf < 1,
the probability of failure of the design, which is the integrated area
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on the left of SF = 1, is larger than the target probability of failure,
which is the integrated area on the left of Psf, and thus the design
does not meet the safety requirement; if Psf > 1, the probability of
failure is less than the target one, and thus the design exceeds the
safety requirement; if Psf = 1, the design has a probability of failure
equal to the target one. Therefore, the following two expressions are
mathematically equivalent:

1 − Psf ≤ 0 (9)

Pf (SF ≤ 1) ≤ Pt (10)

However, Eq. (9) is advantageous in terms of accuracy. Based on this
discussion, we can use PSF in our RBDO problem and the problem
can be equivalently reformulated as follows.

Minimize: W

Maximize: p02/p01

Subject to: 1 − Psf ≤ 0 (11)

The constraints are kept the same as those stated in Eq. (1).
It is simple and straightforward to compute the PSF using the

MCS. Suppose we perform N simulation cycles using the MCS
around one design point, we compute the safety factor for each
cycle, and we sort the safety factor in ascending order and have the
following sequence:

{SF,1, SF,2, . . . , SF,i , . . . , SF,N }, SF,i − 1 ≤ SF,i (12)

If the target failure probability is Pt , then the PSF has the value SF,i ,
where

N Pt − 1 < i ≤ Pt N (13)

V. Reliability-Based Optimization Using Response
Surface Approximation

From our previous discussion we know that the MCS requires
a larger number of function evaluations to obtain a reasonably
good accuracy. With a target probability of failure of 10−4, it takes
1 million simulations to ensure percentage error less than 20%. If
these computations are exclusively based on the fluid solver and
structural solver, this will be extremely computationally extensive,
if not impossible. It takes about 694 days to evaluate this number
of cases using the structural solver on Intel Intanium processors at
1.3 Ghz. The use of approximation models is commonly practiced
to reduce the computational cost. Response surface models are built
to approximate computationally expensive problems, typically us-
ing low-order polynomials. The response surface model is normally
chosen to be a low-order polynomial. The second-order polynomial
is widely used due to its flexibility and ease of use. A second-order
response surface model with d variables can be written as follows:

y = β0 +
d∑

i = 1

βi xi +
d∑

i = 1

βi i x
2
i +

d∑
j = 2

j − 1∑
i = 1

βi j xi x j + ε (14)

where xi is the variable, β is the unknown coefficient, and ε de-
notes the total error, which is the difference between the observed
value y and the approximated value with the polynomial. Note
from Eq. (14) that the second-order response surface model con-
tains (d + 1)(d + 2)/2 coefficients. Consequently, the experimental
design used must contain at least that many distinct design points.

When deterministic analysis models such as computational fluid
dynamics (CFD) tools are used, a good experimental design tends
to fill the design space rather than to concentrate on the bound-
ary. We apply the Latin hypercube sampling algorithm13 to sample
the design points. This method tends to spread out the sampling
points as evenly as possible by determining an optimal even spacing.
Lian and Liou found that a 20–80% overdetermined design for the
second-order response surface model gave reasonably good results.4

Two popular response surface models in reliability-based design
are the analysis response surface (ARS) and the design response

surface (DRS).11 The ARS is fitted to the function in terms of both
deterministic variables and random variables, whereas the DRS is
fitted to the function exclusively in terms of deterministic variables.
In our studied problem the ARS is fitted to von Mises stress in
terms of the 32 design variables and the random variable Poisson
ratio. At each design point, the probabilistic sufficiency factor is
computed by the MCS based on the ARS. The DRS is fitted to
the probabilistic sufficiency factor in terms of the 32 deterministic
design variables only. The primary purpose of the DRS is to filter
the noise from Monte Carlo simulation. The objective functions and
the structural constraint are also approximated with second-order
response surfaces. As we will see in the next section, the use of
response surface approximation also facilitates the multidisciplinary
optimization.

VI. Fluid Solver and Structural Solver
A high-fidelity CFD tool, TRAF3D, is used to analyze aerody-

namics of the compressor blade. TRAF3D solves three-dimensional
Reynolds-averaged Navier–Stokes equations. The space discretiza-
tion uses a second-order cell-centered scheme with eigenvalue scal-
ing to weigh the artificial dissipation terms. The system of equa-
tions is advanced in time using an explicit four-stage Runge–Kutta
scheme. The two-layer eddy-viscosity model of Baldwin and Lomax
is used for the turbulence closure. Details about the implementation
of TRAF3D and its capability can be found in the work of Arnone
et al.,14 Arnone,15 and Lian and Liou.4,5 The computational grid
with three blades is shown in Fig. 4. In our simulation we com-
pute only one passage and apply periodic boundary conditions to
the others. We use 0.6 × 106 nodes to model a single passage. With
Intel Intanium processors at 1.3 Ghz the turnaround time is 1 h for
a simulation.

We model the blade with quadrilateral plate elements, which are
commonly used for modeling plates, shells, and membranes. We use
the commercial software ANSYS to perform static structural anal-
ysis. In each element, we assume element-constant thickness and
element-constant pressure. By doing this we avoid zero-thickness
elements at the leading and trailing edges. The blade is structurally
fixed at the hub. Therefore, the nodes at the hub are fully constrained.
Each node has three translational degrees of freedom and three ro-
tational degrees of freedom.

The multidisciplinary design optimization approach for compres-
sor blade using high-fidelity analysis tools is presented in the work
of Lian and Liou,16 where a jig-shape approach is adopted to build
the compressor blade so that the structural deformation will bring

Fig. 4 Structured grid for single passage with 6.0 × 105 nodes.
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the blade to its desired shape. By doing so the structural deforma-
tion on the aerodynamic performance is corrected.17 The jig-shape
approach greatly simplifies the multidisciplinary design process be-
cause now we only need to transfer the aerodynamic forces from
the CFD grid to the finite element grid. The transfer of aerody-
namic forces is a little bit involved because it is necessary to ensure
that the interpolation is consistent and conservative. A thin plate
interpolation method18 is adopted for that purpose. The thin plate
interpolation is derived based on the principle of virtual work; it
automatically guarantees the conservation of energy between the
flow and the structural systems.19 A grid sensitivity test is also per-
formed and a grid with 2401 elements gives a satisfactory results and
is adopted. The structural system has 14,700 degrees of freedom.

VII. RBDO Procedure
We summarize the procedure of the RBDO as follows:
1) Sample design points based on both deterministic design vari-

ables and random variables with Latin hypercube sampling.
2) Evaluate the design points with the high-fidelity analysis tools.
3) Construct the ARS model for the maximum stress based on

both the deterministic design variables and random variables.
4) Perform Monte Carlo simulations based on the ARS to extract

the probability sufficient factor.
5) Construct the DRS of the objective functions and constraints

exclusively based on the deterministic design variables.
6) Perform multiobjective optimization using a real-coded genetic

algorithm.
7) Improve the convergence to the Pareto-optimal front with a

gradient-based method.
8) Choose representative Pareto-optimal solutions to validate

against the high-fidelity tools.

VIII. Numerical Results
In the problem described in Eq. (1) there are 32 deterministic

design variables and 2 random variables. The objective functions
and the aerodynamic constraint therein are only affected by the
deterministic design variables, whereas the maximum stress is af-
fected by both the deterministic design variables and one random
variable, i.e., the Poisson’s ratio. The random variable, endurance
limit, which is factored into the computation of probability suffi-
cient factor, does not influence the maximum stress. Therefore, our
sampling of design points is based on the 32 deterministic design
variables and the random variable Poisson ratio. The ARS built for
the maximum von Mises stress therefore has 33 variables and 595
unknown coefficients. With the Latin hypercube sampling we sam-
ple 1024 design points, representing a 61% overdetermined design.
These design points are evaluated using the aforementioned fluid
and structure solvers. The accuracy of the response surface approx-
imation is evaluated by statistical measures, including the adjusted
coefficient of determination (R2

adj) and the root mean square error
(RMSE) predictor. The adjusted coefficient of determination is more
comparable over models with different numbers of parameters by
using the degrees of freedom in its computation. It measures the
proportion of the variation accounted for by fitting means to each
factor level. Table 2 shows the test results. The value of R2

adj for the
maximal stress is 0.8369; the stage pressure rise has a value of R2

adj

larger than 0.98 and a %RMSE close to zero, indicating that the
quadratic response surface model gives accurate representations.

Monte Carlo simulation is performed based on the built ARS. One
million simulations are performed at each design point. At each de-
sign point we extract the probability of failure and probabilistic
sufficiency factor for the 1024 designs. Figure 5 shows the distribu-

Table 2 Statistical measures of the quadratic response surface approximations

Error statistics p02/p01 W ṁ SN Psf Pf

R2 0.9949 0.9999 0.9979 0.9262 0.9994 0.6638

R2
adj

0.9888 0.9999 0.9954 0.8369 0.9987 0.2572

RMSE 0.564 × 10−3 0.800 × 10−5 0.4246 × 10−2 0.1282 × 108 0.2637 × 10−2 0.2851 × 10−1

%RMSE 0.3000 × 10−3 0.1175 × 10−3 0.1270 × 10−3 0.2761 × 10−1 0.2337 × 10−2 0.1425 × 103

tion of the failure probability. In the plot we sort the design points
according to their probability of failure in ascending sequence. The
probability of failure changes by several orders of magnitude over
a narrow range. A quadratic response surface may not be efficient
to capture the change. A high-order response surface model may be
required to capture the steep variation. However, it demands more
design points to fit the coefficients. In addition, we can see that more
than 90% of the design has a zero failure probability. Not enough
gradient information will be provided in the optimization procedure
if a response surface is built based on the failure probability. Even
if the reliability index is used, we still could not avoid the large
portion of flat region. On the other hand, the distribution of Psf in
Fig. 6 shows smooth variation. For comparison purposes we con-
struct the DRS for both the probability of failure and probability
sufficient factor. The statistical measures are shown in Table 2. We
can see that the fitting of the failure probability is poor in terms of
the statistical measures. However, the DRS of the probability suf-
ficient factor has good statistical measures. The values of R2

adj and
%RMSE are 0.9994 and 0.002337, respectively.

Fig. 5 Distribution of probability of failure of the 1024 design points.

Fig. 6 Distribution of probability sufficient failure of the 1024 design
points.
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Fig. 7 Genetic algorithm convergence history and solutions from hy-
brid method.

Our problem described in Eq. (1) is a multiobjective optimiza-
tion problem with a set of Pareto optimal solutions. To facilitate
the optimization, we use a real-coded genetic algorithm. We set the
population size as 320. Figure 7 shows the solutions with different
generation sizes. The convergence rate at the beginning is fast, and it
gradually then slows down. This phenomenon is typical for genetic
algorithms, which usually suffer a low convergence rate when the
optimal is approached. One remedy is to use a hybrid method. The
basic idea is to switch to a gradient-based method to improve the
convergence after the genetic algorithm. For that purpose we use
the design optimization tools (DOT),20 which are software based
on gradient-based methods. Figure 7 shows that DOT does improve
convergence. To further appreciate the capability of genetic algo-
rithms for handling multiobjective optimization, we also perform
optimization exclusively based on gradient-based methods. To do
that, we transform the problem in Eq. (11) into the problem that
follows.

Minimize: w1W − w2 p02/p01 (15)

Subject to: w1 + w2 = 1.0, w1 ≥ 0, w2 ≥ 0 (16)

We convert the multiobjective optimization problem into a single-
objective optimization problem by introducing-weight function. All
the constraints are kept the same and DOT is employed as the opti-
mizer. We notice that even though it obtains some solutions better
that those from the hybrid method, the gradient-based method fails
to identify some regions on the Pareto-optimal front. In addition,
we notice that the gradient-based method is sensitive to the initial
conditions. The solution from genetic algorithms is also affected
by the initial conditions. However, the effect diminishes with the
increase of generation size. We compare Pareto-optimal fronts with
different initial conditions and find no evident difference after the
8000th generation. In total there are 693 Pareto optimal solutions
lying on the Pareto optimal front.

We choose 15 representative optimal design points from the
Pareto optimal front using the K-means clustering algorithm to ver-
ify against the high-fidelity analysis tools. K-means clustering is
a method that chooses a set of data points from the Pareto-optimal
front to accurately represent the distribution of whole date points.4,21

The distribution of the selected data points is shown in Fig. 8. We
also compare the baseline rotor67 with the optimal solutions. Clearly
the optimization process decreases the blade weight and increases
the stage pressure ratio as well.

We show the blade difference between the baseline rotor67 and
the optimal design with maximum pressure ratio. At the 10% span
(Fig. 9), the maximum pressure ratio design has a larger camber but
less thickness than the rotor67 design. The thinner airfoil contributes
to the lighter weight of the new design. The difference in the pressure
distribution is rather small. The same conclusion can be made at the

Fig. 8 Comparison of baseline with optimal solutions.

Fig. 9 Comparison between the maximal pressure ratio design and the
baseline at the 10% span from the hub.

Fig. 10 Comparison between the maximal pressure ratio design and
the baseline at the 50% span from the hub.

50% span (Fig. 10). At the 90% span (Fig. 11), the high-pressure
ratio design has a slightly smaller camber and thinner airfoil than
the rotor67.

IX. Error Analysis
From the operation we can identify that error of the computed

PSF in Fig. 5 comes from two primary sources: the approximation
of maximum stress with ARS and the limit size of simulations in
the MCS. Certainly there are errors associated with the fluid solver
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Fig. 11 Comparison between the maximal pressure ratio design and
the baseline at the 90% span from the hub.

and the structural solver; however, we omit those so that we can
exclusively compare the errors from the ARS and the MCS. For
the studied problem with a target probability of failure of 10−4 and
1 million simulations in the MCS, the percentage error in Pf asso-
ciated with the MCS is 20%. In modeling the maximum stress with
ARS, the %RMSE is α = 0.02761. If the maximum stress based on
the ARS is S, then the actual maximum stress is estimated in the
range of S(1 ± α). Here we should note that the use of RMSE% is
not perfectly fitting at this circumstance because the %RMSE is cal-
culated based on the points used to constructed the response surface
model and the prediction error for new point could be larger than
%RMSE. If the endurance limit takes another random value, R, and
the safety factor is computed based on Eq. (6), then the actual safety
factor is in the range of

(R/S)[1/(1 ± α)] (17)

Plugging α = 0.02761 into the above formulation, we can easily
estimate that the uncertainty in the safety factor (also in PSF) is
larger than 0.02. Hence the relative error of the probability failure
associated with the ARS is 20,000%, which is much larger than the
relative error associated with the MCS.

Because it will be time-consuming to compute the PSF directly
from the structural analysis, we use the surrogate model and the
MCS to evaluate it instead. Therefore, the inaccuracy arise from
three sources: the ARS approximation, the DRS approximation,
and the limit size of the MCS.

We further validate the PSF for each representative optimal de-
sign. From our previous discussion we know that we can compute
the PSF using the MCS. By doing this we need to evaluate the safety
factor R/S using the MCS at the optimal design point. The value of
the endurance R can be directly obtained based on the distribution
function. For a fixed blade shape, the maximal stress S for a spe-
cific design is only a function of the Poisson ratio. Our discussion
indicates that with a target probability of failure of 10−4 we need
one million simulations to ensure that the relative error of the failure
probability is less than 20%. Even though the structural analysis is
relatively cheaper than the computational fluid dynamics analysis,
it is computationally formidable to perform that many simulations
exclusively based on structural analysis. On the other hand, conven-
tional wisdom tells us that it is not a sound idea, either, to evaluate
the PSF by using the previously constructed ARS model for the
maximum stress. What we do here is to construct a new response
surface model to approximate the response of the maximal stress to
the Possion’s ratio at one selected optimal design point.

At each design points we uniformly sample 21 points for the Pois-
son’s ratio. These design points are then evaluated with the structural
solver. Our statistical analysis shows that the second-order response
surface gives an accurate representation of the relationship between

Fig. 12 Approximation of maximum stress for one specific optimal
design with quadratic response surface.

Fig. 13 Verified probability sufficient factor at the optimal design and
from the DRS prediction.

the Poisson’s ratio and the maximum stress. The value of R2
adj is 1.00

and the %RMSE is 4 × 10−6. Based on Eq. (17) we can compute
the actual range of the PSF. A representative quadratic fitting and
the sampled points are shown in Fig. 12. The optimal design is then
substituted into the newly constructed response surface to evalu-
ate its PSF using the MCS. This calculated PSF is compared with
the predicted values in the optimization process. The comparison
is illustrated in Fig. 13. We further adjust the PSF value based on
Eq. (17). All the PSF are larger than 1.0, indicating that the safety
is beyond our target.

We also want to compare the results from the reliability design
and the deterministic design. It is difficult to find the relationship
between the PSF in RBDO and the nominal safety factor in the de-
terministic design and it is difficult to transform the RBDO into an
equivalent deterministic design problem. Therefore, this compari-
son is for demonstration purposes only. In deterministic design, the
material properties are taken as their mean values with the Pois-
son ratio of 0.34 and endurance limit of 547.5 MPa, respectively.
The structural constraint in Eq. (11) is replaced with the following
expression:

SF > SB,F (18)

where SB,F is the baseline safety factor of 1.18. The optimization
procedure, which shares many similarities with the RBDO proce-
dure reported in this paper, performs optimization based on surro-
gate models and a hybridized optimizer. The details are outlined in
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Fig. 14 Verified probability sufficient factor at the optimal design from
deterministic design optimization.

the work of Lian and Liou.5 The preselected 1024 design points are
used to build the quadratic response surfaces. Likewise, we choose
14 optimal design points from the resulting Pareto-optimal front to
verify against the high-fidelity analysis tools. At each optimal point
we assume that the material properties follow the same normal dis-
tributions as used in the RBDO. Its PSF with a probability of failure
less than 10−4 is computed with the same procedure utilized in the
RBDO. The PSF distribution is plotted in Fig. 14. We notice that
some designs have a PSF value less than 1.00, indicating that the
safety requirement is not met.

In addition to the statistical test for the accuracy of response
surfaces in Table 2, we compared the actual performance values with
those from the response surfaces at the representative optimal points.
It turns out that all performance values show reasonably accurate
approximation with a relative error within 5% using the response
surfaces, except for the maximum stress, which has a relative error
as large as 10%. Such a discrepancy has not been reported before in
the literature. Possible explanations are as follows:

1) Maximum stress is a local variable, whereas other objectives
and constraints are global. It is difficult to capture the local phe-
nomenon using a global description such as the response surface
method.

2) The maximum stress performance is not a differentiable func-
tion of the deterministic design variables/random variables because
it employs the noncontinuous function max, which also is not a
differentiable function.

3) The statistical measures reported here, which are used to mea-
sure the amount of reduction in the variability of response functions
obtained using the sample designs in the model, do not warrant good
predictions of new values.

X. Conclusions
In this paper, we demonstrated a reliability-based design opti-

mization technique when both aerodynamic and structural perfor-
mances were considered. The design uncertainty came from the ma-
terial properties. Our objectives were to maximize the stage pressure
ratio and to minimize the blade weight. A second-order response
surface model was built to make it possible to perform such a com-
putationally intensive analysis and optimization process. A genetic
algorithm was used to facilitate the multiobjective characteristics
of our problem. The reliability analysis was performed based on
Monte Carlo simulation. To address the accuracy problem resulting
from using probability of failure in regions of low probability of
failure, the probabilistic sufficient factor was adopted. Our numeri-
cal results showed that we could achieve a new design with lighter
weight, higher pressure ratio, and more reliable performance than
the baseline rotor67.

We identify the sources of numerical errors in the reliability-based
design optimization. In addition, we further quantify the numerical
errors. We realized that further research was required in evaluating
the accuracy of the response surfaces, related to sampling, regres-
sion, and modeling, which is beyond the scope of this paper.
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