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ABSTRACT 

Response surface methods which approximate the 
actual performance function using simple algebraic 
equations are widely used in structural reliability studies.  
The response surface approximations are often used to 
estimate the reliability of a structure.  Errors in the 
response surface approximation affect the results of 
reliability analysis.  This work investigates the error in 
the failure probability estimated using a response 
surface approximation.  It is observed that small errors in 
the response surface may amplify to large errors in the 
failure probability.  It is observed that the amplification 
occurs when the failure surface is far away from the 
response mean and the DOE has more points near the 
mean. Another situation is when the failure region is a 
small island encompassed within the safe region, and 
the points in the DOE fail to capture the failure region. 
Analytical and engineering application examples are 
investigated to understand the amplification of error in 
the failure probability. 

INTRODUCTION 

In structural design, safety measures are used to gauge 
the safety level of the structure.  The design process 
involves several parameters, such as types of loadings, 
material properties, geometry, mathematical approxima-
tions, failure modes, etc.  Uncertainties in these para-
meters are inevitable.  Traditionally, deterministic 
approaches used safety factors to account for the 
uncertainties (Elishakoff, 2004).  Later, probabilistic 
approaches were introduced in structural optimization to 
account for uncertain variables. 

Polynomial response surface approximations are often 
used to alleviate the computational expense in reliability 
studies(Rajashekhar and Ellingwood, 1993, Venter et al, 
1998, Kutaran et al, 2002).  Reliability studies require the 
assessment of the performance function that describes 
the behavior of the system, which is implicit or too 
complex for explicit evaluation in most real applications.  
Especially for complex problems where Monte Carlo 
Simulation (MCS) is the only feasible approach, the 

polynomial response surface approximations greatly 
lessen the computational burden by substituting 
calculation of a polynomial instead of an expensive 
physical simulation.   

The quality of the response surface is judged by various 
error metrics.  The response surface is used to predict 
the response values at extrapolated regions; i.e., regions 
outside the design of experiments (DOE).  When the 
response surface is used to predict failure probability, 
the magnitude of failure probability is often low and it 
requires information in the tail part of the distribution 
rather than in the central part.  Here, careful 
implementation of the response surface is required, 
especially when it is used for extrapolation.  It has been 
observed that sometimes the response surfaces poorly 
approximate the actual behavior at the extrapolated 
regions in spite of good error metrics at the interpolated 
region.  At times, these short comings in the response 
surface approximations contribute to amplification of 
errors in failure probability estimates.  

The objective of this paper is to investigate the 
amplification of error in failure probability estimates and 
understand the circumstances that trigger this 
phenomenon so that use of polynomial response 
surfaces will be able to exercise extra caution under 
these circumstances. The paper is structured as follows; 
failure probability computation is discussed in Section 2.  
Section 3 discusses response surface approximations 
and error amplifications in failure probability estimates.  
The error amplification phenomenon is described with 
examples and followed by discussion in Section 4. 
Section 5 discusses future work. 

FAILURE PROBABILITY COMPUTATION 

In structural reliability, safety of structure depends on the 
value the performance function G. When G > 0, the 
structure is safe and considered failed otherwise.  The 
safety of a structure is expressed in terms of failure 
probability. MCS is widely used to estimate failure 
probability because of the ease of its use and robust 



nature.  The failure probability is computed using the 
expression: 
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where, fP  is the failure probability, x̂  is the randomly 
chosen sample point, ( )G x  is the performance function 
which describes the behavior of the structure,  
num( ( ) 0)G ≤x  denotes the number of samples for 
which ( ( ) 0)G ≤x  and N is the total number of samples.  

( )G x  is mostly approximated using a response surface.  
Essentially, MCS assigns a value of 1 or 0 to each 
sample depending on whether it violates the 
performance function or not.  Summation of these values 
for all the samples and dividing it by the total number of 
samples provides the failure probability.  The accuracy 
of the failure probability depends on the number of 
samples.  For a fixed number of samples, the accuracy 
deteriorates with a decrease in the actual failure 
probability.  Hence, estimating a very low failure 
probability with a good accuracy requires a huge sample 
size.  The coefficient of variation (COV) of the computed 
failure probability is given by: 
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Usually, researchers use the failure probability computed 
using MCS as a standard for comparing the failure 
probabilities computed using other methods and use it in 
optimization. 

RESPONSE SURFACE APPROXIMATIONS AND 
ERROR AMPLIFICATIONS IN FAILURE 
PROBABILITY ESTIMATES 

Researchers rely heavily on response surface approxi-
mations for two reasons: 

1. When the performance function is not available 
explicitly as an analytical expression.  In this case, 
responses for several combinations of the design 
variables are generated and polynomial response 
surface (PRS) is constructed in terms of the design 
variables. 

2. To reduce the computational expense in evaluating 
a high fidelity model, especially in optimization 
problems in which the model need to be analyzed 
repetitively.  Response surface approximations using 
low order polynomials are used to capture the nature 
of the problem and are used in the analyses. 

Moreover, numerical noise in the parameters involved in 
the optimization introduces additional difficulties in 
computing sensitivities.  Response surface approxima-

tions are used in these situations to approximate the 
response using a smooth function. 

Although polynomial response surface approximations 
have been successfully used for failure probability 
estimation and optimization, they might reduce the 
accuracy. The quality of a polynomial response surface 
approximation is given by its error metrics. It is observed 
and demonstrated in this work that the measures of 
accuracy commonly used for response surface 
approximations do not necessarily correspond to 
accuracy in failure probability. That is even if the error 
metrics of the response surface are good, the prediction 
of failure probability estimated based on the response 
surface might not be accurate. The error metrics used in 
this work are described in Appendix. 

Two numerical examples are treated in this work (i) 
Cantilever beam example and (ii) Branin-Hoo function. It 
is noted that there are two situations in which low failure 
probabilities can occur.  First, the failure surface is far 
from the mean value. Second, the failure region itself is 
small contributing to the low failure probability.  The 
cantilever beam example is representative of the former 
case. The Branin-Hoo function example has an island 
failure region. That is, the failure region is encompassed 
within the safe region. It represents the latter case with 
multiple failure regions. Two different DOEs are used in 
each example (i) Latin Hypercube Sampling (LHS) with a 
normal distribution (ii) Orthogonal array (OA). The first 
one covers a small region near the mean. If the failure 
region is far away from the mean, the response surface 
needs to extrapolate substantially and it leads to error 
amplification. On the other hand, for the OA DOE, the 
response surface approximation is not accurate because 
it covers a larger region and the error in failure 
probability is not due of amplification of errors.  

A number of 105 samples are used to estimate the failure 
probability.  The trend of the cumulative distribution 
function (CDF) of the response surface with respect to 
that of the actual response is monitored by counting the 
number of the samples (out of 105) that falls in the 
equally spaced bins (in terms of limit state values).  The 
trend (overestimate or underestimate) of the response 
surface is consistent around the mean of the response 
but, there is a reversal in the trend in the tails of the 
distribution.  This is clearly explained in the examples. 

Since response surfaces are widely used to approximate 
the response of a structure and hence to compute the 
failure probability, this paper attempts to caution the 
researchers about the possible amplification of errors in 
failure probability estimate, though the error metrics are 
good. Moreover, a reversal in the trend near the tails is 
observed in most cases. These can lead to an entirely 
different estimation of the required safety measure.  

 



NUMERICAL EXAMPLES 

(I) CANTILEVERED BEAM 
The widely used cantilever beam example for reliability 
analysis introduced by Wu et al. (2001) presented in 
Figure 1 is used for demonstration purpose.  The beam 
is under the horizontal and vertical loads at the tip.  

 

 
Figure 1 Cantilevered beam subject to horizontal and 

vertical loads 

The performance function is the difference between 
allowable and the actual deflections at the tip.  From 
traditional beam theory, the performance function can be 
defined as: 
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where Y is the transverse load = 500lb, D0 is the 
allowable initial deflection taken as 2.5", and w = 2.6535 
and t = 3.9792 are dimensions of the cross-section 
obtained through reliability-based optimization. 

In order to illustrate the quality of the response surface in 
reliability analysis, it is assumed that the horizontal load 
X and the elastic modulus E are random variables.  Even 
if other parameters are also uncertain, we chose only 
two random variables for illustration purpose.  The 
distribution is shown in Table 1. 

A quadratic polynomial response surface is used in this 
study to approximate the tip deflection.  There are two 
DOE considered: (i) LHS with a normal distribution and 
(ii) Orthogonal Arrays.  In both cases 25 data points are 
used to fit the response surface approximation.  Results 
using the LHS case are provided first followed by those 
using the OA. Failure occurs when Gd is less than zero. 

Table 1 Random variables for the beam problem 

Random variable X (lb) E (psi) 
Distribution 

(mean, std. dev.) 
Normal 

(700, 100) 
Normal 

(29E6, 5E6) 
 
CASE 1 – LHS with a normal distribution DOE 

The cloud of test points that are generated based on 
distribution of the random variables X and E is shown in 
Figure 2 along with the LHS samples (data points) 
represented by the stars.  Based on the responses at the 
DOE samples, the response surface is constructed.  
Tables 2 and 3 show statistics at data points and test 

points, respectively.  It is seen that the statistics of the 
response surface are close to that of the actual function. 

The error metrics presented in Table 4 show that the 2R  
error is close to 1 and since there is no large difference 
between the 2R  and 2

adjR , it is evident that there is no 
unnecessary terms in the response surface.  The RMS 
errors are to be compared to the range presented in 
Table 2 which also shows that the fit is reasonably good.  
However, the PRESS_RMS error is higher than the RMS 
errors. The 2R  predicted using the PRESS error 
matches the 2R  well. 

In spite of a good statistics and error metrics, Figure 3 
clearly depicts the inaccuracy in the failure probability 
estimation.  The failure probability estimated by the two 
models presented in Table 5 differs largely. The 
difference cannot be attributed to sampling errors. They 
are also not consistent with the error metrics presented 
in Table 4.  In order to explain the error, 18 equal-width 
bins (in terms of the function values) are used and the 
number of samples that fall in each bin is monitored.  
These results are presented in Table 6.  Though the 
quality of the response surface was good based on the 
error metrics presented in Table 3, the failure probability 
estimation at the tails suffer from large errors.  This is 
due to the fact that the failure surface is away from the 
mean and the response surface is accurate in the central 
region of the distribution of the response and the 
accuracy deteriorates in the tails of the distributions.  It is 
noted that when CDF is considered, the errors are 
amplified in the left tail.  In the right tail, the cumulative 
effect of negative and positive differences cancels out.  
The 6% error in PDF in the fourth bin translates to 70% 
error in the CDF.  But after that, the error in the CDF 
decreases very quickly. 

 

 
Figure 2 Cantilever beam. LHS data points and cloud of 

1e5 test points.  
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Table 2 Cantilever beam. Statistics at LHS data points 

  acty  rsy  act rsy y−
Mean 0.66 0.66 0 

Std. Dev. 0.14 0.14 0 
Range 0.63 0.63  

 
 
Table 3 Cantilever beam. Test points statistics (Case 1) 

 acty  rsy  act rsy y−  
Mean 0.58 0.65 -0.07 

Std. Dev. 0.14 0.16 0.02 
 

Table 4 Cantilever beam. Error metrics for the response 
surface . LHS DOE (see Appendix for metric 
definition) 

Error Metric Value 
2R  0.99980 
2
adjR  0.99974 

RMS 0.00201 
RMSpred 0.00231 
PRESS_RMS 0.00335 

2
predR  0.99943 
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Figure 3 Cantilever beam. Comparison of 1e5 and PRS 

deflection CDFs. LHS DOE 

 

Table 5 Cantilever beam. LHS DOE. Probability of 
failure estimation  

 1e5 Samples RS 
Pf 0.00174 0.00081 
COV 0.0747 0.111 

 

Table 6 Cantilever beam. LHS DOE. Samples in the 
equal interval bins  

Bins Samples 
LB 
>  

UB 
≤  

1e5 
Samples RS 

-0.59 -0.51 3 0
-0.51 -0.42 5 0
-0.42 -0.34 6 0
-0.34 -0.25 6 6
-0.25 -0.17 24 8
-0.17 -0.09 36 22
-0.09 0.00 94 43
0.00 0.08 199 133
0.08 0.17 524 346
0.17 0.25 1402 881
0.25 0.34 3140 2099
0.34 0.42 6929 4458
0.42 0.50 13317 8293
0.50 0.59 21260 14069
0.59 0.67 24911 19783
0.67 0.76 18797 22150
0.76 0.84 7811 17585
0.84 0.92 1453 8291
0.92 1.01 83 1719
1.01 1.09 0 114
1.09 1.18 0 1

 
 
CASE 2 – Orthogonal Arrays (OA) DOE 

The orthogonal arrays data points and the cloud of test 
points are presented in Figure 4.  All the conditions are 
same with the earlier case other than the DOE. The 
comparison of the statistics of the actual response and 
approximation in Tables 7 and 8 is good. The error 
metrics presented in Table 9 show that the quality of the 
approximation is satisfactory, but not as good as that 
from LHS samples. This is expected because the OA 
covers wider range of input space than the LHS.  

In spite of acceptable response surface approximation, 
as observed in the earlier case, the failure probability is 
grossly misestimated, as shown in Table 10.  The cor-
responding plot is presented in Figure 5. A reversal in 
the trend of the CDF is also observed in this case. The 
response surface predicts a failure probability that is 3 
times larger than the actual failure probability.  However, 
the error amplification is less extreme because the 
quality of the response surface approximation is not as 
good as that from LHS samples.  The samples that fall in 
different bins are presented in Table 11. It can be 
concluded that the error is not triggered by the wrong 
choice in the DOE and cannot be rectified by just 
covering the entire design space.  



 
Figure 4 Cantilever beam. OA data points and cloud of 

1e5 test points. Case 2 
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Figure 5 Cantilever beam. Comparison of 1e5 and PRS 

CDFs. Case 2 

 
Table 7 Cantilever beam. Data points statistics (Case 2) 

  acty  rsy  act rsy y−

Mean 0.40 0.40 0.00 
Std. Dev. 0.54 0.54 0.08 

Range 2.19 2.06  
 
 
Table 8 Cantilever beam. Test point statistics (Case 2) 

 acty  rsy  act rsy y−  
Mean 0.58 0.53 0.05 

Std. Dev. 0.14 0.17 0.03 
 

 

Table 9 Cantilever beam. Error metrics for the response 
surface (Case 2) 

Error Metric Value 
2R  0.98008 
2
adjR  0.97484 

RMS 0.07485 
RMSpred 0.08586 
PRESS_RMS 0.11156 

2
predR  0.95576 

 
 
Table 10  Cantilever beam. Probability of failure 

estimation (Case 2) 

 1e5 Samples RS 
Pf 0.00174 0.00529 
COV 0.0727 0.0435 

 
 
Table 11  Cantilever beam. Samples in the equal interval 

bins (Case 2) 

Bins Samples 
LB 
>  

UB 
≤  

1e5 
Samples RS 

-0.59 -0.51 3 2
-0.51 -0.43 5 7
-0.43 -0.35 6 8
-0.35 -0.27 4 19
-0.27 -0.19 21 27
-0.19 -0.11 23 96
-0.11 -0.03 68 206
-0.03 0.05 126 464
0.05 0.13 328 1090
0.13 0.20 795 2203
0.20 0.28 1811 4267
0.28 0.36 4063 7274
0.36 0.44 8128 11631
0.44 0.52 14579 16530
0.52 0.60 21284 19577
0.60 0.68 23316 18558
0.68 0.76 16790 12521
0.76 0.84 7125 4742
0.84 0.92 1431 749
0.92 1.00 94 29

 
 
 
 
 



(II)BRANIN-HOO FUNCTION 

The Branin-Hoo function is a two variable analytical 
function given as 
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The plot of the function is presented in Figure 6.  A cubic 
polynomial response surface is used to approximate the 
function.  The variables 1x  and 2x  are considered to be 
random and follow prescribed statistical distributions.  
Four different cases that are presented in Table 12 are 
considered.  A number of 25 data points are used in the 
DOE.  Cases 1 and 3 use the LHS method, while cases 
2 and 4 use the OA method to generate samples.  The 
performance function is defined as 

1 2 1 2 limit( , ) ( , )y x x f x x f= −  (5) 

If the function value is less than limitf , it is considered 
failed.  The limitf  for the first two cases is 4.0, while for 
the last two cases, it is 0.42. The corresponding failure 
regions are presented in Figures 7 and 8. It can be 
observed that the failure regions are encompassed 
within the safe region. This is a case of multiple island 
failure regions. A number of 105 test points are used to 
estimate the failure probability.  The quantity of 
comparison is the failure probability estimated by the 
actual function and that by the response surface. 

Table 12  Distributions of the variables and DOE used  

DOE 
Normal Distribution LHS(Normal) OA 

x1~N(0,1) x2~N(0,1) Case 1 Case 2 
x1~N(3,1) x2~N(4,2) Case 3 Case 4 

 

 
Figure 6 Branin-Hoo function. 
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Figure 7 Branin-Hoo function – Failure regions. limitf =4 
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Figure 8 Branin-Hoo function – Failure regions. 

limitf =0.42 

 

CASE1 –LHS DOE: 

The DOE data points from LHS and the cloud of 105 test 
points are presented in Figure 9.  The statistics at the 
design point show that the order of the response surface 
is good and there is no alarming reason to consider the 
response surface is inaccurate (Tables 13 and 14).  The 
error metrics in Table 15 show that the response surface 
is a good fit and there are no unnecessary terms. The 
PRESS errors are higher for this case, but are still small 
compared to the range. In spite of good error metrics, 
the response surface predicts the failure probability with 
large error as shown in Table 16. The estimated failure 
probability varies by about 5 times with respect to the 
actual failure probability. The failure regions in the 
response surface are presented in Figure 11. It is 
observed that the response surface is unable to capture 
the island trend, instead approximates the failure region 
to be a half plane and does not predict failure at the 
upper left corner of the design space. 

Failure 
Regions 

Failure 
Regions 



 

Figure 9 Branin-Hoo. DOE data points from LHS and 
cloud of 1e5 test points.  

Table 13  Branin-Hoo. Statistics at data points. Case 1  

  acty  rsy  act rsy y−
Mean 56.05 56.05 0.00 

Std. Dev. 21.55 21.55 0.00 
Range 83.41 83.62   

 

Table 14  Branin-Hoo . Statistics at test points. Case 1  

 acty  rsy  act rsy y−  
Mean 56.90 56.42 0.48 

Std. Dev. 24.03 23.77 0.26 
 

Table 15  Branin-Hoo. Error metrics for the response 
surface 

Error Metric Value 
2R  0.99992 
2
adjR  0.99987 

RMS 0.18716 
RMSpred 0.24162 
PRESS_RMS 0.82435 

2
predR  0.99848 

 

Table 16  Branin-Hoo. Probability of failure estimation 
(Case 1) 

 1e5 Samples RS 
Pf 0.0014 0.0072
COV 0.0857 0.0375
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Figure 10 Branin-Hoo response surface (case1). Failure 

region 
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Figure 11 Branin-Hoo response surface (case1). Failure 

region 

 
CASE 2 – OA DOE: 
The DOE and the test points used are presented in 
Figure 12. The error metrics presented in Table 19 show 
that the response surface fit is good though the PRESS 
error is high. The failure probability estimate obtained 
through the response surface is close to the actual 
value. But it is to be noted with the help of Figure 13 that 
the error in the failure probability depends on the choice 
of limitf . For example, if it is chosen to be 11.05, with the 
help of bin data in Table 21, one can see that the error in 
the failure probability will be about two times. The actual 
function cannot take values less than 0. However, it is 
clear from Figure 13 that the response surface can take 
negative values in the extrapolated regions. This DOE 
was able to capture the island in the top left of the 
design space though it was not able to identify the other 
failure regions individually (Figure 14), instead 
approximating both regions by an approximate half 
plane.   

Failure 
Region 



 
Figure 12 Branin-Hoo. OA data points and cloud of 1e5 

test points. Case 2 

 

Table 17  Branin-Hoo. Statistics at data points (Case 2) 

  acty  rsy  act rsy y−
Mean 67.84 67.84 0.00 

Std. Dev. 58.81 58.78 1.92 
Range 222.75 222.75   

 

Table 18  Branin-Hoo. Statistics at test points (Case 2) 

 acty  rsy  act rsy y−  
Mean 56.90 55.91 0.99 

Std. Dev. 24.03 24.15 0.12 
 
Table 19  Branin-Hoo. Error metrics for the response 

surface (Case 2) 

Error Metric Value 
2R  0.99893 
2
adjR  0.99829 

RMS 1.88122 
RMSpred 2.42865 
PRESS_RMS 2.84214 

2
predR  0.99757 

 
 
Table 20  Branin-Hoo. Probability of failure estimation 

(Case 2) 

 1e5 Samples RS 
Pf 0.0014 0.0013
COV 0.0857 0.0846

 
 

Table 21  Branin-Hoo. Samples in the equal interval bins 
(Case 2) 

Bins Samples 
LB 
>  

UB 
≤  

1e5 
Samples RS 

-17.28 -3.12 0 19
-3.12 11.05 1076 551
11.05 25.21 6525 6261
25.21 39.37 15877 19235
39.37 53.53 24242 25597
53.53 67.70 22975 21251
67.70 81.86 15394 13598
81.86 96.02 7884 7157
96.02 110.19 3501 3491

110.19 124.35 1417 1561
124.35 138.51 647 741
138.51 152.68 264 317
152.68 166.84 103 125
166.84 181.00 49 55
181.00 195.17 26 28
195.17 209.33 16 11
209.33 223.49 2 1
223.49 237.65 1 0
237.65 251.82 0 1
251.82 265.98 1 0
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Figure 13 Branin-Hoo. Comparison of actual   and 

response surface CDFs. Case2 



-5 0 5 10
0

5

10

15  

 
-300

-200

-100

0

100

200

 
Figure 14 Branin-Hoo response surface (case2). Failure 

region 

Case 3 – LHS DOE: 
The error metrics and the statistics at data points 
(Tables 22-24) show that the response surface fit is 
good. The DOE and the cloud of test points are 
presented in Figure 15. It can be observed from Figure 
16 that the response surface constantly underestimates 
the failure probability. Figure 17 shows the failure region 
approximated by the response surface. This DOE is able 
to capture the failure region in the lower central portion 
of the design space. However, the other two failure 
regions are not captured and hence contribute to the 
error in the estimated failure probability. If the function 
limit was 1, the response surface predicts a fully safe 
condition whereas the actual function corresponds to a 
finite failure probability (Table 25). 

Table 22  Branin-Hoo. Statistics at data points (Case 3) 

  acty  rsy  act rsy y−
Mean 11.59 11.59 0.00 

Std. Dev. 11.21 11.20 0.53 
Range 41.05 40.65   

 

 
Figure 15 Branin-Hoo. OA data points from and cloud of 

1e5 test points. Case 3 
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Figure 16 Branin-Hoo. Comparison of actual and 

response surface CDFs. Case3 

 

Table 23  Branin-Hoo. Statistics at test points (Case 3) 

 acty  rsy  act rsy y−  
Mean 11.14 11.24 -0.10 

Std. Dev. 10.08 10.37 1.84 
 

Table 24  Branin-Hoo. Error metrics for the response 
surface (Case 3) 

Error Metric Value 
2R  0.99780 
2
adjR  0.99648 

RMS 0.51496 
RMSpred 0.66481 
PRESS_RMS 4.05256 

2
predR  0.86386 
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Figure 17  Branin-Hoo. Response surface (case3). 

Failure region 

Failure 
regions 

Failure 
region 



Table 25  Branin-Hoo. Probability of failure estimation 
(Case 3) 

 1e5 Samples RS 
Pf 0.002 0 
COV 0.07 N/A 

 
Table 26 Branin-Hoo. Samples in the equal interval bins 

(Case 3) 

Bins Samples 
LB 
>  

UB 
≤  

1e5 
Samples RS 

0.40 6.12 38226 39163 
6.12 11.84 26141 26145 
11.84 17.56 16106 14965 
17.56 23.28 8877 8475 
23.28 29.00 4628 4775 
29.00 34.72 2574 2680 
34.72 40.44 1479 1586 
40.44 46.16 801 897 
46.16 51.88 498 522 
51.88 57.60 282 297 
57.60 63.32 173 222 
63.32 69.04 99 109 
69.04 74.77 60 68 
74.77 80.49 26 42 
80.49 86.21 12 24 
86.21 91.93 7 9 
91.93 97.65 6 8 
97.65 103.37 5 7 

103.37 109.09 0 5 
109.09 114.81 0 1 
114.81 120.53 0 0 

 
 
CASE 4- OA DOE: 
The DOE and the cloud of test points are presented in 
Figure 18. The error metrics show that the fit is good 
(Tables 28-30). But there is large error in the failure 
probability estimate (Tables 31-31 and Figure 19). 
Similar to the earlier case, the response surface 
consistently predicts a lesser failure probability. The 
failure regions approximated by the response surface is 
presented in Figure 20. Here, the island in the top right 
of the design space is not captured. 

Table 27  Branin-Hoo. Statistics at data points (Case 4) 

  acty  rsy  act rsy y−

Mean 35.95 35.95 0.00 
Std. Dev. 28.05 27.97 2.13 

Range 106.00 106.42   

 

 
Figure 18 Branin-Hoo. OA data points from and cloud of 

1e5 test points. Case 4 
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Figure 19 Branin-Hoo. Comparison of actual and 

response surface CDFs. Case4 
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Figure 20 Branin-Hoo response surface (case 4). Failure 

region 
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Table 28  Branin-Hoo .Statistics at test points (Case 4) 

 acty  rsy  act rsy y−  
Mean 11.14 12.40 -1.26 

Std. Dev. 10.08 9.30 2.35 
 

Table 29  Branin-Hoo. Error metrics for the response 
surface (Case 4) 

Error Metric Value 
2R  0.99426 
2
adjR  0.99081 

RMS 2.08257 
RMSpred 2.68859 
PRESS_RMS 3.14634 

2
predR  0.98689 

 
Table 30  Branin-Hoo. Probability of failure estimation 

(Case 4) 

 1e5 Samples RS 
Pf 0.002 0 
COV 0.07 N/A 

 
Table 31  Branin-Hoo. Samples in the equal interval bins 

(Case 4) 

Bins Samples 

LB UB 1e5 
Samples RS 

0.40 5.72 36097 22869
5.72 11.05 25360 33953
11.05 16.38 16395 20277
16.38 21.71 9617 10113
21.71 27.03 5218 5382
27.03 32.36 2971 3108
32.36 37.69 1775 1794
37.69 43.01 1009 990
43.01 48.34 615 632
48.34 53.67 366 350
53.67 59.00 235 236
59.00 64.32 145 120
64.32 69.65 87 73
69.65 74.98 55 50
74.98 80.30 25 29
80.30 85.63 11 4
85.63 90.96 8 12
90.96 96.28 6 3
96.28 101.61 4 4

101.61 106.94 1 0
106.94 112.27 0 1

CONCLUSIONS AND FUTURE WORK 

This paper attempted to investigate the amplification of 
errors in response surface approximations in failure 
probability calculation. It demonstrated the situations in 
which the error amplifies with two numerical examples 
with different DOEs. It is observed that the commonly 
used error metrics for the response surface 
approximations do not necessarily reflect the accuracy in 
failure probability estimation. When the samples are 
located near the mean and the failure region is located 
far away from the mean (the cantilever beam with LHS), 
the failure probability estimate using the response 
surface approximation shows large error amplification. 
When the samples are evenly distributed in the input 
space (the cantilever beam with OA), the the error 
metrics are less misleading but there is still substantial 
amplification. When the failure region is close to the 
mean but its size is small (Branin-Hoo function), error 
metrics of LHS is better than that of OA. However, the 
accuracy in the failure probability turns out opposite. In 
addition, both sampling methods fail to identify one or 
more of the small failure regions. 
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Appendix. Error Metrics 

1. R2:  

The coefficient of multiple determinations is defined as 
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2 1

2

1

ˆ
1

( )

n

i i
i
n

i
i

y y
R

y y

=

=

−
= −

−

∑

∑
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where iy  is the actual value at the ith design point, îy  the 
predicted value at the ith design point, and y  the mean 
of the actual response. 

2R  is a measure of the amount of reduction in the 
variability of y  obtained by using the response surface.  

20 1R≤ ≤ .  A larger value of 2R  is desirable for a 
good response surface.  But, a larger 2R  does not 
necessarily guarantee a good response surface.  Thus, 
this estimate should be used in conjunction with other 
error estimates to gauge the quality of the response 
surface.  2R  continuously increases with addition of 
terms irrespective of whether the additional term is 
statistically significant. 

2. ADJUSTED R2: 

The adjusted coefficient of multiple determinations is 
defined as 

2 21
1 (1 )adj
n

R R
n p

−
= − −

−
 (7) 

where n is the number of design points, and p is the 
number of regression coefficients. 

Unlike 2R , 2
adjR  decreases when unnecessary terms 

are added.  Hence, 2
adjR  along with 2R  can be used to 

comment on the quality of response surface and the 
presence of unnecessary terms in the response surface. 

3. ROOT-MEAN-SQUARE (RMS) ERROR: 

The root-mean-square error, RMS, and the predicted 
RMS errors are defined, respectively, as  
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The predicted RMS is a measure of the variance 
(standard deviation) of the error. 

4. PRESS: 

The prediction error sum of squares provides error 
scaling.  To estimate the PRESS, an observation is 
removed at a time and a new response surface is fitted 
to the remaining observations.  The new response 
surface is used to predict the withheld observation.  The 
difference between the withheld observation and the 
computed response value gives the PRESS residual for 
that observation.  This process is repeated for all the 
observations and the PRESS statistic is defined as the 
sum of the squares of the n PRESS residuals.  When 
polynomial response surfaces are used, the repetitive 
estimate of PRESS residuals can be obviated by using 
the following expression: 
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where ( ) 1T T−=E X X X X  and X  is the Grammian 
matrix ( )ˆ =y Xb , and b  is the coefficient vector.  Data 
points at which iiE  are large will have large PRESS 
residuals.  These observations are considered high 
influence points.  That is, a large difference between the 
ordinary residual and the PRESS residual will indicate a 
point where the model fits the data well, but the model 
built without that point has a poor prediction.  A RMS 
version of PRESS allows us to compare the 
PRESS_RMS with the RMS errors.  This permits us to 
explore the influence that few points might have on the 
entire fit.  The PRESS_RMS is expressed as: 

PRESS
PRESS_RMS=

n
 (11) 

PRESS can be used to estimate an approximate 2R  for 
prediction as: 
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The denominator in Eq. (12) is referred to as total sum of 
the squares. 




