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Material Property Identification
and Sensitivity Analysis Using
Micro-Indentation
Mechanical properties of materials in small-scale applications, such as thin coatings, are
often different from those of bulk materials due to the difference in the manufacturing
process. Indentation has been a convenient tool to study the mechanical properties in
such applications. In this paper, a numerical technique is proposed that can identify the
mechanical properties using optimization and evaluate the robustness of identified mate-
rial properties using sensitivity analysis. First, two response surfaces are constructed for
loading and unloading curves from the indentation experiment of a gold film on the
silicon substrate. Unessential coefficients of the response surface are then removed based
on the test statistics. Unlike the traditional methods of identification, the tip geometry of
the indenter is included because its uncertainty significantly affects the results. In order
to validate the accuracy and stability of the method, the sensitivity of the identified
material properties with respect to each coefficient is analyzed. It turns out that the
plastic hardening parameter is the most sensitive to the experimental data. In addition,
all material parameters are sensitive to the coefficients of higher-order bases. However,
their effects are diminished because the magnitudes of these coefficients are small.
�DOI: 10.1115/1.3142902�

Keywords: indentation, material property identification, regression, sensitivity analysis,

elastoplasticity, contact, tip geometry
Introduction
Microscale materials show different properties from those of

ulk materials �1�. Recent advances in technology allow experi-
ents to be carried out on such a small scale. Indentation is a

owerful tool to study mechanical properties. It is widely used in
he automotive, semiconductor, biomedical, and magnetic record-
ng industries, and in the academics �2–4�. Extensive reviews of
ndentation techniques are available in the literature �5–7�. In this
aper, a numerical method is presented that can identify the ma-
erial properties using the data obtained from indentation experi-

ents and evaluate the sensitivity of identified material properties
ith respect to experimental data.
Recently, numerical studies emerged to catch up with the ex-

erimental research on microscales. Numerical methods can de-
ermine properties or parameters that are difficult to obtain from
xperiments. They are able to elucidate physical mechanisms or
rocedures that are difficult in experiments. They can also provide
uggestions and give a guide for experiments.

For nanoscales, molecular dynamics �MD� simulation, as pio-
eered by Landman et al. �8�, is a useful tool for analyzing nano-
etric or atomic phenomena, including indentation and scratch.
sing MD simulation, indentation and scratch of different mate-

ials were broadly studied to explore the inner physical mecha-
ism �9–11�. However, MD simulation is limited by the scale of
he problem in time and dimension. Typically, the current compu-
ational facilities can only accomplish the simulation conditions of
ens or hundreds of picoseconds and hundreds of angstroms.

oreover, the small indenter size used in MD simulation �tens of
ngstroms� is often too small for practical applications. Thus, a
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different tool that can cover larger scales in time and dimension is
required for the nano-/microscale simulation of indentation prob-
lems.

Another type of tool is the quasicontinuum method, which
bridges atomistic simulations and continuum modeling. Several
types of quasicontinuum methods were developed by the research
community �12–17�. The general ideas are similar to each other,
that is, to use continuum assumptions to reduce the degrees-of-
freedom and computational demands in homogeneously and
smoothly deformed regions, and to use the atomistic model to
capture atomistic detail in regions where it is required. Some me-
chanical problems were successfully solved by this method, but
some issues are still under discussion, such as coupling between
the continuous and atomistic regions, and the inertial and thermal
effects.

Finite element analysis �FEA�, based on continuum assumption
and domain discretization, was developed to analyze microscale
indentation and scratch problems. Dao et al. �18� and Bucaille et
al. �19� used FEA to study instrumented sharp indentation and
proposed analytical expressions of elastoplastic properties based
on the FEA results. Bucaille et al. �20� used FEA to perform
scratch analysis using a cone-shaped indenter in order to study the
influence of rheology. Most small-scale indentation experiments
in reality are within submicron scale �hundreds of nanometers�
due to the size of the indenter geometry. The feasibility and accu-
racy of FEA for this scale are being investigated.

Recent technological advances in indentation test facilities have
led to the availability of accurate measurements of indentation
force and indentation depth, from which hardness and other me-
chanical properties can be extracted. At the same time, theoretical
studies have emerged to elucidate mechanical characterization and
physical mechanisms �1,18,21–24�. For example, Goddard and
Wilman �24� developed the analytical models for friction coeffi-
cients of different indenters. Oliver and Pharr �22� and Doerner
and Nix �23� developed methods to obtain hardness and the elastic

modulus from the maximum load and the initial unloading slope.
Recently, Dao et al. �18� and Bucaille et al. �19� constructed di-
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Downloa
ensionless functions to determine the plastic characterization of
etals based on FEA simulation. Kogut and Komvopoulos �25�

sed indentation techniques to identify elastoperfectly plastic ma-
erial properties with frictionless spherical indenter tip.

In practice, the success of FEA strongly depends on the accu-
acy in the material properties. For macroscales, many standard
xperimental procedures were developed to obtain these proper-
ies. In microscales, however, very limited experimental proce-
ures are available due to scale-related issues �18�. First, it is
ifficult to fabricate a perfect indenter shape. The effect of an
naccurate tip geometry becomes significant when the indentation
epth is small. In addition, the measurement error in such a small
cale can be critical. Sensitivity analysis with respect to experi-
ental data can provide important information in such a case.
The organization of this paper is as follows: In Sec. 2, the

easibility of FEA is first verified to be a useful and powerful tool
o study microscale indentation by studying the indentation re-
ponse of elastoplastic aluminum alloys. A new procedure using
ultivariable optimization is then proposed to identify the mate-

ial properties of a gold film on a silicon substrate in Sec. 3. Since
xperimental error in such a small scale can significantly affect
he accuracy of the identified material properties, sensitivity
nalysis of optimum material properties to experimental data is
resented in Sec. 4, followed by conclusions in Sec. 5.

Indentation Simulation
As discussed above, FEA is based on the continuum assump-

ion. When a problem reaches atomic scale, this assumption is no
onger valid. The problems studied below are larger than atomic
cale but less than micrometers. The objective of this section is to
erify the feasibility and accuracy of FEA at this scale. In Sec.
.1, we will study smaller scale indentation in the range of na-
ometers. Since the motion of the indenter is slow and uniform,
onlinear quasistatic FEA is performed with elastoplastic material
nd contact constraints between the indenter and specimen. Since
he deformation is large and nonuniform, the large deformation
heory is used, by which detailed pileup and sinkin effects can be

ore accurately captured. In this paper, a commercial program,
BAQUS �26�, is used for numerical simulation.

2.1 Indentation Modeling. The indentation by a diamond tip
n two different types of aluminum alloys with a constant loading
nd unloading rate is implemented. The indented specimen has the
imensions of 300 �m in depth and 300 �m in length. The size
f the sample must be large enough such that the effect of the far
eld boundary is not significant. In addition, the element near the

ndenter tip must be small enough so that the deformation at the
ip can be captured accurately.

The Berkovich indenter is used in this model. The 3D Berkov-
ch indenter is approximated by an axisymmetric 2D model. The
rojected area of the 2D cone is the same as that of the 3D Berk-
vich indenter. The equivalent half angle of the indenter becomes
=70.3 deg.
The two aluminum alloys 6061 and 7075 were used as the

ndented specimen. A homogeneous section property was assumed
n the model. Table 1 shows the material properties for the two
luminum alloys in the literature �18�. In Table 1, E is the elastic

Table 1 Material properties of aluminum alloys †18‡

aterial
E

�GPa�
�Y

�MPa� n �

l 6061 66.8 284 0.08 0.33
l 7075 70.1 500 0.122 0.33
odulus, �Y is the initial yield stress, n is the strain hardening
xponent, and � is Poisson’s ratio. The indenter is made of dia-
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mond with a high elastic modulus of 1100 GPa.
The total strain is decomposed by two parts, the elastic strain �e

and the plastic strain �p, such that

� = �e + �p �1�
The elastic behavior is modeled by the elastic modulus and the
plastic behavior is modeled by a simple power law

� = � E� � � �y

K�n � � �y
� �2�

where K is a strength coefficient. Considering continuity at the
initial yield point,

�Y = E� = K�n �3�

such that K=En�Y
1−n. The material behaviors of AL 6061 and 7075

are shown in Fig. 1.
An axisymmetric finite element model is constructed to analyze

the indentation process �Fig. 2�. Due to the high elastic modulus
and brittle behavior, the diamond indenter is modeled using a rigid
body. Mesh convergence study was performed by monitoring the
displacement at the tip of the indenter. The element size of about
1.5 �m turns out to be reasonable. In order to represent indenta-
tion accurately, the elements near the indenter have a small size
with an edge length of 1.5 �m. Far from the contact area, the
elements have a typical edge length of 12 �m. A total of 4763
quadrilateral elements are used to build the indented specimen.

The surface-to-surface contact constraint was established be-

Fig. 1 Elastoplastic material behaviors of aluminum alloys
Fig. 2 Finite element model of axisymmetric indentation with a
conical tip
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ween the rigid indenter and top surface of the specimen. The
mpenetrability condition was imposed between the “master sur-
ace” indenter and the “slave surface” specimen. Mathematically,
he contact problem is equivalent to constrained optimization,
hich can be solved using the Lagrange multiplier method. Since

he friction coefficient is difficult to calculate and since the inden-
ation problem does not have large slip, frictionless contact is
ssumed. However, friction will be an important factor in the
cratch simulation.

In Fig. 2, the bottom surface of the specimen is fixed in the
-direction and the left side is fixed in the x-direction. The incre-
ental solution procedure is displacement controlled with a

oading/unloading rate of 20 �m /s in the y-direction. For AL
075, the indentation is performed for 300 increments and then
he indenter is removed in order to observe the elastic spring-back
nd the plastic’s permanent deformation. For the AL 6061, the
ndentation is carried out for 200 increments. Even though the
ndentation depth is only 15 �m, the contact constraints bring
onlinearity.

2.2 Simulation and Experimental Results. The indentation
orce as a function of the indentation depth during the loading and
nloading steps is an important factor in evaluating the elastoplas-
ic properties of the material. Figure 3 shows the relation between
he indentation force and the indentation depth of both aluminum
lloys. For AL 7075, the maximum force reaches around 10 N
hen the indentation depth is 15 �m. For AL 6061, the maxi-
um force reaches around 3 N when the indentation depth is

0 �m. The slope of the force-depth curve gradually increases
ecause the material has strain hardening and the contact area is
ncreased. The analysis results show a consistent behavior with
he experiments �18�, which verifies the feasibility and accuracy
f FEA for small scale indentation problems.

The equivalent stress distribution of AL 7075 after unloading is
hown in Fig. 4. As expected, the maximum residual stress occurs
ust below the tip location. In addition, the residual stress at the
ile-up region is also high. The equivalent plastic strain in Fig. 5
ndicates that the majority of the volume under the indenter has
lastic strains exceeding 19.41%, and the maximum strain is
33%.

Identification of the Material Properties of a Gold
ilm
Based on the study of aluminum alloys, the material properties

f a gold film on a silicon substrate are estimated by comparing

ig. 3 Indentation response of aluminum alloys by finite ele-
ent analysis and experiment †18‡
he history of the force-depth curve between the indentation ex-
eriment and FEA. The 180 nm thick crystalline gold used in the

ournal of Tribology
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film is produced by the electron beam evaporation process. The
gold material has 99.99% purity with no native oxide. Since the
grain size of the gold is much smaller than that of the bulk mate-
rial, the material properties are expected to be different from those
of bulk materials. The crystalline gold is modeled using an elas-
toplastic material with strain hardening. The silicon substrate is
assumed to be elastic because the experiment shows no permanent
deformation.

In Sec. 2, the geometry of the indenter is assumed to be a
conical shape. The radius of the tip is ignored because it is rela-
tively small, compared with the indentation depth. However, when
the indentation depth is small, the detailed geometry of the in-
denter can affect the results from both experiment and analysis.
For example, the indentation depth of the gold film is around 50
nm, whereas the radius of the tip is around 1000 nm. Since only a
small portion of the tip is indented, the tip can be considered a
sphere. Then the accuracy of the indenter geometry contributes to
the force-depth response during the indentation.

In general, the indenter geometry can be obtained from the
scanning electron microscopy �SEM� image �Fig. 6�. However,
the tip geometry contains a certain level of uncertainty because it
is obtained from pixel images. The effect of such uncertainty is
usually small when the indentation depth is large enough. How-
ever, the effect becomes significant when the indentation depth is
less than 100 nm, which is the case of interest. By fitting scanned
points in the image, it is shown in Fig. 6 that the radius of the tip
is between 1.05 �m and 1.2 �m. Due to the approximation of
the fitting, it is not accurate to use the fitted curve as the indenter

Fig. 4 Equivalent stress contour plot for AL 7075 after unload-
ing „unit: MPa…
Fig. 5 Effective plastic strain near the indenter tip
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hape in the study. The unique feature of this paper is the inclu-
ion of the tip geometry as a design variable during material prop-
rty identification.

A constrained nonlinear multivariable optimization method is
mplemented to identify the material properties, as well as the
ffective radius of the tip. This method seeks the minimum of a
unction �the error between the experiment and numerical analy-
is� of several variables starting with the initial estimation. The
esign variables are the elastic modulus E, the initial yield stress
Y, the strain hardening exponent n, Poisson’s ratio �, and the

ndenter radius r.
The objective function is the error in the force-depth curves

etween the experiment and FEA. Figure 7 shows the force-depth
urve from the experiment and the simulation with the initially
stimated material properties �see Table 2�. The initial estimation
s made from the properties of bulk gold material. It is clear that
he material behavior is quite different due to the difference in

aterial properties. Let the indentation depth be discretized by N
iscrete points, out of which the loading step has N1 data points,
hile the unloading step has N2 points. Mathematically, the ob-

ective function can then be defined as

f =
1

N�
i=1

N

�Fs
i − Ft

i�2 �4�

here Fs
i and Ft

i are the indentation forces from experiment and
nalysis, respectively, at the ith indentation depth.

ig. 6 The tip geometry of the indenter from SEM and its ap-
roximations with a sphere
ig. 7 Indentation force versus indentation depth with initial
stimation of material properties

31402-4 / Vol. 131, JULY 2009
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In order to compute the difference between the simulation force
Fs

i and experimental force Ft
i, the two forces should be calculated

at the same indentation depth ui. However, it is impractical to
obtain the same simulation data pair �Fs

i ,ui� with the experiment
data pair �Ft

i ,ui� because both are performed independently. In
order to make this comparison consistent, the experimental data
are approximated using a polynomial response. The approximate
response has the following expression:

Ft�u� = �
i=1

k

�ixi�u� �5�

where Ft�u� is the approximated indentation force, �i is the re-
gression coefficient, and xi�u� is the regression basis. In this paper,
a monomial basis of order five is used, i.e., k=6 and �xj�u��
= �1 u u2 u3 u4 u5�. Since the force-depth curves for loading
and unloading are different, two responses are constructed: one
for the loading step and the other for the unloading step. Figure 8
shows the experimental data points and the response surface con-
structed by calculating the regression coefficients in Eq. �5�, for
both the loading and unloading steps. In Fig. 8, the abscissa in the
unloading step represents the tip location relative to the maximum
depth from the loading step.

Once the response surfaces Ft�u� of the experimental data have
been obtained, the optimization problem can be solved to mini-
mize the error function in Eq. �4�. The optimized material prop-
erties and the radius of the tip are shown in the last column of
Table 2. The most significant difference between the initial and
optimum values occurs in the elastic modulus.

Figure 9 shows the force-depth comparison between the experi-
ment data, initial, and optimum designs. The maximum indenta-
tion force at optimization is −495.69 �N, while that from experi-
ment is −495.04 �N. The error in the objective function reduces
significantly from the initial design �37.2 �N� to the final optimi-
zation �0.29 �N�. The force-depth curve with optimization values
matches the experiment curve much better than the initial design
parameters, which also shows the accuracy of the optimization.

Table 2 Initial and identified material properties

Design
variable

Lower
bound

Upper
bound

Initial
estimation

Optimized
value

E �GPa� 25 80 78.5 33.35
�Y �MPa� 150 450 300 353.71
n 0.05 0.3 0.122 0.115
� 0.1 0.45 0.3 0.220
r ��m� 1.05 1.2 1.1 1.090
Fig. 8 Force distribution in the loading and unloading steps
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ince the slope of the unloading curve is strongly related to the
lastic modulus, the difference in the unloading slope between the
nitial and the final designs verifies that the initial estimation of
he elastic modulus was too high.

In the microscale indentation, indenter geometry plays an im-
ortant role in the results. Figure 10 compares the optimization
esults of identification with and without inclusion of the radius of
he tip as a parameter. It is clear that the identified material prop-
rties with the radius of the tip fit well with the experimental
esults.

Sensitivity Analysis
Indentation forces and depths that are measured from the ex-

eriment are used as a reference during the material property iden-
ification. These experimental data are fitted using response sur-
aces such that continuous responses can be obtained. The
dentification problem then minimizes the difference between
hese response surfaces and the results from FEA by changing the

aterial properties and the tip radius. Since experimental data
ay have measurement errors and noise, they are not accurate in

eneral and their effect on the identified parameter values can be
ignificant. This is especially so because, since the magnitudes of
orces and depths are small in the thin film indentation, these
rrors and noises may significantly affect the accuracy of the iden-

ig. 9 Force and depth comparisons of experimental, initial
esign, and optimized results
ig. 10 Comparison of the force-displacement curve with the
dentified material properties „with and without varying tip
adius…

ournal of Tribology
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tified material properties. The effect of identified parameter values
with respect to the experimental data can be found using the sen-
sitivity analysis technique �27�.

In practice, calculating sensitivity with respect to many experi-
mental data is exhaustive and cannot provide physically meaning-
ful results. Since experimental data are represented by the coeffi-
cients of the response surface, the sensitivities with respect to
these coefficients are calculated in this paper. The sensitivity in-
formation will provide the dependence of the identified material
parameters on the accuracy of experimental data.

4.1 Significance of Coefficients. Before performing the sen-
sitivity analysis, the test that can determine the significance of
each approximation coefficient in Eq. �5� is conducted. Such a test
is useful in determining the importance of each regression vari-
able in the model. For example, the model can be more effective
by including additional variables. On the other hand, no signifi-
cant difference can be found by deleting one or more variables
that are already in the model �28�.

Let us consider the regression basis xj and its coefficient � j. It
is clear that if the coefficient � j is small, then xj can be deleted
from the model without significantly affecting the results. More
specifically, the criterion of the deletion is based on the following
test statistic:

t�j
=

� j

��2Cjj

�6�

where Cjj is the diagonal element of �XTX�−1 corresponding to � j,
�2 is the estimated variance given by

�2 =
SSE

N − k
�7�

and X is the regression variable matrix defined as

�X� = 	
x1

1 x2
1 . . . xk

1

x1
2 x2

2 . . . xk
2

] ] � ]

x1
N x2

N . . . xk
N

 �8�

where k is the number of the regression bases and N is the number
of experiment observations. In Eq. �7�, SSE is the square-sum
residuals defined as

SSE = �
i=1

N

�Ft
i − F̄t

i�2 �9�

where Ft
i is the observation value from the experiment and F̄t

i is
the fitted value.

The test statistic is distributed as the student distribution tN−k
�28�. If the test statistic is small, then the contribution of the
regression variable and its coefficient is small. In general, a criti-
cal statistic t	/2,N−k, depending on parameter 	, is first determined.
The regression basis xj and its coefficient � j are kept if its test
statistic is larger than the critical statistic, as

�t�j
� � t	/2,N−k �10�

which means that the effect of the regression basis is significant
�28�. In the identification problem of Sec. 3, the rejection criterion
in the student’s distribution is selected as 	=0.05. Thus, the criti-
cal statistic for both loading and unloading steps becomes 1.960.

In the nonlinear regression in the loading and unloading steps,
the test statistics for each regression coefficient is shown in Table
3. It is noted that for the loading step the magnitudes of test
statistics are increased at the higher order of polynomials. The
opposite trend is observed for the unloading step. All test statistics
are greater than the critical statistic except for � in the loading
0
step. Thus, the constant term in the response surface of the loading
step can be removed without significantly affecting the result.
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4.2 Sensitivity Analysis. With the regression variables that
ave significant effects on the response, the sensitivities of the
dentified parameters with respect to the regression coefficients
re calculated. Consider the general form of an optimization prob-
em with inequality constraints defined as

minimize f�d,p�
subject to gj�d,p� 
 0, j = 1, . . . ,k

�11�

here d= �E ,�Y ,n ,� ,r� is the vector of material properties and
ndenter geometry that can be changed during the optimization,
nd p is a fixed parameter during the optimization �for example, a
egression coefficient�. The goal is to calculate the sensitivities of
he optimized parameter d� with respect to the regression coeffi-
ient p=�i.

The optimality condition for the above optimization problem
an be stated using the Karush–Kuhn–Tucker condition �27� as

� f

�di
− �

j=1

q
�gj

�di
� j = 0, i = 1, . . . ,m

gj = 0, j = 1, . . . ,q �12�

here m is the number of identified parameters, q is the number of
ctive constraints when the optimization problem is converged,
nd � j is the Lagrange multiplier for the jth active constraint.
ince the optimality condition must satisfy for all parameters, Eq.
12� can be differentiated with respect to parameter p to obtain
27�

�A − Z�
�d�

�p
− �M�

��

�p
+

���f�
�p

−
��M�

�p
� = 0

�M�T�d�

�p
+

�g

�p
= 0 �13�

here � is the vector of Lagrange multipliers obtained while solv-
ng the optimization problem, ��f� j =�f /�dj is the derivative of
he objective function, �M�= ��gj /�di� is the derivative of the ac-
ive constraints, �A� is the Hessian matrix of the objective func-
ion, and �Z� is the matrix defined as

Table 3 Nonlinear regression and significance statistics

oef.

Loading step Unloading step

Value Stat. Value Stat.

0 6.945
10−1 0.649 4.966
10+2 �279.179

1 −2.391
10+0 �6.263 8.476
10+1 23.009

2 −6.304
10−1 �14.829 −6.953
10+0 �3.335

3 3.358
10−2 17.101 1.235
10+0 2.684

4 −8.060
10−4 �20.324 −1.353
10−1 �3.156

5 6.585
10−6 22.728 4.638
10−3 3.295

Table 4 Normalized sensitivity of identified pa
„loading step…

Sensitivity �2 �3

��E� /��i� /E� −3.0169
10−1 −1.5676
10+1

���Y
� /��i� /�Y

� −2.4836
10−1 1.0788
10+1

��n� /��i� /n� 5.6896
10−1 −3.9924
10+1

� � −1 +1
��� /��i� /� 1.3138
10 2.2072
10
��r� /��i� /r� 2.0355
10−2 −3.1191
10+0 −

31402-6 / Vol. 131, JULY 2009
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�Zkl� = �
j=1

q
�2gj

�dk � dl
� j �14�

The sensitivity equation �13� is a linear system of equations and
solves for �d� /�p and �� /�p.

When there is no active constraint, the sensitivity formulas in
Eq. �13� can be significantly simplified as

�A�
�d�

�p
+

���f�
�p

= 0 �15�

Thus, in order to calculate the sensitivity of the identified param-
eters with respect to a regression coefficient, the gradient of ob-
jective function and its Hessian matrix are required.

From the expression of the objective function in Eq. �4�, these
terms can be calculated as

� f

�dj
=

1

N�
i=1

N

2�Fs
i − Ft

i�
�Fs

i

�dj
�16�

and

�2f

�dj � dk
=

2

N�
i=1

N � �Fs
i

�dj

�Fs
i

�dk
+ �Fs

i − Ft
i�

�2Fs
i

�dj � dk

 �17�

In addition, the coupled term can be expressed by

�

�p
� � f

�dj

 = −

2

N�
i=1

N
�Ft

i

�p

�Fs
i

�dj
�18�

In the case of the loading step,

�

��m
� � f

�dj

 = −

2

N�
i=1

N1

�ui�m−1�Fs
i

�dj
�19�

Or, in the case of the unloading step,

�

��m
� � f

�dj

 = −

2

N�
i=1

N2

�ui�m−1�Fs
i

�dj
�20�

where N1=431 and N2=26 are taken from the loading and unload-
ing steps, respectively.

In order to solve the sensitivity equation �15�, the derivatives
are calculated using the central finite difference method. For ex-
ample, the derivative of Fs

i can be approximated by

�Fs
i

�dj
=

Fs
i�dj + �dj� − Fs

i�dj − �dj�
2�dj

�21�

where �dj is a small perturbation of the parameters. The second-
order derivatives of Fs

i are much smaller than the first term and,
thus, they are negligible.

Tables 4 and 5 show the sensitivities of the identified param-
eters with respect to the regression coefficients at the loading and
unloading steps, respectively. Since the magnitudes of the param-
eters are different, the sensitivities are normalized using their
identified values. As shown in the two tables, the sensitivity of the

eters with respect to regression coefficients

�4 �5 �6

8.3976
10+2 −4.3792
10+4 −2.2389
10+6
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10+4 3.0602
10+6
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10+5 −9.8310
10+6

+3 +4 +6
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Downloa
dentified parameters increases at the higher-order polynomials for
oth loading and unloading steps. This result foresees the diffi-
ulty in the identification problem. In the view of the regression
oefficients in Table 3, the values of the coefficients are smaller at
he higher-order polynomials, but they are more sensitive to the
dentified parameters.

In both the loading and unloading steps, the hardening exponent
lways has the biggest sensitive value compared with other vari-
bles with respect to each regression coefficient, which means that
he hardening exponent is the most sensitive variable due to the
rror in the experiment measurement.

Conclusions
Mechanical properties of materials in microscales are different

rom those of bulk materials. In this paper, a new procedure is
roposed to identify the material properties of elastoplastic thin
old films by �i� including the tip geometry of the indenter as a
esign variable, �ii� approximating the experimental data using
olynomial responses, and �iii� performing sensitivity analysis
ith respect to regression coefficients.
A comparison between experiment and analysis is made for the

esponses throughout the whole indentation process, not the data
t the end of the process. This is important because the material
hows loading history dependent responses. The uncertainty re-
ated to the indenter tip geometry was taken care of by including
he radius of the tip as a variable of the optimization. Two fifth-
rder response surfaces were constructed to fit the experimental
ata and a test statistic is used to identify unessential coefficients.
t turns out that the constant term of the load step is unessential
nd, thus, removed. The response surfaces have smaller values of
oefficients at the higher-order terms, which is common for the
egular response surfaces. However, the test statistics showed dif-
erent trends for loading and unloading steps. In the case of the
oading step, the test statistic is higher for the higher-order terms.
n the case of unloading step, however, it is higher for the lower-
rder terms. Sensitivity with respect to the regression coefficients
howed consistent trends: higher-order terms have higher sensi-
ivities. This trend foresees difficulties in material property iden-
ification, as smaller coefficients have higher sensitivity. It turns
ut that the hardening exponent is the most sensitive variable due
o the error in the experiment measurement.
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