
Structural Safety 32 (2010) 124–137
Contents lists available at ScienceDirect

Structural Safety

journal homepage: www.elsevier .com/ locate/s t rusafe
Multiple tail median approach for high reliability estimation

Palaniappan Ramu a,*,1, Nam H. Kim b, Raphael T. Haftka b

a Dept. of Aerospace and Mechanical Engineering, University of Nortre Dame, Notre Dame, IN 46556, USA
b Dept. of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 May 2008
Received in revised form 14 September 2009
Accepted 30 September 2009
Available online 20 November 2009

Keywords:
Reliability
Cumulative distribution function
Tail modeling
Monte Carlo simulation
0167-4730/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.strusafe.2009.09.002

* Corresponding author. Tel.: +1 352 870 5972; fax
E-mail address: palramu@gmail.com (P. Ramu).

1 Formerly Dept of Mechanical and Aerospace Engi
Gainesville, FL 32611, USA.
Sampling-based reliability estimation with expensive computer models may be computationally prohib-
itive when the probability of failure is low (or high reliability). One way to alleviate the computational
expense is to extrapolate reliability estimates from observed levels to unobserved levels. Classical tail
modeling techniques, two of which are discussed in this paper provide extrapolation models using
asymptotic theory by approximating the tail of the cumulative distribution function (CDF). This paper
proposes three additional tail extrapolation techniques in performance space. The proposed tail extrap-
olations are based on the application of nonlinear transformation to the CDF of the performance measure.
The proposed approach called the multiple tail median employs all the five techniques simultaneously
and uses the median as the best estimate. The range of the five estimates is used as an estimate of the
order of magnitude of error in the median. The method is demonstrated on four standard statistical dis-
tributions and two engineering examples. It is found that the best tail model changes for different distri-
butions. Also, for the same distribution no single model performed best at different extrapolation levels.
Thus, no single tail model is preferable. We also find that the median is usually much closer to the best of
the five estimates than to the worst, and that the range mostly varies between 2 and 10 times the mag-
nitude of the error in the median. Therefore the median estimate serves as insurance against bad predic-
tions if one was to use a single estimate. For the examples studied, the use of tail modeling reduced the
number of samples required for given accuracy by one to three orders of magnitude.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Approaches available for reliability assessment and analysis can
be widely classified as analytical and simulation approaches. Ana-
lytical approaches use available knowledge of the system but are
often limited to single failure modes, whereas simulation methods
like Monte Carlo simulation (MCS) are computationally intensive
but can handle multiple failure modes. Moreover, they can handle
any type of performance functions that dictate the behavior of the
system, unlike analytical approaches which are mostly appropriate
for mildly nonlinear performance functions. Many real life applica-
tions exhibit multiple failure modes and the performance function
is not available explicitly in a closed form, rather is available
through an algorithm such as finite element analysis. Since there
is no information on nonlinearity of the performance function,
MCS is the obvious choice in such situations. However, reliability
analysis using MCS is computationally prohibitive. Researchers
develop variants of MCS or other approximation methods like
ll rights reserved.
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response surface or surrogate metamodels that replace the expen-
sive simulations.

High reliability, typical of aerospace applications translates to
small probability of failure, determined by the tails of the statistical
distributions. In some cases, the safety levels can vary by an order of
magnitude with slight modifications in the tails of the response
variables [1]. Therefore, the tails need to be modeled accurately.
Limitations in computational power prevent us in employing MCS
to model the tails. One way to alleviate the computational expense
is to extrapolate into high reliability levels with limited data at low-
er reliability levels. Statistical techniques from extreme value the-
ory (referred to as classical tail modeling techniques here) are
available to perform this extrapolation. The basic idea in tail
modeling techniques is to approximate the conditional cumulative
distribution function (CDF) above a certain threshold by the Gener-
alized Pareto Distribution (GPD) [2]. In order to do this, one needs to
estimate the parameters of GPD. There are several competing
methods available for parameter estimation. This paper uses the
maximum likelihood and least-square regression techniques.

In addition to the GPD-based techniques, we propose three
additional extrapolation techniques in the performance space.
The first technique applies a nonlinear transformation to the CDF
of the performance measure and approximates the tail of the
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Nomenclature

a, b distribution parameters for Sr data
a0, b0 distribution parameters for native gr data
D tip displacement, Eq. (17)
D0 allowable deflection, Eq. (17)
E Young’s modulus, Eq. (17)
ei error in individual methods, Eq. (13)
eMTM error in the MTM estimate, Eq. (14)
FGðgÞ CDF of G, Eq. (6)
FGðuÞ CDF of G at u, Eq.(6)
FuðzÞ conditional CDF, Eq. (4)
F̂n;w approximated conditional CDF, Eq. (3)
FX load in X direction, Eq. (16)
FY load in Y direction, Eq. (16)
G performance measure, Eq. (2)
Gd displacement performance measure, Eq. (17)
Gp (p � N)th quantile of G, Eq. (7)
Gs stress performance measure, Eq. (16)
gc capacity, Eq. (8)
gr response, Eq. (8)
L length, Eq. (17)
5m median of five estimates, Eq. (14)
1000me median of MTM error over 1000 repetitions
1000mg median of g over 1000 repetitions
N total number of samples
Nex number of exceedances (samples in tail region)
Pi empirical CDF, Eq. (10)
p probability
Pf failure probability, Eq. (1)
R yield strength, Eq. (16)
5r range of five estimates, Eq. (12)

Sr reciprocal of conventional safety factor, Eq. (8)
t thickness, Eq. (16)
u threshold for samples assumed to lie in tail region,

Eq.(2)
w width, Eq. (16)
�x mean of data
�̂x normalized mean
z exceedance, Eq. (2)
b reliability index, Eq. (1)
e2 transverse strain in first ply, Eq. (18)
eU

2 upper bound of allowable strain, Eq. (18)
g mean(error in MTM)/range of the five estimates, Eq. (15)
n shape parameter, Eq. (3)
1000le mean of MTM error over 1000 repetitions
1000lg mean of g over 1000 repetitions
rcomp computed stress, Eq. (16)
U standard normal cumulative distribution function (CDF)
w scale parameter, Eq. (3)
Beta-LT fit a linear polynomial to the tail data Inverse normal

cumulative distribution function applied to the CDF of Sr

Beta-QH fit a quadratic polynomial to half of the data. Inverse
normal cumulative distribution function applied to the
CDF of Sr

GPD Generalized Pareto Distribution
LnBeta-QT fit a quadratic polynomial to the tail data. Logarithmic

transformation applied to the beta transformed CDF
ML maximum likelihood
MTM multiple tail median
Reg regression
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transformed CDF using a linear polynomial fit to about top 10% of
the data. The second technique approximates the upper half of the
transformed CDF by a quadratic polynomial. The third technique
applies a logarithmic transformation to the already transformed
CDF and approximates the tail with a quadratic polynomial. It is
to be noted that all five techniques do not approximate the func-
tional expression of the model output; rather they approximate
the tail of CDF. Thus, they do not need to be tailored to any func-
tional form of the output.

Goel et al. [3] developed a method to extend the utility of an
ensemble of surrogates. When faced with multiple surrogates, they
explored the possibility of using the best surrogate or a weighted
average surrogate model instead of individual surrogate models.
In a similar fashion, in order to take advantage of both the classical
tail modeling techniques and alternative extrapolation schemes for
achieving the best prediction, we propose to apply all the tech-
niques simultaneously and use the median of the five estimates
as the compromise best estimate. Using all the techniques simulta-
neously is referred to multiple tail median (MTM).

The paper is structured as follows. Section 2 illustrates the five
tail modeling techniques. Classical tail modeling concepts and
alternative extrapolation schemes developed in this work are pre-
sented in Section 3. Section 4 discusses the proposed multiple tail
median (MTM) approach. The MTM approach is demonstrated on
standard statistical distributions followed by two engineering
examples in Section 5.
2. Tail extrapolation illustration

It would be beneficial to outline the proposed MTM before
explaining detailed extrapolation schemes. For that purpose, a log-
normally distributed random variable G with a data mean of 10
and standard deviation of 3 is taken as an example. Although the
proposed MTM approach does not require any assumptions on dis-
tribution type, we use a particular distribution in order to illustrate
the accuracy of the models. We assume that failure is defined when
G is large so that we are interested in extrapolating the right tail of
G. First, a set of 500 samples is generated according to its distribu-
tion parameters. It is assumed that the tail of the CDF starts at 0.9
so that 50 samples are there beyond the threshold. This tail distri-
bution is estimated using two classical tail modeling techniques
(described in Section 3), the maximum likelihood and regression
approaches. These are plotted in Fig. 1. In order to compare the
behavior at the tail, 1 – CDF is plotted in logarithmic scale. For ref-
erence, the empirical CDF using 500 and 100,000 samples are also
plotted. It is clear that 500 samples (50 samples in tail) are too few
to predict the tail at the probability level of 0.001, while the clas-
sical tail models are able to predict it with only moderate errors.

Since the GPD tail models are a form of extrapolation, polyno-
mial-based extrapolations can also be applied. The first proposed
extrapolation scheme is to perform a nonlinear transformation of
the CDF into the reliability index b and fit the tail portion (top
10% of the data) with a linear polynomial. This method is referred
to Linear Tail (Beta-LT). Reliability index and failure probability Pf

are related as:

Pf ¼ Uð�bÞ ð1Þ

where Uð�Þ is the CDF of the standard normal random variable.
We also propose to fit half of the samples with a quadratic poly-

nomial and refer to this approach as Quadratic Half (Beta-QH).
Fig. 2 shows these two extrapolation schemes along with empirical
CDFs (failure probabilities values are presented in the right axis).
Note that these two extrapolations can also predict tail with some



Fig. 1. Lognormal distribution. Classical tail modeling techniques – GP-ML (the tail model using maximum likelihood) and GPD-Reg, (using regression).

Fig. 2. Lognormal distribution. Linear fit to tail (Beta-LT) and Quadratic fit to half of the data (Beta-QH).

126 P. Ramu et al. / Structural Safety 32 (2010) 124–137
errors. In addition, Beta-LT is better at reliability index of 3.5, while
Beta-QH is better at 2.0. The third method we propose further ap-
plies a logarithmic transformation to the transformed CDF, and the
tail is approximated by a quadratic fit as shown in Fig. 3. This
method is referred to Quadratic Tail (LnBeta-QT).

It can be concluded from Figs. 1–3 that one cannot gauge
which method performs best for extrapolation. Since all five tail
models are forms of surrogates, a technique similar to the multi-
ple surrogate model [3] can be used to improve the quality of
extrapolation. The multiple tail median (MTM) approach utilizes
all five models and takes the median as a compromise estimate.
Fig. 4 shows the tail estimate using MTM along with the individ-
ual methods. Although the MTM is not always the best, it is usu-
ally the second best estimate as will be shown in Sections 4 and
5. In Fig. 4, the range of the five methods at three different reli-
ability indices is marked by double headed arrows. Mean of
these ranges computed over the entire extrapolation zone are
capable of representing the error associated with the median
estimate from MTM. A representative actual error is presented
in the plot.

It is to be noted that in all the five methods discussed above, the
abscissa is same while the ordinate varies. For the purpose of com-
parison, the error between the estimate and exact is measured in
terms of the abscissa quantity, the performance measure rather
than as a difference in the ordinate quantity (failure probability
or reliability index).



Fig. 3. Lognormal distribution. Quadratic fit to the tail (LnBeta-QT).

Fig. 4. Lognormal distribution. Multiple tail median-extrapolation region.
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3. Classical (GPD-based) tail modeling and alternative tail
extrapolation schemes

Tail modeling techniques are based on extreme value theory to
predict the probability of extreme events. The theory comprises a
principle for model extrapolation based on the implementation
of mathematical limits as finite level approximations. Since several
advantages are reported by working in performance measure space
[4], it is logical to attempt to perform tail modeling in the perfor-
mance measure space to estimate quantities at unobserved levels.
This section discusses the tail modeling technique and how to ap-
ply it to extrapolate a performance measure. The extrapolation
idea is based on the assumption of the continuity of the tail beyond
existing data which from a strict mathematical point of view can-
not be proved [1], p. 6.

In tail modeling, the interest is to address the excesses over a
threshold. In these situations, the Generalized Pareto Distribution
(GPD) arises as the limiting distribution. The concept of GPD is pre-
sented in Fig. 5. Let G be a performance measure which is random
and u be a large threshold of G. The observations of G that exceed u
are called exceedance, z, which is expressed as:

z ¼ G� u ð2Þ

The conditional CDF FuðzÞ of the exceedance given that the data
G is greater than the threshold u, is modeled fairly well by the GPD.
Let approximation of FuðzÞ using GPD be denoted by F̂n;wðzÞ where
n and w are shape and scale parameters, respectively. For a large
enough u, the distribution function of ðG� uÞ, conditional on
G > u, is approximately written as [5]:

F̂n;wðzÞ ¼
1� 1þ n

w z
D E�1

n

þ
if n–0

1� expð� z
wÞ if n ¼ 0

8<: ð3Þ

In Eq. (3), hAiþ ¼maxð0;AÞ and z > 0. In GPD, n plays a key role
in assessing the weight of the tail. When n is closer to 1, the distri-
bution is classified as heavy tailed; when n < 1, the distribution is
light tailed; medium tail exponential distribution has n � 0; and no



Fig. 5. Tail modeling of F(u) using the threshold u. The region of G > 0 is failure.
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tail uniform distribution has n � �1. Eq. (3) can be examined by
changing its parameters and plotting the distribution above the
threshold. Fig. 6 shows the different cumulative distributions that
are generated from the GPD when the scale parameter, r, is fixed
to one, and the threshold, u, is selected such that F(u) = 0.90. The
standard distributions discussed in this paper are selected in such
a way that tails with different heaviness are covered.

It is noted that conditional excess CDF FuðzÞ is related to the CDF
of interest FGðgÞ through the following expression:

FuðzÞ ¼
FGðgÞ � FGðuÞ

1� FGðuÞ
ð4Þ

From Eq. (4), the CDF of G can be expressed as:

FGðgÞ ¼ ð1� FGðuÞÞFuðzÞ þ FG ð5Þ

Substituting FuðzÞ from Eq. (2), Eq. (5) becomes:

FGðgÞ ¼ 1� ð1� FGðuÞÞ 1þ n
w
ðG� uÞ

� ��1
n

þ
ð6Þ

For simplicity of presentation, only the case of n – 0 is
considered here. The shape and scale parameters can be estimated
using either the maximum likelihood estimation or least-square
Fig. 6. Generalized Pareto Distributio
regression method. Let N be the total number of samples and p
be a probability level. Once we obtain estimates of the parameters
as n̂ and ŵ, it is possible to estimate the (p � N)th quantile of G de-
noted as Gp by inverting Eq. (6):

Gp ¼ F�1
G ðpÞ ¼ uþ w

n
1� p

1� FGðuÞ

� ��n

� 1

 !
ð7Þ

In structural applications, the performance measure is often de-
fined as a difference between the capacity of a system gc (e.g.,
allowable strength) and the response gr (e.g., maximum stress).
For the convenience of the following developments, we normalize
the performance measure using the capacity. Thus, we have

G ¼ gc � gr

gc
¼ 1� Sr ð8Þ

where Sr is the reciprocal of the conventional safety factor. Failure
occurs when G > 0, while the system is safe when G < 0. For the per-
formance measure in the form of Eq. (8), we need to approximate
the upper tail distribution.

The accuracy of this approach depends on the choice of the
threshold value u. Selection of threshold is a tradeoff between bias
and variance. If the threshold selected is too low, then some data
points belong to the central part of the distribution and do not pro-
vide a good approximation to the tails. On the other hand, if the
threshold selected is too high, the data available for the tail
approximation are too few and this might lead to excessive scatter
in the final estimate. The proper selection of threshold has impor-
tant repercussions on the estimated value of the shape factor [1,6]
and hence on the final estimates such as the quantile. Boos [7] sug-
gests that the ratio of Nex (number of tail data) over N (total num-
ber data) should be 0.02 (50 6 N < 500) and the ratio should be 0.1
for 500 6 N < 1000. Hasofer [8], suggests using Nex ¼ 1:5

ffiffiffiffi
N
p

. Caers
and Maes [1], propose to use a finite sample mean square error
(MSE) as a criterion for estimating the threshold. They use the
threshold value that minimizes the MSE. In a similar fashion,
Beirlant et al. [9], find an optimal threshold by minimizing an
approximate expression for asymptotic mean square error. The
other methods include plotting the quantile, shape or scale factor
or any quantity of interest with respect to different thresholds
and look for stability in the curve [5, pp. 84–86, 10]. Examples
n for different shape parameters.



Table 1
The four standard statistical distributions and their parameters.

Distribution Parameters

a b

Uniform �x�
ffiffiffiffi
12
p

2 r �x�
ffiffiffiffi
12
p

2 r
Normal �x r
Exponentiala �x� r �x
LogNormal lnð�xÞ � 0:5ðb2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ ðr�x Þ

2
h ir

a Single parameter distribution.

Table 2
Normal distribution. Summary of errors in Sr for different techniques at different
reliability indices (mean and median over 1000 repetitions of 500 samples).

Rel index 3 3.6 4.2

GP-MLE Mean 0.038 0.096 0.184
Median 0.037 0.096 0.191

GP-Reg Mean 0.010 0.043 0.116
Median 0.008 0.042 0.117

LnBeta-QT Mean 0.071 0.113 0.150
Median 0.056 0.085 0.105

Beta-LT Mean 0.044 0.062 0.081
Median 0.037 0.053 0.068

Beta-QH Mean 0.043 0.070 0.103
Median 0.037 0.059 0.087

MTM Mean 0.043 0.061 0.080
Median 0.037 0.053 0.068
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discussed in this paper use N = 500. Therefore, we adopt what Boos
[7] suggested and use the 90% quantile as the threshold (Nex = 50).

There are several methods such as maximum likelihood (MLE)
and regression to estimate the parameters, n̂ and ŵ. MLE is a pop-
ular statistical method that is used to make inferences about the
parameters of the underlying probability distribution of a given
data set. The likelihood of a set of data is the probability of obtain-
ing that particular set of data, given the chosen probability distri-
bution model. MLE is based on a likelihood function, which
contains the unknown distribution parameters. The values of these
parameters that maximize the likelihood function are the maxi-
mum likelihood estimators. The maximum likelihood method is
discussed in detail in [5].

The method of least squares minimizes the sum of the devia-
tions squared (least square error) from a given set of data. The
parameters are obtained by solving the following minimization
problem

Min
n;w

XN

i¼n

ðFGðgiÞ � PiÞ2 ð9Þ

where Pi is the empirical CDF and FG(gi) is the CDF of G in Eq. (6). The
empirical CDF is computed as:

Pi ¼
i

N þ 1
; i ¼ 1; . . . ;N ð10Þ

where N is the total number of samples. Least-square regression re-
quires no or minimal distributional assumptions.
Fig. 7. Transformation of the CDF of safety factor reciprocal (Sr). (a) CDF of Sr. (b) Inverse standard normal cumulative distribution function applied to the CDF. (c) Logarithmic
transformation applied to the reliability index.



Table 3
Normal distribution. Summary of lowest and highest error to MTM error (mean and median over 1000 repetitions of 500 samples).

Rel index Lowest error/MTM error Highest error/MTM error

25 percentile Mean Median 75 percentile 25 percentile Mean Median 75 percentile

3 0.08 0.18 0.25 0.34 1.57 1.77 2.14 1.99
3.6 0.26 0.58 0.60 1.00 1.92 2.19 6.80 3.51
4.2 0.56 1.00 0.79 1.00 2.13 2.51 20.74 7.13

Fig. 8. Normal distribution. Boxplot of g.

Table 5
Summary of the median ratio (g) of MTM Error in Sr to range for different
distributions.

Distribution 1000mg

Uniform 0.003
Normal 0.31
Exponential 0.23
Lognormal 0.20

Table 6
Number of samples (without extrapolation) required to achieve error levels obtained
using MTM.

Distribution Number of samples

Uniform 500,000
Normal 500,000
Exponential 500,000
Lognormal 350,000
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In addition to the previous two classical tail modeling tech-
niques, additional tail extrapolation techniques are proposed to
estimate Sr, the reciprocal of the safety factor, for low failure prob-
ability with samples that is sufficient only to estimate Sr for sub-
stantially high failure probability (low reliability index). Failure
probability can be transformed to reliability index by using Eq.
(1). The same transformation is applied here to the CDF of Sr. The
tail of the resulting transformed CDF is approximated by a linear
polynomial in reliability index in order to take advantage of fact
that normally distributed Sr will be linearly related to the reliability
index. This transformation is denoted by Beta-LT. Since this
approximation will not be accurate enough if Sr follows distribu-
tions very different from normal, the second technique approxi-
mates the relationship between Sr and reliability index from the
mean to the maximum data (about half of the sample) using a qua-
dratic polynomial and denoted as Beta-QH. The third technique
further applies a logarithmic transformation to the reliability index
of tail data that tends to linearize the tail of the transformed CDF.
This tail is approximated using a quadratic polynomial in ln(b) and
is denoted by LnBeta-QT. The three transformations are described
with the help of Fig. 7. A data set of N = 500 with a mean of 10
and variance 9 following a lognormal distribution is used to illus-
Table 4
Summary of the performance of individual techniques and MTM for different distribution

Rel index 3 3.6

Performance 1st best 2nd best MTM 1st best

Distributions
Uniform LnBeta-QT GP-Reg 1st GP-Reg
Normal GP-Reg GP-MLE 3rd GP-Reg
Exponential Beta-LT GP-Reg 3rd GP-Reg
LogNormal GP-MLE Beta-QH 2nd GP-MLE
trate the three techniques. In this paper we use least-square
regression to find the coefficients. However, MLE approach can also
be used to find the coefficients.

Fig. 7a shows the general relationship between Sr and 1 � Pf.
Applying the inverse standard normal CDF transformation modifies
the CDF of Sr as in Fig. 7b. If F(Sr) follows a normal distribution, this
curve will be linear. Therefore, the first technique approximates
the tail of the curve in Fig. 7b by a linear polynomial. In order to
take advantage of the data other than the tail, half of the curve
in Fig. 7b corresponding to b > 0 is approximated by a quadratic
polynomial in the second technique. To the reliability index in
the second technique, the third technique applies a logarithmic
transformation and approximates the tail of the curve shown in
Fig. 7c by a quadratic polynomial. In all the above three techniques,
once the coefficients of the polynomial are obtained, the Sr corre-
sponding to any higher reliability index can be found. It is to be
noted that with 500 samples, when using crude Monte Carlo sim-
ulation, it is only possible to estimate Sr at reliability levels less
than 3. The two classical (GPD-based) tail modeling techniques
and the three alternate extrapolation techniques presented in this
section allow predicting Sr at high reliability indices without using
large samples.

The alternative extrapolation techniques and classical tail mod-
eling techniques are conceptually the same. The major difference in
s.

4.2

2nd best MTM 1st best 2nd best MTM

GP-ML 2nd GP-Reg GP-MLE 2nd
Beta-LT 2nd Beta-LT Beta-QH 1st
Beta-LT 2nd GP-Reg Beta-QH 3rd
LnBeta-QT 1st LnBeta-QT Beta-QH 1st
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Fig. 9. Cantilever beam subjected to horizontal and vertical loads.

Fig. 10. Cantilever beam. Boxplot of g.
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perceiving the two classes is that the classical tail modeling tech-
niques model the CDF of Sr, whereas the extrapolation schemes
approximates the trend of Sr in terms of reliability index.
4. Multiple tail median

A total of five methods to model the tails of data were discussed
in the previous section. These five methods cover all possible CDF
shapes [14] as discussed in Appendix C. As will be seen in the
numerical examples the best technique to use may depend on
the distribution underlying the sample or even on the level of reli-
ability that is the target of the extrapolation. However, in real life
situations where there is no information on the form of the output
response distribution, there is no way to tell which technique per-
forms best.
Y

2

NY

Y

2

NY

Fig. 11. Geometry and loading for the composite
The multiple tail median (MTM) approach applies the five tech-
niques simultaneously and uses the median of the five estimates as
a compromise best estimate. It is observed that the median is a
more robust estimate than the mean, because the median is less
sensitive to the outliers than the mean. MTM is demonstrated first
on four different statistical distributions followed by two engineer-
ing examples. The GPD parameter for the four distributions is pre-
sented in Appendix B and it should be noted that all types of tails
are addressed. In the examples, it is observed that the median of
the five estimates is usually the second best compared to estimates
from individual techniques. Moreover, the range of the five esti-
mates provides an order of magnitude of the error in the median.
Thus using multiple tail median not only ensures to choose a good
estimate and buys insurance against bad predictions but also pro-
vides an estimate of the error. For illustration, we selected to use
different response (x = gr) distributions having the same mean
�x ¼ 2 and the same coefficient of variance COV = 7.5. In order to
compare the performance of the proposed method on different dis-
tributions, a common failure probability Pf ¼ 0:00135ðb ¼ 3Þ is
used. With these given, one has to find the parameters a0 and b0

(from Table 1) of the distribution and the capacity gc corresponding
to the common failure probability. gc is deterministic in this case. �x
is divided by gc to obtain the mean of Sr, �̂x. Now, �̂x and COV are used
to obtain the parameters a and b. For each distribution we generate
500 Latin hypercube samples (LHS). For each set of 500 samples we
obtain five different estimates of Sr, Sri, i = 1, . . . , 5 at each required
higher reliability index. The median (5m) and range (5r) of Sri are
calculated at every target reliability index. That is

5m ¼medianðSr1; . . . ; Sr5Þ ð11Þ

5r ¼maxðSr1; . . . ; Sr5Þ �minðSr1; . . . ; Sr5Þ ð12Þ

The exact values of Sr are obtained using inverse CDF functions.
The error in the median is calculated as:

ei ¼ jSrexact � Srij ð13Þ
eMTM ¼ j5m� Srexactj ð14Þ
NX

θ2

X

1

θ1

NX

θ2

X

1

θ1

laminate. X-hoop direction, Y-axial direction.



Fig. 12. Composite laminate of cryogenic tank. Boxplot of g ratio.
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The average of the error in MTM over all the reliability levels
checked (here usually seven though only three are presented) to
the average of the range over the same reliability level is g, That is

g ¼
X

bi

eMTMðbiÞ
X

bi

5rðbiÞ
,

ð15Þ

To average out the dependence on a random sample, the error
estimation and the ratio computation are repeated 1000 times
with different samples, and the mean and median values of the er-
rors are recorded as 1000le and 1000me, respectively. The implemen-
tation of this study is presented in Appendix A.

For each distribution, 1000le and 1000me of individual errors and
MTM error are calculated for reliability indices between 3 and 4.2.
The results for the normal distribution are presented in Table 2. It
was observed that the median was less sensitive to the outliers
than the mean. At b = 3, the regression (GPD-Reg) performs best
followed by the linear tail (Beta-LT). The MTM performs as well
as the second best. At b = 3.6, Beta-LT performs the best followed
by the regression (GPD-Reg) and MTM performs as well as Beta-
LT. At b = 4.2, Beta-LT performs the best followed by the quadratic
tail (LnBeta-QT) and MTM’s performance is as good as Beta-LT. It is
noted that the individual techniques that provided the best esti-
mate differed at different reliability indices. However, the MTM
estimate was consistent and it performed at least as well as the
second best estimate from the individual techniques. The statistics
for the ratio of the best error and worst error to the MTM error for
the normal distribution is presented in Table 3. It is clearly ob-
served that the MTM error is closer to the best error than the worst
error. Therefore, this approach serves as an insurance against bad
predictions, if we were to use a single technique.

A boxplot2 of g for the normal distribution is presented in Fig. 8.
It is clearly observed that the ratio of the mean of the error to the
mean of the range in the entire extrapolation region is mostly
around 0.2–0.31. Since the ratio is less than one, the range always
2 In a box plot, the box is defined by lines at the lower quartile (25%), median (50%),
and upper quartile (75%) values. Lines extend from each end of the box and outliers
show the coverage of the rest of the data. Lines are plotted at a distance of 1.5 times
the inter-quartile range in each direction or the limit of the data, if the limit of the
data falls within 1.5 times the inter-quartile range. Outliers are data with values
beyond the ends of the lines and are denoted by placing a ‘‘ + ” sign for each point.
overestimates the error, and it mostly overestimates it by a factor
of 3–5. The data and boxplots for the remaining distributions are
presented in the Appendix B. They show that the range is a conser-
vative estimate of the error for all the distributions tested, but for the
uniform distribution it exaggerates the error by orders of magnitude.
This may indicate that tail modeling does not work well when there
is no tail.

Table 4 provides a summary of the performance of the individ-
ual methods and the MTM for all the distributions. Table 4 shows
that no particular technique was the best for all the distributions
and the technique that provided the best estimate for a particular
distribution varied as the reliability indices changed. However, the
MTM estimate was mostly close to the second best available esti-
mate and was close to the best error compared to the worst error.
The summary of g is presented in Table 5. It is observed that other
than uniform distribution, the ratio (median) varies between 0.2
and 0.31. This means that the range averages between 3 and 5
times the error. If all the values between the first and third quartile
are included, the range varies between 2.5 and 6 times the error
except for the uniform distribution. In order to provide an insight
as to what value one can expect for g, a simple exercise is per-
formed. Standard normal random numbers of size 5 � 7 (repre-
sents 5 estimates at 7 different reliability indices) are generated
and g is computed over 100,000 repetitions. The resultant median
is 0.18. This lower ratio reflects the fact that in this simple exper-
iment we model the different estimates as being random and
uncorrelated, while the five extrapolation estimates are correlated.

In order to understand the computational savings associated
with tail extrapolation, we calculated the number of samples re-
quired to achieve the same level of error obtained using MTM at
a reliability index of 4.2 and the results are presented in Table 6.
It is observed that for the same level of accuracy the number of
samples required varies between 350,000 and 500,000 for different
distributions compared to the 500 used for MTM.

It is to be noted that the standard distributions discussed cover
all types of tails belong to parent distribution of Type I (other than
uniform distribution). Therefore, the distributions discussed are
not comprehensive in terms of parent distribution of different
types but cover different types of tails. Although a COV of 7.5 is un-
likely in most application, the distribution data parameters are
engineered to cover all types of tails. Therefore, the distributions
may not be necessarily realistic.
5. Engineering examples

5.1. Application of multiple tail median for reliability estimation of a
cantilever beam

Consider the cantilevered beam design problem, shown in Fig. 9
[11]. The objective of the original problem is to minimize the
weight or, equivalently, the cross sectional area, A ¼ w � t subject
to two reliability constraints, which require the reliability indices
for strength and deflection constraints to be larger than three.
The expressions of two performance measures are given as:

Strength Gs ¼
rcomp

R
¼

600
w2t FX þ 600

wt2 FY

� �
R

ð16Þ

Tip Displacement Gd ¼
DO

D
¼ DO

4L3

Ewt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FY
t2

� �2
þ FX

w2

	 
2
r ð17Þ

where R is the yield strength, FX and FY are the horizontal and ver-
tical loads and w and t are the design parameters. L is the length and
E is the elastic modulus. DO is the allowable displacement. R, FX, FY,
and E are random in nature and are defined in Table 7. It is noted



Table 7
Random variables for the cantilevered beam problem.

Random variable FX FY R E

Distribution Normal (500, 100) lb Normal (1000, 100) lb Normal (40000, 2000) psi Normal (29E6, 1.45E6) psi

Table 8
Properties of the cantilever beam.

L 100”
w 2.6041
t 3.6746
D0 2.145
Pf 1 0.00099
Pf 2 0.00117
Pf 1 \ Pf 2 0.00016

Pf 1 – failure probability in mode1. Pf 2 – failure probability in mode 2.

Table 9
Cantilever beam. Summary of errors in Sr for different techniques at different
reliability indices (mean and median over 1000 repetitions of 500 samples).

Rel index 3 3.6 4.2

GP-MLE Mean 0.026 0.056 0.106
Median 0.022 0.051 0.093

GP-Reg Mean 0.056 0.159 0.478
Median 0.036 0.078 0.132

LnBeta-QT Mean 0.027 0.044 0.062
Median 0.022 0.036 0.052

Beta-LT Mean 0.019 0.026 0.034
Median 0.016 0.022 0.030

Beta-QH Mean 0.022 0.035 0.051
Median 0.019 0.031 0.044

MTM Mean 0.022 0.037 0.055
Median 0.018 0.029 0.044

Table 11
Sr

aEstimates (without tail extrapolation) and standard deviationa at different
reliability indices.

Rel index 3 3.2 3.4 3.6 3.8 4 4.2

Sr 1.012 1.032 1.05 1.07 1.09 1.12 1.13
SD 0.003 0.004 0.01 0.01 0.01 0.02 0.04

a Mean of 100 repetitions of 5e5 samples each.

Table 12
Mechanical properties of the composite laminates.

Elastic properties E1; E2; G12 and m12

Coefficients of thermal expansion a1 and a2

Stress-free temperature Tzero

Failure strains eL
1; eU

1 ; eL
2; eU

2 and cU
12

Safety factor SF
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that the performance measures are expressed in a fashion such that
failure occurs when Gs or Gd is greater than one. In this example, we
consider system failure case with both failure modes. The optimal
design variables taken from Qu and Haftka [12], for a system reli-
ability case are presented in Table 8. The value of corresponding
reliability index is three. The contribution of each failure mode is
also presented in Table 8. Five hundred samples are generated,
and for each sample, the critical Sr (maximum of the two) is com-
puted. The conditional CDF of Sr can be approximated by classical
techniques and the relationship between Sr and reliability index
can also be approximated by the three alternative extrapolation
techniques and by the MTM approach. These calculations are re-
peated for 1,000 different samples and the errors are compared in
Tables 9 and 10. The accurate estimates of Sr are calculated using
MCS of sample size 1E7 and it follows a normal distribution with
parameters (0.679, 0.08). From Table 9, it is observed that the
Beta-LT performs the best at all three reliability indices followed
by the Beta-QH as the second best. MTM consistently performed
close to the second best estimate. Table 10 shows that the MTM er-
ror is closer to the best error than to the worst error.

Fig. 10 presents the box plot of g. This time there is a small per-
centage of cases when the range is not a conservative estimate of
Table 10
Cantilever beam. Summary of ratios of lowest and highest errors to MTM error (mean and

Rel Index Lowest error/MTM error

25 percentile Mean Median 75 percent

3 0.28 0.55 0.58 0.81
3.6 0.27 0.52 0.51 0.76
4.2 0.26 0.51 0.50 0.75
the error, but for most of the cases the range overestimates the
error by factors of 2–10.

To show the reduction in computational requirement due to the
tail extrapolations, an MCS study is performed. 100 repetitions of Sr

estimates with 500,000 samples and the corresponding standard
deviation are computed and presented in Table 11. At the reliabil-
ity index of 4.2, the standard deviation in Sr estimate is 0.04, which
is the same level with that from MTM using 500 samples.
Therefore, for a same level of accuracy, the reduction in computa-
tional effort is about three orders of magnitude (500,000–500).
5.2. Application of multiple tail median for reliability estimation of a
composite panel

The design of the wall of a hydrogen tank which is a composite
laminate operating in cryogenic temperatures addressed by Qu
et al. [13] is considered here. The geometry and loading conditions
of the problem is presented in Fig. 11. The laminate is subject to
mechanical loading (Nx and Ny) and thermal loading due to operat-
ing temperature �423 F where the stress-free temperature is
300 F. The objective of the actual problem was to optimize the
weight of laminate with two ply angles [�h1;�h2]. The ply angles
and ply thickness (t1 and t2) are the design variables. The material
used is IM600/133 graphite epoxy of ply thickness 0.005 inch. Qu
et al. [13] performed the deterministic design optimization using
continuous design variables. In order to account for the uncertain-
ties and make the deterministic optimal design comparable to
probabilistic optimal design, they used a safety factor of 1.4. In this
example, the reliability of the deterministic optimum design is
estimated using MTM. For further details, the reader is referred
to Qu et al. [13]. The mechanical properties are presented in Table
12.
median over 1000 repetitions of 500 samples).

Highest error/MTM error

ile 25 percentile Mean Median 75 percentile

1.67 10.02 2.44 5.36
1.92 16.89 3.26 7.76
2.08 26.74 3.83 9.93



Table 13
Coefficient of variation for random material properties (obtained from Qu et al. [13],
2003 – Table 4).

E1; E2; G12; m12 a1; a2 Tzero eL
1; eU

1 eL
2; eU

2 ; cU
12

0.035 0.035 0.03 0.06 0.09

Table 14
Mean of random variables (Obtained from Qu et al. [13], 2003 – Fig. A1 and Fig. A2).

E1 21.5 � 106 Tzero 300
E2

a [0.3, 2.2] � 106 eL
1

�0.0109
G12

a [0.1, 1.2] � 106 eU
1

0.0103

m12 0.359 eL
2

�0.013
a1

a [�0.3, 0.2]�10�6 eU
2

0.0154
a2

a [0.05, 0.45] � 10�4 cU
12

0.0138

a Temperature dependent materials properties are shown by the range of the
mean value.

Table 15
Deterministic optima found by Qu et al. [13].

h1 (deg) h2 (deg) t1 (in) t2 (in) h (in)

0.00 28.16 0.005 0.02 0.1
27.04 27.04 0.01 0.015 0.1
25.16 27.31 0.005 0.020 0.1

Table 16
Composite laminate. Summary of errors in Sr for different techniques at different
reliability indices (mean and median over 1000 repetitions of 500 samples).

Rel index 3 3.6 4.2

GP-MLE Mean 0.030 0.070 0.142
Median 0.026 0.060 0.120

GP-Reg Mean 0.063 0.185 0.572
Median 0.042 0.095 0.172

LnBeta-QT Mean 0.034 0.054 0.079
Median 0.027 0.046 0.069

Beta-LT Mean 0.022 0.034 0.057
Median 0.018 0.029 0.053

Beta-QH Mean 0.025 0.039 0.057
Median 0.021 0.031 0.047

MTM Mean 0.026 0.045 0.072
Median 0.021 0.037 0.059

Table 18
Composite laminate. Sr estimates (without tail extrapolation) and standard deviation
at different reliability indices.

Rel index 3 3.2 3.4 3.6 3.8 4 4.2

1E + 05 1.0043 1.0304 1.0579 1.0862 1.1157 1.1480 1.1824
SD 0.007 0.009 0.015 0.021 0.025 0.046 0.063
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All material properties are assumed to be random, uncorre-
lated and follow normal distributions. The coefficient of variation
is presented in Table 13. E2, G12, a1, and a2 are functions of tem-
perature. For a feasible design, 21 different temperatures uni-
formly distributed between �423 F and 80 F are considered and
the strain constraints are applied to these temperatures. The
mean is computed at a particular temperature and random num-
bers generated based on coefficient of variation. The mean for
other parameters are presented in Table 14. The deterministic
optimal design obtained by Qu et al. [13] is presented in Table
15.
Table 17
Composite Laminate. Summary of ratios of lowest and highest errors to MTM error (mean

Rel index Lowest error/MTM error

25 percentile Mean Median 75 percenti

3 0.30 0.54 0.57 0.77
3.6 0.23 0.49 0.46 0.74
4.2 0.20 0.48 0.42 0.75
The transverse strain in the first ply (direction 2) is the critical
strain. The performance measure is defined as the ratio of the crit-
ical strain to the upper bound of the allowable strain.

G ¼ e2

eU
2

ð18Þ

Failure is said to occur if the performance measure is greater
than one. The multiple tail median approach is used for the second
optimal design in Table 15. The loads are increased by a factor of
1.1 (Nx = �5280 lb/inch and Ny = �2640 lb/inch) so that the failure
probability is of the order of 0.001.

The random variables in this problem are sampled to produce
five hundred critical strain ratios. The five tail extrapolation tech-
niques are used and the results are presented in Tables 16 and
17. The accurate estimates of Sr are calculated using MCS of sample
sizes 1E7 and it follows a normal distribution with parameters
(0.633, 0.03). As observed in the previous examples the MTM is
at least close to the second best in estimates from individual meth-
ods. In addition, the MTM error was closer to the best error than
the worst error which is observed from Table 17. Fig. 12 shows that
in a small percentage of cases the range is an unconservative esti-
mate of the MTM error. However for most of the cases the range
overestimates the errors by factors of 2–8.

To demonstrate the computational savings due to tail extrapo-
lation 100,000 sample based Sr estimation and the corresponding
standard deviations are presented in Table 18. At reliability index
of 4.2, it is seen that the standard deviation is 0.063 and the multi-
ple tail median provides an estimate with an error of 0.059 (from
Table 16). The number of samples used for this estimation is 500,
which is more than two orders of magnitude less than 500,000.

6. Conclusions

Estimating low probabilities of failure (high reliabilities) with
expensive computer models pose a challenge because of the high
computational expense. Extrapolating into higher reliability indi-
ces with information from lower reliability indices is one solu-
tion to this problem. Three extrapolation techniques that can
complement classical tail modeling techniques were developed.
This work proposes to use a multiple tail median (MTM) ap-
proach in which all the techniques are applied simultaneously
to estimate the performance measure and the median is taken
to be the best estimate. The median turns out to be a robust esti-
mate compared to the mean and was usually at least the second
best estimate compared to the individual techniques. Moreover,
it was observed in all examples that the MTM error was closer
to the best rather than the worst estimate. It is shown that the
range of the five methods can be utilized to estimate the order
of magnitude of the error in the MTM estimate, with that range
and median over 1000 repetitions of 500 samples).

Highest error/MTM error

le 25 percentile Mean Median 75 percentile

1.68 15.52 2.41 5.06
1.80 271.51 2.96 7.31
1.85 42.98 3.23 7.94



Fig. 13. Uniform distribution.

Fig. 14. Exponential distribution.
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being a conservative estimate for the large majority of cases. The
proposed method was demonstrated on seven statistical distribu-
tions and two engineering examples. It was also shown that the
tail modeling allows reductions of two or three orders of magni-
tude in sample size.
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Appendix A. Steps for estimating errors in the individual
techniques and MTM for standard distributions

1. Use �x and COV to estimate distribution parameters (a0 and
b0) for each distribution from Table 1.

2. Find capacity gc as ð1� Pf Þth � N quantile. Inverse transfor-
mation of CDF is used for this. In the case of single parameter
distributions, add shift factor to the gc.

3. Find normalized mean using b�x ¼ �x=gc. We are interested in
the safety factor reciprocal, Sr following different statistical
distributions. The normalized mean is the mean of the Sr .

4. Use �̂x and COV to find new parameters (a and b) for all the
distributions.

5. Generate N = 500 Latin hypercube samples in [0, 1].
6. Find Sr at each sample using (a, b) and inverse cumulative

distribution functions.
7. Use Eq. (10) to compute Pi.
8. Sr and P provides the empirical CDF of Sr . It is noted that the

ordinate of the CDF is (1 � Pf). That is, we are interested in
the upper tail. As Pf decreases, 1 � Pf increases, reliability
index increases, and Sr increase.

9. A threshold of 0.9 is used. For classical tail modeling
techniques, the parameters of GPD that approximates the
conditional CDF beyond the threshold are estimated using
maximum likelihood and least-square regression
approaches. In the alternate extrapolation schemes, the
coefficients are estimated using least-square regression.

10. The transformations discussed in Section 3 can be applied to
the CDF of Sr and Sr at higher reliability indices can be esti-
mated directly from the approximated relationships.

11. There are totally five estimates (Steps 9 and 10), Sri

(i = 1,. . .,5) in the extrapolated regions. Record the median
5m and range 5r.

12. For the purpose of comparison, exact values of Sr can be
obtained using inverse transformation of CDFs.

13. Compute error between the exact values and the estimates
from individual methods as ei and MTM as eMTM.

14. Compute the ratio of mean of error from MTM to mean of
range over different extrapolated reliability indices and
denote it as g

15. Repeat Steps 5–14, 1000 times with different samples, for
each distribution

16. Record the median, mean of as eMTM over 1000 repetitions as
1000me and 1000le, respectively

17. Record the median and mean of the ratio in Step 14 over
1000 repetition as 1000mg and 1000lg.
Fig. 15. LogNormal distribution.
Appendix B

In Section 4, the performance of MTM was demonstrated
using normal distribution. In this section, similar comparisons
are presented for different distribution types. GPD shape param-
eter values are presented in Table 19. For each distribution type,



Table 19
GPD shape parameter for different distribution.

Distribution n Tail type

Uniform �1.05 No tail
Normal �0.18 Light
Exponential 0.02 Medium
LogNormal 0.67 Heavy

Table 20
Uniform distribution.

Rel index 3 3.6 4.2

GP-MLE Mean 0.001 0.002 0.002
Median 0.001 0.002 0.002

GP-Reg Mean 0.001 0.001 0.001
Median 0.001 0.001 0.001

LnBeta-QT Mean 0.001 0.016 0.042
Median 0.001 0.016 0.042

Beta-LT Mean 0.060 0.125 0.192
Median 0.060 0.125 0.192

Beta-QH Mean 0.100 0.321 0.668
Median 0.100 0.321 0.668

MTM Mean 0.001 0.002 0.002
Median 0.001 0.002 0.002

Table 21
Exponential distribution.

Rel index 3 3.6 4.2

GP-MLE Mean 3.413 9.404 20.237
Median 3.195 8.563 17.659

GP-Reg Mean 1.945 3.797 6.997
Median 1.908 3.441 5.962

LnBeta-QT Mean 6.223 8.786 11.967
Median 4.419 4.343 7.930

Beta-LT Mean 1.885 5.051 12.268
Median 1.320 5.419 13.456

Beta-QH Mean 3.503 5.238 7.157
Median 2.725 3.911 5.138

MTM Mean 2.520 4.587 8.345
Median 1.876 3.117 7.399

Table 22
LogNormal distribution.

Rel index 3 3.6 4.2

GP-MLE Mean 0.146 1.620 18.339
Median 0.096 0.943 11.016

GP-Reg Mean 0.357 3.703 35.995
Median 0.354 3.666 35.398

LnBeta-QT Mean 0.545 1.720 8.153
Median 0.152 1.583 8.559

Beta-LT Mean 0.359 2.233 9.627
Median 0.310 2.340 9.885

Beta-QH Mean 0.353 2.097 9.211
Median 0.307 2.200 9.507

MTM Mean 0.212 1.514 8.084
Median 0.107 1.583 8.559
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1000le and 1000me of individual errors and MTM error are calcu-
lated for reliability indices between 3 and 4.2. The results for
different distribution types are presented in Tables 20–22. In
addition, the statistics for the ratio of the best error and worst
error to the MTM error for different distribution types are pre-
Table 23
Uniform distribution.

Rel index Lowest error/MTM error

25 percentile Mean Median 75 percentil

3 0.44 1.00 0.73 1.00
3.6 0.25 0.61 0.61 1.00
4.2 0.24 0.57 0.59 1.00

Table 24
Exponential distribution.

Rel index Lowest error/MTM error

25 percentile Mean Median 75 percent

3 0.17 0.44 0.51 0.93
3.6 0.19 0.56 0.58 1.00
4.2 0.15 0.40 0.49 0.92

Table 25
LogNormal distribution.

Rel index Lowest error/MTM error

25 percentile Mean Median 75 percent

3 0.51 0.84 0.72 1.00
3.6 0.17 0.51 0.55 1.00
4.2 0.63 1.00 0.81 1.00
sented in Tables 23–25. Finally the boxplots of ratio g for differ-
ent distributions are presented in Figs. 13–15.
Highest error/MTM error

e 25 percentile Mean Median 75 percentile

67.50 119.90 526.60 280.60
119.90 185.30 1316.40 397.10
242.20 365.60 1405.30 760.60

Highest error/MTM error

ile 25 percentile Mean Median 75 percentile

2.23 2.96 11.37 4.63
2.04 3.19 12.79 6.21
2.22 2.78 8.52 4.23

Highest error/MTM error

ile 25 percentile Mean Median 75 percentile

3.05 3.96 31.03 7.66
1.95 2.51 6.92 3.64
3.64 4.39 6.96 5.43



Fig. 16. Possible CDF shapes.
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Appendix C

All the possible CDF shapes [14] are presented in Fig. 16. In
Section 3, two classical tail modeling techniques and three alter-
nate tail modeling techniques were discussed. The classical tail
modeling techniques are capable of modeling the tails with little
error irrespective of the parent distribution statistics. In addition
to the classical techniques, each case in Fig. 16 can be modeled
by at least one proposed alternate extrapolation technique. The
Beta-LT can model the tails in all the above five cases. It models
Fig. 16e very well. That is, if the performance measure is normally
distributed, then reliability index, b and reciprocal of safety factor
Sr are linearly related. LnBeta-QT is similar to an exponential of
Beta-LT (b = exp(ln(b))). This captures case Fig. 16b well. Beta-QH
can model all the five cases. Since at least one of the five methods
can capture the CDF shape, using the MTM approach though might
not guarantee a good estimate, buys insurance against bad predic-
tions if one were to use a single method.
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