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1 Introduction

In the past decades, the use of metamodeling techniques has
been recognized to efficiently address the issues of prediction and
optimization of expensive-to-compute numerical simulators or
black-box functions [1-3]. A metamodel (or surrogate model) is
an approximation to system response constructed from its value at
a limited number of selected input values, the design of experi-
ments (DoE). In many engineering problems, the total number of
function evaluations is drastically limited by computational cost;
hence, it is of crucial interest to develop methods for efficiently
selecting the experiments.

In this paper, we focus on a particular application where meta-
models are used in a way that their accuracy is crucial for certain
level-sets. This situation is common in two popular frameworks:

In constrained optimization, the constraint function often relies
on expensive calculations. For instance, a typical structural opti-
mization formulation is to minimize a weight such that the maxi-
mum stress, computed by finite element analysis, does not exceed
a certain value. When using a metamodel to approximate the con-
straint, it is of utmost importance that the approximation error is
minimal on the boundary that separates the feasible designs from
infeasible ones. Substantial errors for values far from the bound-
ary, on the other hand, are not detrimental.
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In reliability analysis, a metamodel is often used to propagate
the uncertainty of random input variables to the performance
function of a system [4,5]. In particular, the probability of failure
of the system can be computed using sampling techniques (i.e.,
Monte Carlo simulations, MCS) by counting the number of re-
sponses that are above a certain threshold. The contour line of the
response equal to the threshold must be known accurately to dis-
criminate between samples.

The objective of the present work is to provide a methodology
to construct a design of experiments such that the metamodel
accurately approximates the vicinity of a boundary in design
space defined by a target value of the function of interest. Kuczera
and Mourelatos [6] used a combination of global and local meta-
models to first detect the critical regions and then obtain a locally
accurate approximation. Arenbeck et al. [7] used support vector
machine and adaptive sampling to approximate failure regions.
Ranjan et al. [8] proposed a modified version of the famous effi-
cient global optimization (EGO) algorithm [9] to sequentially ex-
plore the domain region along a contour line. Tu and Barton [10]
used a modified D-optimal strategy for boundary-focused polyno-
mial regression. Vazquez and Bect [11] proposed an iterative strat-
egy for accurate computation of a probability of failure based on
kriging. In this paper, we present an alternative criterion to choose
sequentially the experiments, based on an explicit trade-off be-
tween the exploration of the target region (on the vicinity of the
contour line) and reduction in the global uncertainty (prediction
variance) in the metamodel.

This paper is organized as follows: in Sec. 2, the kriging model
and the framework of design of experiments are described. In Sec.
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3, the original criterion of selecting experiments is presented fol-
lowed by its associated sequential strategy to derive designs of
experiments in Sec. 4. Results are presented for two analytical
examples in Sec. 5. Finally, the criterion is applied to a probability
of failure estimation problem.

2 Kriging Metamodel and Design of Experiments

Let us first introduce some notation. We denote by y the re-
sponse of a numerical simulator or function that is to be studied:

y:DCRY=R
(1)
X = y(x)
where x={x,,...,x,}7 is a vector of input variables and D is the

design space. In order to build a metamodel, the response y is
observed at n distinct locations X:

X =[xy, ...,X,]

2)
Y= [y(Xl)s s sy(Xn)]T= )’(X)

In Eq. (2), choosing X is called the design of experiments
(DoE) and Y is the vector of observations. Since the response y is
expensive to evaluate, we approximate it by a simple model M,
called the metamodel or surrogate model, based on assumptions
on the nature of y and on its observations Y at the points of the
DoE. In this paper, we present a particular metamodel, universal
kriging (UK), and we discuss some important issues about the
choice of the design of experiments.

2.1 Universal Kriging Model. The main hypothesis behind
the kriging model is to assume that the true function y is one
realization of a Gaussian stochastic process Y, y(x)=Y(x,w),
where o belongs to the underlying probability space (). In the
following, we use the notation Y(x) for the process and Y(x, )
for one realization. For universal kriging [12], Y typically is of the
form

P
Y(x) = X, Bif (%) + Z(x) 3)
j=1

where f; are linearly independent known functions and Z is a
Gaussian process [13] with zero mean and stationary covariance
kernel k with known correlation structure and parameters.

Under such hypothesis, the best linear unbiased predictor for
y(x) (for any x in D), knowing the observations Y, is given by the
following equation [12,13]:

mg(x) =£(x)"B+e(x)"C (Y - Fp) “)
where f(x)=[f(x),... ,fp(x)]T is p X1 vector of basis functions,

B=[5, ...,,ép]T is pX1 vector of estimates of B, c(x)
=[k(x,x;),...,k(x,x,)]" is nX1 vector of covariance, C
=[k(x;,x)]|=jj=n 1S nXn covariance matrix, and F
=[f(x,),....f(x,)]” is n X p experimental matrix. In Eq. (4), 8 is
the vector of generalized least square estimates of (3:

B=(F'C'F)'F'C'Y (5)
In addition, the universal kriging model provides an estimate of

the accuracy of the mean predictor, the kriging prediction vari-
ance:

si(x) =k(x,x) — ¢(x)"C'e(x) + (F(x)" = e(x)'C"'F)
X(FIC'F) ' (f(x)" - e(x)"C™'F)” (6)

where o2 is the process variance, o°=k(x,x). Note that if the
prediction variance is written in terms of correlations (instead of
covariance here), Eq. (6) can be factorized by o2. For details of
derivations, see, for instance, Refs. [12,13]. It is important to no-
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tice here that the kriging variance in Eq. (6), assuming that the
covariance parameters are known, does not depend on the obser-
vations Y but only on the kriging model and on the design of
experiments.

We denote by M(x) the Gaussian process conditional on the
observations Y:

M = (M(X))XED = (Y(X)|Y(X) = Y)XED = (Y(X)|0bS)XED (7)

The kriging model provides the marginal distribution of M at a
prediction point x:

M(x) ~ Nmg(x),5%(x)) (8)

The kriging mean my interpolates the function y(x) at the de-
sign of experiment points:

mg(x)=y(x;), 1=i=n )

The kriging variance is null at the observation points x; and
greater than zero elsewhere:

sp(x;) =0, (10)

Besides, the kriging variance increases with the low values of
the covariance between Y(x) and Y(x;) (1=i=n). Some param-
eters of the covariance kernel are often unknown and must be
estimated based on the observations, using maximum likelihood,
cross-validation, or variogram techniques, for instance, see Refs.
[12,13]. However, in the kriging model they are considered as
known. To account for additional variability due to the parameter
estimation, one may use Bayesian kriging models (see Refs.
[14,15]), which will not be detailed here. With such models, Eq.
(8) does not stand in general. However, the methodology proposed
here also applies to Bayesian kriging with the appropriate modi-
fications of the calculations shown in Sec. 3.

l=i=n, and s?((x)EO, X # X;

2.2 Design of Experiments. Choosing the set of experiments
(sampling points) X plays a critical role in the accuracy of the
metamodel and the subsequent use of the metamodel for predic-
tion. DoEs are often based on geometric considerations such as
Latin hypercube sampling (LHS) [16] or full-factorial designs
[17]. In this section, we introduce two important notions: model-
oriented and adaptive designs.

2.2.1 Model-Oriented Designs. Model-oriented designs aim at
maximizing the quality of statistical inference of a given meta-
model. In linear regression [18,19], A- and D-optimal designs
minimize the uncertainty in the coefficients, when uncertainty is
due to noisy observations. Formally, the A- and D-optimality cri-
teria are, respectively, the trace and determinant of Fisher’s infor-
mation matrix.

These criteria are particularly relevant in regression since mini-
mizing the uncertainty in the coefficients also minimizes the un-
certainty in the prediction (Kiefer [18]). For kriging, uncertainties
in covariance parameters and prediction are not simply related.
Instead, a natural alternative is to take advantage of the prediction
variance associated with the metamodel, assuming that the cova-
riance structure and parameters are accurately estimated. The pre-
diction variance allows us to build measures that reflect the over-
all accuracy of kriging. Two different criteria are available: the
integrated mean square error (IMSE) and maximum mean square
error (MMSE) [20]:

IMSE = f MSE(x)d u(x) (11)
D
MMSE = max, . o[ MSE(x)] (12)
M 1S a positive measure on D and
MSE(x) = E[ (m(x) — M(x))*] = s(x) (13)
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Note that the above criteria are often called I-criterion and
G-criterion, respectively, in the regression framework. The IMSE
is a measure of the average accuracy of the metamodel while the
MMSE measures the risk of large error in prediction.

Optimal designs are model-dependent, in the sense that the op-
timality criterion is determined by the choice of the metamodel. In
regression, A- and D-criteria depend on the choice of the basis
functions while in kriging, the prediction variance si depends on
the linear trend, the covariance structure, and parameter values.
However, one may notice that, assuming that the trend and cova-
riance structures are known, none of the criteria depends on the
response values at the design points.

2.2.2 Adaptive Designs. The previous DoE strategies choose
all the points of the design before computing any observation. It is
also possible to build the DoE sequentially by choosing a new
point as a function of the other points and their corresponding
response values. Such approach has received considerable atten-
tion from the engineering and mathematical statistic communities,
for its advantages of flexibility and adaptability over other meth-
ods [21,22].

Typically, the new point achieves a maximum on some crite-
rion. For instance, a sequential DoE can be built by making at
each step a new observation where the prediction variance is
maximal. Sacks et al. [20] use this strategy as a heuristic to build
IMSE-optimal designs for kriging. The advantage of sequential
strategy here is twofold. First, it is computationally efficient be-
cause it transforms an optimization problem of dimension nXd
(for the IMSE minimization) into k optimizations of dimension d.
Second, it allows us to reevaluate the covariance parameters after
each observation. In the same fashion, Williams et al. [23], Currin
et al. [24], and Santner et al. [2] used a Bayesian approach to
derive sequential IMSE designs. Osio and Amon [25] proposed a
multistage approach to enhance first space-filling in order to ac-
curately estimate the kriging covariance parameters and then re-
fine the DoE by reducing the model uncertainty. Some reviews of
adaptive sampling in engineering design can be found in Jin et al.
[26].

In general, a particular advantage of sequential strategies over
other DoEs is that they can integrate the information given by the
first k observation values to choose the (k+ 1)th training point, for
instance, by reevaluating the kriging covariance parameters. It is
also possible to define response-dependent criteria with naturally
leading to surrogate-based optimization. One of the most famous
adaptive strategy is the EGO algorithm Jones et al. [9], which was
used to derive sequential designs for the optimization of determin-
istic simulation models by choosing at each step the point that
maximizes the expected improvement; a functional that represents
a compromise between exploration of unknown regions and local
search. Jones [27] also proposes maximum probability of im-
provement as an alternative criterion.

In this paper, the objective is not optimization but to accurately
fit a function when it is close to a given threshold. It is then
obvious that the DoE needs to be built according to the observa-
tion values, hence sequentially. Shan and Wang [28] proposed a
rough set based approach to identify subregions of the design
space that are expected to have performance values equal to a
given level. Ranjan et al. [8] proposed a sequential DoE method
for contour estimation, which consists of a modified version of the
EGO algorithm. The functional minimized at each step is a trade-
off between uncertainty and proximity to the actual contour. Tu
and Barton [10] used a weighted D-optimal strategy for polyno-
mial regression, the acceptable sampling region at each step being
limited by approximate bounds around the target contour. Oakley
[29] used kriging and sequential strategies for uncertainty propa-
gation and estimation of percentiles of the output of computer
codes. Vazquez and Bect [11] proposed an iterative strategy for
probability of failure estimation by minimizing the classification
error when using kriging. All these papers aim at constructing
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Fig. 1 One-dimensional illustration of the target region. Here,
T=1 and =0.2. The target region consists of two distinct
intervals.

DoEs for accurate approximation of subregions of the design
space. Our work proposes an alternative criterion, which focuses
on the integral of the prediction variance (rather than punctual
criterion).

3 Weighted IMSE Criterion

In this section, we present a variation in the IMSE criterion,
adapted to the problem of fitting a function accurately for a certain
level-set. The controlling idea of this work is that the surrogate
does not need to be globally accurate but only in some critical
regions, which are the vicinity of the target boundary.

3.1 Target Region Defined by an Indicator Function. The
IMSE criterion is convenient because it sums up the uncertainty
associated with the kriging model over the entire domain D. How-
ever, we are interested in predicting Y accurately in the vicinity of
a level-set y {(T)={x e D:y(x)=T} (T a constant). Then, such a
criterion is not suitable since it weights all points in D according
to their kriging variance, which does not depend on the observa-
tions Y and, hence, does not favor zones with respect to properties
concerning their y values but only on the basis of their position
with respect to the DoE.

We propose to change the integration domain from D to a
neighborhood of y~!(7) in order to learn y accurately near the
contour line. We define a region of interest Xr., (parameterized by
£>0) as the subset in D whose image is within the bounds T—¢&
and T+e:

XTvszy_l([T—s,T+ e)={x e Dly(x) e [T-&,T+&]}
(14)

Figure 1 illustrates a one-dimensional function with the region
of interest being at 7=1 and £=0.2. Note that the target region
consists of two distinct intervals.

With the region of interest, the targeted IMSE criterion is de-
fined as follows:

IMSE; = J sp(x)dx = f sk rrely(X)]dx - (15)
X7, D

where 1j7_ 7,.[y(x)] is the indicator function, equal to 1 when
y(x) e[T-¢&,T+¢] and 0 elsewhere.

Finding a design that minimizes IMSE; would make the meta-
model accurate in the subset X7, which is exactly what we want.
Weighting the IMSE criterion over a region of interest is classical
and proposed, for instance, by Box and Draper [17]. However, the
notable difference here is that this region is unknown a priori.

Now, we can adapt the criterion in the context of kriging mod-
eling, where y is a realization of a random process Y (see Sec.
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2.1).
Thus, IMSE7 is defined with respect to the event w:

IMSE, = J FO Y 0)ldx=10)  (16)
D

To come back to a deterministic criterion, we consider the ex-
pectation of /(w), conditional on the observations

IMSE; = E[I(w)|obs] = El f si(x)l[r_s‘ne][Y(x, w)]dx|obs]
D

(17)

Since the quantity inside the integral is positive, we can com-
mute the expectation and the integral

IMSE ;= f S E[ 17 745 Y (X, ) ]| obs ]dx
D

= f SkOE[L 7 7o [M(x) Jdx = f sx)W(x)dx
D D
(18)
According to Eq. (18), the reduced criterion is the average of
the prediction variance weighted by the function W(x). Besides,
W(x) is simply the probability that the response is inside the in-
terval [T—g,T+¢]:

W(x) =E[1j7; relM(x)]]= P(M(x) € [T-2,T+e]) (19)

Using Eq. (8)), we obtain a simple analytical form for W(x):
T+e

Wi(x) =

ENmx0,5200) ()l (20)

T-¢
where ENOmg(x),0% (x))(1) is the probability density function (PDF)
of M(x). By integrating the PDF we obtain

T+s—m,((x)>_ (T—e—mK(X)> (1)
sg(x) sg(x)
where ® is the CDF of the standard normal distribution.

Note that by dividing W(x) by the constant 2, it is possible to
define the weight function with € —0:

W(x) = (I)<

W(x)

lim—— = gN(mK(X),Si(X))(T)

22
e—0 2& ( )

which is the PDF of the kriging distribution evaluated at thresh-
old.

3.2 Target Region Defined by a Gaussian Density. Defining
the region of interest as Xz, is intuitive and makes it easy to
derive the weight function. However, one might prefer a criterion
that continuously increases the importance of the location when
the response approaches the threshold. For instance, we can
choose a triangular function (with a maximum at 7) or a sigmoid
function. Here, we choose to use the probability density function
of a normal distribution, which leads to a simple analytical form
of the weight function. In the spirit of Eq. (19), the Gaussian-
based weight function is therefore defined as follows:

W(x) = E[g.(M(x) - T)]

where g,(u) is the PDF of N(0,d?).
When M(x) stands for the kriging model, we can obtain a
simple form for the weight function:

(23)

400
W(x) = f 8e(tt = T) g (x).52 x)) (u)du (24)

071008-4 / Vol. 132, JULY 2010

Downloaded 08 Jul 2010 to 128.227.48.54. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

This integral is the convolution of the two Gaussian densities,
which is well-known to be the density of a sum of independent
Gaussian variables. Hence, we obtain

W(x) = ;2 L2 (m(x) = T 07s3x0))
\“‘277(0& + 5x(x))

This new weight function depends on a single parameter o, that
allows us to select the size the domain of interest around the target
level of the function. A large value of o, would enhance space-
filling since the weight function would tend to a constant and the
weighted IMSE to a uniform IMSE criterion. On the contrary, a
small value would enhance the accuracy of the surrogate on a
narrow region around the contour line of interest. In particular
when epsilon tends to zero, the weight function tends to the den-
sity ENGm 30,52 x)(T), which is purely local.

(25)

In practice, it has been found that the choice of o,—excepting
very large and very small values—has little impact on the crite-
rion and its use in sequential strategies. It only becomes important
when the number of observations is very large (thus, the target
region is well-known). In the numerical examples of Sec. 5, we
chose o, equal to approximately five percent of the output range.

3.3 Illustration. We consider a one-dimensional case, where
the function y to approximate is a realization of a Gaussian pro-
cess (so the kriging is an accurate model for y) with isotropic
Gaussian covariance structure:

k(u,v) = o? exp[— (M)Z]

0

y is defined on D=[0,1]; the design of experiments consists of
five observations equally spaced in this interval. The level-set of
interest 7 is chosen as 1.3 and both & and o, are taken as 0.2.
Figure 2 represents the true function, the kriging metamodel and
corresponding weights. The weight function in Eq. (21) is shown
as “interval” while that in Eq. (25) is called “Gaussian.”

Among the five observations, one is substantially closer to T’
than the others. As a consequence, the weight functions are large
around this observation point. For the indicator-based weight
function, the weights are null at the observation points since on
this example no observation is inside the target value interval. For
the Gaussian-based weight, we can observe a smoothing effect
compared with the interval. For both functions, high weights are
given to regions for which the actual function is inside the target
interval. Both weight functions are also nonzero where the uncer-
tainty is high even if the kriging mean is far from T (around x
=0.65 and 0.85).

(26)

3.4 Application to Probability of Failure Estimation

3.4.1 Probability of Failure Using Metamodel. Failure of a
system can usually be determined through a criterion, called a
limit-state, g. The limit-state is defined such that the system is
considered safe if g=0, and failed otherwise. For instance, the
limit-state of a structure can be defined as the difference between
response 7 (e.g., maximum stress or strain) and capacity ¢ (e.g.,
maximum allowable stress or strain) g=r—c.

The limit-state depends on a set of factors U (for instance, in
structural analysis, material properties, and loadings), which are
often uncertain, and the limit-state shows random distribution.
Then the safety of the system is evaluated in terms of reliability or
probability of failure. The probability of failure is defined as

Py=prob(g(U) = 0)

where U is a (multivariate) random variable.

There are many methods for calculating the failure probability
of a system [4,30]. Some of them use the relation between input
random variables and the limit-state (e.g., first-order reliability
method) and some consider the limit-state as a black-box (e.g.,
MCS). MCS generates samples of the limit-state and calculates

27)
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Fig. 2
observations, kriging mean, and confidence intervals; the target region
is represented by the horizontal lines at T-¢, T, and T+<. Lower graph:
weight functions. Both weights are large where the true function is not
only inside the target region but also signaling regions of high uncer-
tainties (around x=0.65 and 0.85).

the number of failed runs [4]. The ratio between the numbers of
failures and the total sample size approximates the probability of
failure of the system:

N
]3/ = 1%]21 1 [()’+sc[|:g(ui)] (28)

where the u; are the independent and identically distributed (IID)
replicates of the random variable U (1 =i=N).

The accuracy of MCS strongly depends on the number of runs
used, especially when the probability of failure is low. When the
cost of simulation is high, engineers can afford to have only a
small number of runs, which is not good enough to estimate the
reliability with acceptable accuracy [30]. Hence, using a meta-
model to approximate the limit-state g is a natural solution to the
lack of data; MCS is then performed on the metamodel that is
inexpensive to evaluate.

Instead of using the indicator function on the kriging mean, we
use the full kriging information by computing, at each sampling
point, the probability that the response exceeds the threshold:

N
A 1 .
Py= ]—VEI 1-®{(0) (29)
where @i’) denotes the cumulative distribution function (CDF) of
the kriging model at x; (N(mk(ui),sf(u,-))).

If the kriging variance is small, the CDF becomes equivalent to
the indicator function, being 1 if the kriging mean exceeds the
threshold zero and O otherwise. On the other hand, when the vari-
ance is high or the predicted response close to the threshold, using
the kriging distribution offers a smoothing effect by giving a num-
ber between zero and one instead of a Boolean number.

3.4.2 Adaptation of the Weighted IMSE Criterion. When ap-
proximating the limit-state, it is clear that accuracy is critical in
the regions where it is close to zero since error in that region is
likely to affect the probability estimate. The region of interest can
be further refined by taking into account the distribution of the
input variables. Indeed, let us consider the case of two distinct
failure regions with the probability that the input falls onto the
first region being much larger than the probability that it falls onto
the other). Instead of focusing equally on the two critical regions,
it will be more efficient to spend more computational effort on the
one that will affect most the probability estimate. In the same
sense, when refining the surrogate in a single critical region, it is
efficient to refine only where the input probability is high.

To address this probability distribution of input variables, we
modify the weighted IMSE criterion by integrating the weighted
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MSE not with a uniform measure but with the law w of the input
variables. In the usual case that u admits a PDF f(x) with respect
to the Lebesgue measure, we then have

IMSE; = f S W(x)dp(x) = j sK)WX)f(x)dx  (30)
D D

In practice, the criterion becomes the integral of the product of
three quantities: The prediction variance, the weight function and
probability density function of the input variables.

4 Sequential Strategies for Selecting Experiments

4.1 Building DoEs Using the Targeted IMSE Criterion.
Without any observation, the weight function W(x) is, assuming
stationarity, a constant (the probability is the same everywhere).
Every time a new observation is performed, the weight function
will more precisely discriminate the regions of interest from the
others. Hence, the procedure to build an optimal DoE is necessar-
ily iterative. If we add one observation at a time we can use the
procedure shown in Table 1.

A good evaluation of the covariance parameters is critical to
obtain a good kriging model. Besides, those parameters directly
affect the weight function: for instance, underestimation of the
range (6 in Eq. (26)) makes the weight function flat (constant),
which enhances space-filling; on the contrary, overestimation of
the range leads to a very discriminating (overconfident) weight
function.

The kriging parameters can be reevaluated after every new ob-
servation or only from the initial DoE before the iterative proce-
dure. However, re-evaluating the parameters at each iteration is
computationally intensive, which can harm the efficiency of the
method. Hence, one would consider estimating the parameters
only when necessary, as proposed by Gano et al. [31]. In the

Table 1
strategy

Procedure of the IMSE;-based sequential DoE

Create an initial DoE X, and generate observations Y,=y(X})

For i going from one to the total number of additional observations n:
Fit the kriging model to the data {X;,,_, Yjsio1}

Find a new training point X,.,, that minimizes the criterion
IMSEA({X i1 Xnew))

Compute the new observation y,.,=y(Xpey)

Update the DoE and observations: X;;={Xt,i_1»Xpews and Y,

= {Yk+i—l ’ ynew}
End of loop
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numerical examples used in this work, we found that after a first
few iterations, the parameter re-evaluation had a negligible impact
on the efficiency of the method.

Defining a stopping criterion for this problem is an open and
complex question. We consider here that in most cases the number
of observations is very limited so the iterative process stops at
early stage. Ideally, the adaptive process should be stopped when
the identified target region does not change significantly over sev-
eral adaptations, which can be detected by looking at changes in
the probability to be inside target regions.

Finding the new training point requires an inner optimization
procedure. When the classical IMSE criterion is considered, the
optimization can be expressed as

min IMSE(X,,,) = IMSE({X},X,c.,})

Xpew €D

new

where IMSE({Xk ) Xnew}) = sté(X | {Xk > Xnew})dx~

s%((x|{Xk,xneW}) is the variance at x of the kriging model based
on the design of experiments X augmented with the training point
Xpew- Since the kriging variance does not depend on the observa-
tion, there is no need to have y(X,e,) to compute the IMSE.

In contrast, the weighted IMSE depends on the observations
through the weight function W(x). The weight function cannot
take into account the new observation since the response is not
available. Hence, when expressing the weighted IMSE as a func-
tion of X,.,, we update only the variance part under the integral

(31)

IMSET(Xk’Yk’XneW)zf S%((XHXk’Xnew})w(x|xk7Yk)dX
D

(32)

where s%(x|{Xy,Xpew}) is the same as in Eq. (31) and W(x|X;,Y,)
is the weight function based on the existing DoE. Using this ex-
pression, we have the simple formulation for the inner optimiza-
tion problem

min IMSET(Xk, Yks Xnew)
eD

(33)

Xnew

4.2 Solving the Optimization Problem. Finding the new ob-
servation X, by solving the optimization problem of Eq. (33) is,
in practice, challenging. Indeed, the IMSE; criterion in Eq. (32)
must be evaluated by numerical integration, which is computa-
tionally intensive. Besides, for any candidate X, the kriging
model must be reevaluated with this new observation to obtain
s%(X|{X},Xpew})). Therefore, we propose here some alternatives
that may be used to reduce the cost.

A popular heuristic to minimize sequentially the IMSE is to find
the point where the prediction variance is maximum (Refs.
[20,23]), which can be used here with the weighted prediction
variance. This strategy has the advantage of saving both the nu-
merical integration and the inversion of a new covariance matrix.
However, the prediction variance is likely to have many (local or
global) maximizers, which are not equivalent in terms of the
IMSE. In particular, many optima are located on the boundaries,
which is very inefficient for the IMSE minimization. To compen-
sate for this issue, one may, in a first time, get a large number of
local optima using adapted optimization strategies (multistart,
etc.) and, in a second time, evaluate those optima in terms of the
weighted IMSE criterion and perform a local optimization on the
best point. It is to be noted that the gradients of the weighted MSE
can be calculated analytically (in the fashion of Ginsbourger [32]
(chapter 4) for the expected improvement criterion).

A valuable computational shortcut can be achieved in the up-
date of the inverse of the covariance matrix when adding an ob-
servation. Let us call C; the covariance matrix corresponding to a
DoE with k observations. Then, the covariance matrix of the DoE
augmented with the k+ 1th observation can be written as

071008-6 / Vol. 132, JULY 2010

02 cl{ew
Ck+l = (34)

Chew Ck

with ¢l =[k(XpewsX1), - - »k(Xpew-X)] a 1 X k vector.
Using Schur’s complement formula [33], we get

0 {1 P en ]
0 1

1
1 OVl 5=
C;il = |: :| 02 - ct{ewczlcnew
0 c'

-1
- Ck Chew Ik

(35)

This formula allows to compute C;ll from C;l without doing
any matrix inversion, and compute s%((x|{Xk,xnew}) at reasonable
cost.

Another typical problem of sequential strategies for kriging is
the ill-conditioning of the covariance matrix, which happens in
particular when two (or more) observations are very close to each
other. Since the IMSE criterion enhances exploration, this risk is
limited here. Therefore, when the number of iterations is large, the
observations can concentrate on the target region and the covari-
ance matrix becomes difficult to invert. In that case, it is possible
to add a small diagonal matrix (nugget effect) to the covariance
function in order to facilitate the inversion (Neal [34]).

In general, the criterion has several local minimizers. Then, it is
necessary to use global optimization methods such as population-
based methods, multistart strategies, etc. In the test problems pre-
sented in this chapter, we optimize the criterion on a fine grid for
low dimensions, and using the population-based (covariance ma-
trix adaptation evolution strategies (CMA-ES) algorithm [35] for
higher dimensions. Experimentation showed that due to the nu-
merical integration precision, the targeted IMSE strategy becomes
inefficient for dimensions higher than ten.

5 Numerical Examples

In this section, we evaluate the accuracy and efficiency of the
methods presented in the Secs. 3 and 4 through numerical ex-
amples. We consider three examples: the first is the fitting of an
analytical function in two dimensions with estimated covariance
parameters. The second is the fitting of realizations of random
processes in six dimensions with known covariance parameters,
which allows us to decompose the problem and evaluate the rel-
evance of our criterion since in this case there is no modeling
error. Finally, the method is applied to probability of failure esti-
mation.

5.1 Two-Dimensional Example. The first example is the ap-
proximation of a two-dimensional parametric function from the
optimization literature (camelback function [36]). The original
function is modified (bounds are different and a negative constant
is added) and the target is chosen in order to have two failure
regions, one dominating the other. The two-dimensional design
space is given as [1,1]%. The performance function is defined as

1 2 16 16
flu,v) = (4 2.1 + ?74)172 +E0+ ?<— 4+ 3172)172— 0.7

(36)

where #=1.2u—0.1 and 0=0.9v.

For both numerical integration and optimization, the design
space is discretized in a 32X 32 grid. We present the results for
the following configuration: target value 7 is chosen as 1.3,
Gaussian-based weight function is used with parameter 0,=0.2,
initial DoE consists of the four corners and the center of the do-
main, and 11 points are added iteratively to the DoE as described
in the previous section.

An isotropic Gaussian covariance function (Eq. (26)) is chosen
for the kriging model. The covariance parameters (process vari-
ance o2 and range 6) are estimated from the initial five-point DoE,
and re-estimated after each new observation, using the MATLAB
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Fig. 3 Optimal design after 11 iterations. The contour lines correspond
to the true function at levels T (bold line) and [T-o, T+ 0], which de-
limit the actual target regions. Most of the training points are chosen
close to the target region. The kriging variance is very small in these
regions and large in noncritical regions.

toolbox GPML [13]. The final results are presented in Fig. 3.

Figure 3(a) is the plot of the true function, and Fig. 3(b) is that
of the kriging mean. In the contour plot in Fig. 3(c), it is shown
that there are two critical regions. After 11 iterations, the sequen-
tial strategy used four points to explore the first critical region,
three points to explore the second region, and four points for
space-filling. As shown in Fig. 3(d), the kriging variance becomes
small near the critical regions while it is relatively large in the
noncritical region.

Figure 4 shows the evolution of the target contour line for the
kriging expectation, which is a good indicator of the quality of the
surrogate. We see that because the first four iterations (Fig. 4(b))
are used for space-filling, the kriging contour line is very different
from the actual one. After eight iterations (Fig. 4(c)), the two
target regions are found and additional sampling points are chosen
close to the actual contour line. Final state (Fig. 4(d)) shows that
the kriging contour line is close to the actual one.

16 0
-1 0 1

Fig. 4 Evolution of kriging target contour line (thin line) com-
pared with actual (bold line) during the sequential process: (a)
Initial, (b) after four iterations, (c) after eight iterations, and (d)
final
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5.2 Six-Dimensional Example. In the second example, we
consider a realization of a six-dimensional isotropic Gaussian pro-
cess with Gaussian covariance function. The design space is
[-111°. In order to limit the complexity (number of nonconnected
target regions) of the target region, we add a linear trend to the
Gaussian process. We take o°=1, #=0.1, and 8=[1...1].

The weighted IMSE criterion is computed by quasi Monte
Carlo integration. The integration points are chosen from a Sobol
sequence [37] to ensure a good space-filling and are changed at
each step to limit the risk of keeping a hole in the integration
region over the iterations. At each step, the optimization is per-
formed using the population-based optimizer CMA-ES [35]. The
number of integration points is chosen equal to 5000 and the
number of function evaluations for CMA-ES is limited to 1000.
With this set-up, one optimization (which is the computational
bottleneck) takes of the order of two minutes on a PC with a 1.8
GHz processor and 1 Go RAM. For comparison, the two-
dimensional problem described earlier requires about 1 s to per-
form the optimization.

We present the results for the following configurations: target
value is chosen as 2, Gaussian-based weight function is used with
0,=0.05. The initial DoE consists of 20 points chosen from LHS
and 70 points are added iteratively to the DoE.

The kriging parameters are not estimated here but taken equal
to the covariance parameters of the true function. Hence, no mod-
eling error is involved since the function to approximate corre-
sponds exactly to the assumptions of the kriging model, and the
error of kriging is only due to the lack of sampling. The advantage
of using such test case is to decompose the problem: here, we
evaluate only the relevance and efficiency of our criterion, regard-
less the difficulty of estimating the covariance parameters from a
small number of observations.

For comparison purpose, we generate a classical space-filling
DoE that consists of 90 LHS points with maximum criterion.

First, we represent the error at 10,000 (uniformly distributed)
data points (Fig. 5). The classical space-filling DoE leads to a
uniform error behavior while the optimal DoE lead to large errors
when the response is far from the target value while small errors
when it is close to the target.

In order to analyze the error in the target region, we draw the
boxplots of the errors for the test points where responses are in-
side the domain [T-20,,T+20,] (Fig. 6). Compared with the
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Fig. 5 Comparison of error distribution for two 90 points
DoEs: optimal DoE (top) and classical LHS (bottom). The x-axis
is the difference between the true function and the threshold,
the y-axis is the error. Three vertical bars are drawn at -2¢, 0,
and +20, for the target region. The error is on average smaller
for the LHS design but the optimal DoE reduces substantially
the error in the target region.

space-filling strategy, the optimal design reduces significantly the
error. In particular, the interquartile interval is 2.5 times smaller
for the optimal DoE.

5.3 Reliability Example. The limit-state function is taken as
the Camelback function used in the previous section. Let U and V
be independent Gaussian variables with zero mean and standard
deviation taken at 0.28, i.e., U,V~N(0,0.28%). Then, the failure
is defined when f becomes greater than 1.3. Thus, the limit-state is
defined as

G=f(UV)-13 (37)

For this example, we generate two adaptive designs: the first is
generated sequentially as described previously with uniform inte-
gration measure (Eq. (18)); the second is generated using the input
distribution as integration measure (Eq. (30)). Both use the four
corners and the center of the domain as starting DoE and 11 it-
erations are performed. For comparison purpose, a 16 points full-

0.05} j_ I
or lél
+
-0.05 +
|
-0.1 1
-0.15 I
-0.2
. +
Optimal DoE LHS design

Fig. 6 Boxplots of errors for the 90 points LHS and optimal
designs for the test points where responses are inside the do-
main [T-20_, T+20.]. Error at these points is about 2.5 smaller
for the optimal designs.
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Fig. 7 Optimal design with (a) uniform integration measure
and (b) input distribution integration measure; (c) full-factorial
designs with 16 points. Plain green line shows the limit of the
failure region; input distribution is shown in (d).

factorial design is also used. It is found that an ordinary kriging
model (UK without linear trend) with isotropic Gaussian covari-
ance function approximates well the function. The covariance pa-
rameters are computed using the toolbox GPML for all the DoEs.
For the sequential DoEs the parameters are re-evaluated at each
new observation.

Figure 7 draws the two optimal designs obtained and the full-
factorial designs. Both optimal designs concentrate the computa-
tional effort on the failure regions and the center of the domain.
With uniform measure integration in Fig. 7(a), the DoE is more
space-filling than the one based on the distribution (shown in Fig.
7(d)). By taking the input distribution into account in Fig. 7(b), we
see that all the observations are located relatively close to the
center of the domain. Part of each target regions is not explored
since it is far from the center.

Finally, we perform 10’ MCS on the three metamodels to com-
pute the probability of failure estimates. 10’ MCS are also per-
formed directly on the test function to obtain the true probability
of failure. Results are reported in Table 2. The full-factorial design
leads to 77% error while both optimal designs lead to a small
error. Substantial improvement is obtained by taking the input
distribution into account.

6 Conclusions

In this paper, we have addressed the issue of choosing a design
of experiments when the kriging metamodel was used to approxi-
mate a function accurately around a particular level-set. This situ-
ation frequently occurs in constrained optimization and reliability
analysis. We proposed a modified version of the classical IMSE
criterion, obtained by weighting the prediction variance using a
kriging-based measure of the expected proximity to target values.
The choice of a new observation based on such criterion is a

Table 2 Probability of failure estimates for the three DoEs and
the actual function based on 107 MCS. The standard deviation
of all estimates is of the order of 2X10-5.

Py Relative error
DoE (%) (%)
Full factorial 0.17 77
Optimal without input distribution 0.70 7
Optimal with input distribution 0.77 3
Probability estimate based on 10”7 MCS 0.75
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trade-off between exploration of the target region (on the vicinity
of the contour line) and reduction in the global uncertainty (pre-
diction variance) in the metamodel.

We applied our strategy to examples in two and six dimensions.
In two dimensions, we showed that the adaptive sampling effi-
ciently explored the target regions while ensuring space-filling. In
six dimensions, we showed that compared with a classical space-
filling design, the error reduction in the target region was by a
factor of 2.5.

Finally, the method was tested for reliability estimation on an
analytical example. An additional criterion was adapted to inte-
grate the distribution of input random variables. It was found that
both criterion-based strategies significantly outperformed space-
filling designs, and taking into account the input distribution pro-
vides additional improvement in the accuracy of the probability of
failure.

However, it has been found some limitations to the method,
which were not solved here and requires future work to apply the
method to a wide range of problems.

Since it relies on numerical integration, the method can become
computationally expensive if a large number of integration points
are needed to compute the criterion. We found that for dimensions
higher than ten, the criterion minimization becomes critical with-
out the use of complex and problem-dependant numerical proce-
dures such as dimension reduction or adapted numerical integra-
tion.

Second, it is important to recall that it is a model-believer strat-
egy since the criterion is entirely based on the kriging model.
Although sequential strategies allow some correction of the model
during the process (through re-estimation of the parameters, for
instance), the success of the method will strongly depend on the
capability of the kriging model to fit the actual response.

Future research may compare the results obtained with this
method to alternative methods, in particular in the frameworks of
reliability analysis and constrained optimization.
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