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Uncertainty analysis and parametric studies are presented for estimating the fatigue failure probability of
surface cracks in silicon nitride ball bearings subjected to rolling contact fatigue. Uncertainty quantifica-
tion of input parameters are presented first based on experimental data, inspection capability, and geo-
metric reasoning. Surrogate models for equivalent stress intensity factors are then used for uncertainty
propagation, which are built upon high fidelity finite element modeling with half-penny-shaped surface
cracks. Instead of black-box type surrogate modeling, physical observations are employed to decompose
the high dimensional surrogate model into multiple one-dimensional models. The cross-validation tech-
nique is used to find the best surrogate that has the smallest prediction variance. The probability of fail-
ure is estimated using Monte Carlo simulation and surrogate models. The parametric studies show that
reducing the maximum crack size (by limiting inspection threshold) and increasing the fatigue threshold
(by improving fracture toughness of a material) are the most effective ways of reducing the probability of
failure. For example, decreasing the maximum crack size by 4.4% and increasing the lowest fracture
threshold by 2.8% results in the reduction of probability of failure by 40%. Ball survivability increases with
decreasing ball diameter, for a given peak Hertzian stress. In order to apply the current study to hybrid
ball bearing design, the survivability results are generalized through non-dimensionalization.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Ball and roller bearings are widely used in a variety of industrial
machinery to allow relative motion and support load in rotating
shafts. In conventional ball bearings, with metal raceways and balls,
subsurface-originated spalling and surface-originated pitting have
been recognized as the dominant modes of failure due to rolling con-
tact fatigue (RCF) (Sadeghi et al., 2009). Bearing subsurface material
is subjected to RCF cycles that induces a complex triaxial stress state,
non-proportional loading, high hydrostatic stress component, and
changing planes of maximum shear stress during a loading cycle,
and eventually leads to a subsurface crack. The spalling failure oc-
curs when subsurface cracks propagate towards the surface to form
a surface spall (Sadeghi et al., 2009). This mechanism is the dominant
mode of failure in rolling element bearings that have smooth sur-
faces and operate under elastohydrodynamic lubrication (EHL) con-
ditions. Surface originated pitting occurs in cases where surface
irregularities in the form of dents or scratches are present. Here,
cracks initiate at the surface stress concentrators and thereafter
propagate at a shallow angle to the surface (Bower, 1988). This
ll rights reserved.

: +1 352 392 1071.
mechanism of failure is more common in gears where substantial
sliding occurs between the contact surfaces.

Aircraft engine manufacturers have been aggressively pursuing
advanced materials to meet main-shaft bearing requirements of ad-
vanced engines for military, commercial and space propulsion.
These requirements include bearings with extended life, superior
corrosion resistance, surface durability and tribological perfor-
mance. Hybrid bearings, which utilize silicon nitride balls and steel
raceways, have been tested to have considerably longer fatigue lives,
to have superior thermal behavior, to last up to five times longer in
oil starvation conditions (Miner et al., 1996; Tanimoto et al., 2000)
and to perform well under corrosive conditions (Klemm, 2002). Sil-
icon nitride balls have many desirable physical properties that al-
lows for advancing bearing technology including low density and
high compressive strength but also have low fracture toughness of
4–6 MPa

p
m (Piotrowski and O’Brien, 2006). This low fracture

toughness, in combination with unavoidable ball-to-ball collisions
in the manufacturing (lapping) process often results in ring or c-
cracks (partial cone cracks) (Cundill, 1997). These flaws can grow un-
der RCF when placed in service and result in a spall on the ball sur-
face, as shown in Fig. 1 (Levesque and Arakere, 2008).

The failures caused by surface cracks of silicon nitride ball bear-
ings under rolling contact have been addressed by ‘ring or c-cracks’

http://dx.doi.org/10.1016/j.ijsolstr.2010.05.018
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Nomenclature

a crack semi-width
amean mean crack semi-width
a0 semi-major axis of elliptical contact patch
b crack length
b0 semi-minor axis of elliptical contact patch
d diameter of ball
E Young’s modulus
g limit state function
Ij index function
Keq equivalent stress intensity factor from CSERR
KI opening crack tip stress intensity factor
KII sliding crack tip stress intensity factor
KIII tearing crack tip stress intensity factor
Kth fatigue threshold
N number of Monte Carlo simulation samples
Nf number of simulation samples that fail

NC number of simulation samples that lie in the contact
patch

po max elliptical contact pressure
PF probability of failure
R radius of ball
rd radial position of crack face nodes
ui, vi, wi displacements of crack face nodes
v Poisson’s ratio
xd elliptical contact patch x-coordinate
xD lateral position of crack to contact patch center
yd elliptical contact patch y-coordinate
l friction coefficient
/ crack orientation,
rPF standard deviation of the probability of failure
z, h spherical coordinates at the center of ball bearing
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(Hadfield, 1998; Hadfield and Stolarski, 1995; Hadfield et al., 1993;
Kida et al., 2004; Wang and Hadfield, 2000a,b, 2001; Wang et al.,
2000) and ‘wedge effect’ models (Chen et al., 1996). In the c-crack
model, the Hertzian contact stresses occurring around the perimeter
of the bearing contact area are thought to dominate the crack
growth. The lubricant is assumed to have no effect on the crack
growth. In the wedge effect model, the fluid pressure is thought to
penetrate into the crack by contact pressure. When the fluid is pres-
surized by the maximum contact pressure at the contact center it is
thought to cause crack growth. The mechanisms of these two models
have been investigated separately. A surface crack is likely to be af-
fected by the stresses used in both models as a ball passes over the
crack (Oguma et al., 1997; Wang and Hadfield, 1999). The stress
intensity factor (SIF) at the crack tip is also adversely affected by
the presence of friction-induced traction forces at the contact.
However, effects of the fluid pressure are not well understood or
characterized yet and the dominant mode of failure is thought to
be crack growth driven by SIFs arising from the contact patch passing
over the c-crack (Hadfield, 1998; Hadfield and Stolarski, 1995; Had-
field et al., 1993; Oguma et al., 1997; Wang and Hadfield, 1999,
2000a,b, 2001; Wang et al., 2000). Partial cone or c-cracks are consid-
ered the most damaging surface defect that limits ball life in hybrid
bearings under service conditions (Evans, 1983; Hadfield et al.,
1993).

The fatigue damage process in ceramic rolling elements is very
different from metal balls. RCF in metal bearings is manifested as a
Fig. 1. (a) A partial cone or c-crack on a silicon nitride ball surface. (b) The c-crack subjec
The contact path (ball track) whose width is 2a0 is faintly visible. [Image courtesy of Th
flaking off of metallic particles from the surface of raceways and/or
rolling elements. As described earlier, this process commences as a
crack below the surface and is propagated to the surface, eventually
forming a pit or spall in the load-carrying surface (Harris, 1991).
Bearing fatigue life estimation is still largely based on the seminal
probabilistic life model by Lundberg and Palmgren (LP) (1947), first
proposed in 1945. Despite many improvements to the LP model
current probabilistic bearing life prediction methods are based
on the ISO standard set up in 1989 (ISO, 1989) and continue to rely
on extensions to the LP model, are empirical in nature, and include
variables that are obtained from extensive experimental testing.
The LP theory states that for bearing rings subjected to N cycles
of repeated loading the probability of survival S is given by,

ln
1
S
¼ A

Nesc
0V

zh
0

ð1Þ

where s0 is the maximum orthogonal shear stress in the contact re-
gion, z0 is the corresponding depth at which this stress occurs, and V
is the stressed volume of material. The parameters A, c and h are
material characteristics that are determined experimentally. The
parameter e is the Weibull slope for the experimental life data plot-
ted on a Weibull probability paper.

Metals are weaker in shear than tension. In contrast to metallic
materials, Si3N4 material is weaker in tension than compression or
shear. The LP model cannot account for this difference in material
ted to rolling contact fatigue in a ball bearing, resulting in crack growth and spalling.
e Timken Company.]
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behavior. Furthermore, c-cracks already exist on the ball surface
and hence subsurface crack initiation and subsequent growth to
a spall is not pertinent to ball failure. Instead, a fracture mechanics
methodology that evaluates the critical flaw size in balls is
required, since failure typically occurs, for hybrid bearings rolling
elements, when the equivalent SIF at the crack tip equals the
mixed-mode fracture toughness of the silicon nitride ball material.

The largest allowable surface flaw that does not propagate
under RCF loading is of design significance, and is termed the crit-
ical flaw size (CFS). A systematic procedure to compute the CFS
based on fracture mechanics principles, RCF loading, and ball
material properties has been recently presented by Levesque and
Arakere (accepted for publication). Non-destructive evaluation
(NDE) techniques are being developed and used on each ball in or-
der to determine if it is acceptable to enter service (Wang, 2000).
The resolution to which each ball is inspected, as determined by
the CFS, has a strong effect on the cost of each ball and has been
analyzed deterministically in prior work (Levesque and Arakere,
accepted for publication). The cost of NDE method for silicon ni-
tride balls scales up very steeply with decreasing CFS and increas-
ing ball diameter. Thus the cost associated with NDE can become a
significant fraction of the overall manufacturing cost of the silicon
nitride ball.

Brittle materials inherently exhibit considerable variation in
material mechanical and fracture properties. For example, there is
a significant variation in the depth of a surface crack from a con-
trolled impact (Lawn, 1994). Also there is a noted variation in the
specimen to specimen fracture toughness (for example 4.85 ±
0.36 MPa

p
m, Piotrowski and O’Brien, 2006). Hence, there can be

considerable variation in the surface dimension, depth, shape and
distribution of surface cracks produced by unavoidable collisions
during the manufacture of silicon nitride balls (Wang, 2000).

In general, predicting fatigue failure of a ball bearing requires
probabilistic approaches due to various uncertainties in system
parameters, including uncertain size, location, and direction of
cracks; variability in material properties; and uncertainty in
applied loads. Uncertainty in the system parameters makes it com-
putationally expensive to evaluate the safety (or reliability) of the
system due to the significant number of analyses required in the
traditional Monte Carlo simulation (MCS). Critical issues for over-
coming these difficulties are those related to uncertainty quantifi-
cation and uncertainty propagation. Traditional approaches for
these tasks often fail to meet constraints (computational resources,
cost, time, etc.) typically present in industrial environments. In
order to overcome this limitation, several alternatives are pre-
sented, such as the first- and second-order reliability method
(FORM/SORM) (Melchers, 1999), the inverse reliability method
(Tu, 1999), the importance sampling method, MCS using response
surface (Qu and Haftka, 2004), stochastic response surface method
(Kim et al., 2006a), etc. Although every method has its own
strengths and limitations, MCS using response surface is utilized
in this paper because it provides a convenient way of evaluating
reliability with reasonable accuracy. Especially when the bounds
of input random variables are relatively small, the accuracy of
response surface approximation is good and thus the estimation
of reliability. The weakness of response surface is the so-called
curse of dimensionality; the number of required simulations in-
creases rapidly and in proportion to the number of input variables
(Kim et al., 2006b). However, when the input variables are not cor-
related or the correlation is not strong, this difficulty can often be
reduced by decoupling these variables.

This paper presents a comprehensive procedure for uncertainty
analysis and parametric studies for estimating the fatigue failure
probability of surface cracks in silicon nitride ball bearings sub-
jected to RCF. The paper is organized as follows. In Section 2, the
finite element modeling technique for computing mixed-mode
stress intensity factors at surface crack tips subject to RCF is pre-
sented. In Section 3, uncertainty analysis using the RCF results is
presented in separate subsections. In Section 3.1, the uncertainty
quantification in hybrid bearings is outlined. Section 3.2 explains
how to choose the best surrogate model using cross-validation.
Uncertainty propagation is performed using Monte Carlo simula-
tion and surrogate models in Section 3.3. In Section 3.4, the effect
of crack size and fatigue threshold improvement on ball survivabil-
ity is presented. In Section 3.5, the ball survivability results are pre-
sented in terms of non-dimensional variables so that they can be
applicable for design. Conclusions are presented in Section 4. The
results are of immediate interest and relevance to hybrid ball bear-
ing and turbine engine manufacturers.

2. Modeling RCF orientation effects on surface crack SIFs

The radius of c-cracks produced during ceramic ball-to-ball
interactions is proportional to the ball radius, R. Also, the veloc-
ity needed to induce c-cracks has been shown to be proportional
to R3 (Levesque and Arakere, accepted for publication). The range
of possible crack shapes and sizes has been established by Lev-
esque and Arakere (2008). The angular extant of the c-cracks
on the surface of the ball is roughly 90–120� (Wang, 2000).
The resultant nonplanar crack shape from ball-to-ball interac-
tions is complex and leads to a difficulty in generalizing results
and in finding which geometry of crack will be the most severely
affected by RCF (Levesque and Arakere, 2008). The complex non-
planar 3D geometry of the c-crack requires parameters such as
crack depth and angle to surface, which are difficult to measure.
Furthermore, the NDE inspection procedures can reliably only
detect the chord length of the crack on the ball surface. With
these issues in mind, the worst-case SIFs produced by an ellipti-
cal contact with peak Hertz stress, po, rolling over a nonplanar c-
crack and a semi-elliptical flaw has been compared by Levesque
and Arakere (accepted for publication). The semi-elliptical flaw is
fully classified by three parameters (depth, width, and angle of
inclination). The semi-elliptical crack with a width (2a0) equal
to the chord length of the c-crack, and same depth and inclina-
tion angle was found to generate higher peak SIFs, for the same
peak Hertz stress, Po, leading to a conservative analysis. Having
established that semi-elliptical surface cracks subjected to rolling
contact loading results in higher crack tip loading and SIFs, we
present the numerical procedure for computing SIFs via FEA.

Finite element analysis techniques have been developed to ana-
lyze 3D surface flaws subject to rolling contact loads typically seen
in ball bearing raceway elliptical contacts, for mixed-mode stress
intensity factor (SIF) calculation (Levesque and Arakere, 2008,
accepted for publication). SIF calculation is done by the crack tip
opening displacement correlation method.

SIF calculation is conducted on RCF models for a crack whose
width is 250 and 75 lm depth angled 30� to the surface. These spe-
cific dimensions were chosen since they have been experienced to be
a set of dimensions that have been observed in experiment (Wang,
2000) and have exhibited high SIFs when compared to other geom-
etries (Levesque and Arakere, accepted for publication). Loading is
done via FORTRAN user subroutines DLOAD and UTRACLOAD for
ABAQUS (Dassault Systèmes, 2007) for normal and traction loads.
The equations to describe the Hertzian pressure distributions in
the contact patch can be written as:

pðx; yÞ ¼ po

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx� xdÞ2

a02
þ ðy� ydÞ

2

b02

" #vuut ð2Þ

and

f ðx; yÞ ¼ lpðx; yÞ ð3Þ



Fig. 3. (a) Elliptic Hertzian contact patches between the ball and bearing raceway
surfaces in a radially loaded bearing (Hamrock and Dowson, 1981). (b) Schematic of
the ball surface subjected to RCF within the ball track as the ball rolls at a fixed
contact angle. Cracks inside and close to this region will experience RCF from the
Hertzian stress/displacement field.
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where po is the peak Hertzian pressure, xd and yd are the distances
from the global coordinate system to the load center, a0 and b0 are
the semi-major and semi-minor axes of the contact patch, respec-
tively, and l is the friction coefficient for the moving load in a
full-slip interaction (see Fig. 2). For the specific cases that were
run we used an elliptical load aspect ratio of 1/8 and a l = 0.07
which is representative of elasto-hydrodynamically lubricated ball
bearing contacts in aerospace applications.

The SIFs are calculated in all three modes, at every point along
the semi-elliptical crack front. For implementation in determining
what combination of these three modes of crack displacement has
met a fatigue threshold, or Kth, we utilize (Levesque and Arakere,
accepted for publication) the critical strain energy release rate
(CSERR) as adapted from Anderson (2005) and can be written as

Keq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II þ ð1þ vÞK2

III

q
ð4Þ

For initiating brittle fracture along the crack front, the maximum
value of Keq is considered important. Consequently we have taken
the SIFs, calculated as a function of crack tip position, and combined
them into a single parameter (using Eq. (4)) and have then chosen
the highest value along the crack front as the representative value
to determine if crack growth can occur for each orientation.

For the uncertainty analysis, we must be able to calculate the
highest Keq for a randomly oriented crack relative to the moving
contact patch. For a given combination of radial load, thrust load
and speed, the ball bearing typically has a fixed contact angle
and hence the ball track, whose width is determined by the length
of the contact ellipse major axis, traverses the ball, as shown sche-
matically in Fig. 3. The contact patch therefore passes on the ball
surface in a band and does not change direction for the entire se-
quence. The load magnitude and the traction magnitude and direc-
tion do not change relative to the elliptical contact. As the load
passes around the ball, there exists only one position where the
max SIF is reached and this orientation is nearest to the contact
patch and on the opposite side of the traction direction. This max-
imum position can be classified with two variables: the lateral po-
sition of the crack relative to the center of the contact patch, xD,
and the angle that the crack makes on the surface relative to the
contact patch tangent, /. We treat the distance of the crack to
the center of the contact load in the yD direction as always 0 for
maximum SIFs (see Fig. 2). We have run parametric studies for
these two parameters and separated their effect as independent
Fig. 2. Semi-elliptical surface crack (dimensions a, b and orientation /) in rela
parameters in Figs. 4 and 5. When contact angle changes due to
load and speed changes, a new equilibrium position is reached,
tion to the elliptical Hertzian rolling contact (dimensions a0 and b0) load.



Fig. 4. Surrogate models for the contribution of lateral position to the stress
intensity factor.

Fig. 5. Surrogate models for the contribution of crack orientation to the stress
intensity factor.
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with different ball track width that traverses a different region of
the ball and Hertzian stress po. Over the life of the ball the entire
region of the ball is likely traversed by the ball track and thereby
potentially subjecting the surface cracks distributed over the ball
surface to RCF. The probability of failure will depend on po, the rel-
ative orientation and size of cracks, and their statistical distribu-
tion with respect to the ball track.

3. Uncertainty analysis

In this section, uncertainty analysis for estimating the failure of
silicon nitride ball bearings is presented using surrogate modeling
and Monte Carlo simulation. The fatigue failure model in the pre-
vious section is based on the equivalent SIF, which depends on
the size, direction and location of a crack; fracture toughness of
the material; and applied loads. However, it is difficult to deter-
mine if a bearing may fail or not because there are many uncertain-
ties in the practical operating environment. For example, an
existing crack may not fail if its location is out of the contact patch
or its size is too small to fail. Thus, the failure of a bearing can only
be evaluated in terms of probability. The goal of this section is to
evaluate the probability of fatigue failure of silicon nitride ball
bearings under representative operating conditions.
3.1. Uncertainty quantification

The first step in uncertainty analysis is to quantify uncertainty
in input parameters. Table 1 summarizes input parameters that
are used in uncertainty analysis. Some parameters are considered
to be deterministic, while the others are random. Even if all bear-
ings do not have the same diameter due to manufacturing toler-
ances, it is considered a deterministic value because its
uncertainty is relatively small compared to others and its contribu-
tion to the uncertainty in fatigue failure is also small. In general,
the uncertainty in the applied load is large and difficult to charac-
terize. In fact, it is known that the applied load is the largest source
of uncertainty. However, a deterministic value of the maximum
applied pressure of po = 2.7 GPa (392 ksi) is used in uncertainty
analysis due to the following two reasons: first, it is difficult to
characterize probabilistic distribution of the applied load, and sec-
ond, it will provide conservative estimate of the probability of fail-
ure due to the relatively high peak Hertzian pressure used.

Major uncertainties are related to the crack configuration. Based
on inspection data (Cundill, 1997), a new silicon nitride ball bearing
can have many micro-cracks on the surface. Levesque and Arakere
(2008, accepted for publication) showed that these cracks can be
modeled using half-penny-shaped cracks with a specific size, aspect
ratio and orientation. Since the manufacturing process does not have
any preference in the orientation of nucleated cracks and ball
orientation in the assembly can vary often, it is assumed that they
are uniformly distributed between 0� and 180�. For the same reason,
the location of crack is also uniformly distributed on the ball surface.
Based on sample measurements by Wang (2000), it is reported that
the initial crack size can be between 200 and 350 lm. Since no prob-
abilistic distribution information is available, it is assumed that the
initial crack size is uniformly distributed between the minimum
and maximum sizes. In the perspective of fatigue failure, the lower
bound is not significant. On the other hand, the upper bound de-
pends on manufacturing and inspection methods, which is also re-
lated to the cost.

Piotrowski and O’Brien (2006) have evaluated the fracture
toughness value for silicon nitride ball material when an applied
force generates a tensile hoop stress on a pre-cracked ball. The
fracture toughness value, computed from 16 experiments shows
a uniform variation within 12% of the nominal value. Thus, the
uncertainty of the fatigue threshold is modeled using a uniform
distribution with the nominal value of 2.8 MPa

p
m and is in the

suggested range of 2–4 MPa
p

m (Wang, 2000). In the sensitivity
study, the effect of these parameters will be discussed.

3.2. Surrogate modeling – cross-validation

In the uncertainty propagation stage, the input uncertainties are
propagated through the governing physics of the system to yield
uncertainty in output, which is the equivalent SIF. Traditionally,
Monte Carlo simulation (MCS) is often employed for this purpose,
in which many samples of input random variables are generated
according to their distribution types, and samples of output vari-
able are produced by solving the governing equation with each
set of input variables. This stage is computationally intensive be-
cause it involves 3D finite element modeling and volume integrals.
For example, for given values of input parameters, the computation
of equivalent SIF takes about 1300 s in desktop computer with two
processors. In order to identify the effect of input uncertainty on
the output uncertainty, numerous repetitions of this calculation
are required, which becomes impractical easily. Thus, the key issue
in uncertainty analysis is how to effectively propagate the input
uncertainty to the output uncertainty.

There are many methods available in uncertainty propagation
using approximation. First-order reliability method (FORM) (Allen



Table 1
Input parameters and their distributions for uncertainty analysis.

Parameter Type Value (or distribution)

Diameter of ball, d Deterministic 25 mm
Width of contact patch, b0 Deterministic 8 mm
Pressure, p0 Deterministic 2.7 GPa (392 ksi)
Friction coefficient, l Deterministic 0.07
Fatigue threshold, Kth Random U[2.46,3.14] MPa

p
m

Crack semi-width, a Random U[200,350] lm
Crack orientation, / Random U[0�,180�]
Crack position, xD Random Uniformly distributed on the sphere
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and Camberos, 2009), second-order reliability method (SORM) (Al-
len and Camberos, 2009), importance sampling method (Cano
et al., 1996), and MCS are a short list of available methods. Except
for MCS, all other methods use approximation in either output var-
iable or its distribution, which inevitably involves error especially
when the governing system equation is complex. In this paper, sur-
rogate modeling techniques (Viana, 2009) are utilized to approxi-
mate the relation between input parameters and output. Instead
of black-box type surrogate model, physics-based surrogate mod-
eling is employed to represent the relationship more effectively.
Once the surrogate model is obtained, uncertainty in output vari-
able can easily be calculated using MCS because the computational
cost of function evaluation using the surrogate model is negligible.

The equivalent SIF for cracks on ball bearings is characterized
with four parameters: applied contact pressure, lateral position
of crack with respect to center of contact patch, orientation of
crack, and initial crack size. Thus, the functional relationship can
be written in a general form of

Keq ¼ f ðp0; xD;/; aÞ ð5Þ

where p0 is the applied pressure at the center of contact patch, xD is the
normalized lateral position between the center of contact patch and the
center of crack,/ is the angle between a line perpendicular to the contact
path and the orientation of crack, and a is the semi-width of surface
crack. Although the explicit expression of function f is unknown (or,
sometimes it is an implicit function), it can be evaluated for given input
parameters using finite element analysis and volume integrals.

The idea of surrogate modeling is to approximate the function f
using a simple analytical function (Queipo et al., 2005). The general
procedure of surrogate modeling is to generate several samples,
called design of experiment, and to fit a function using these sam-
ples. First, a number of samples are chosen based on different cri-
teria, such as full factorial design or Latin hypercube sampling. The
larger the sample size, the better the quality of approximation.
However, each sample requires expensive finite element analysis.
In order to have a reasonable accuracy, the number of samples
for the case of four variables will be around 100. The number of re-
quired samples exponentially increases as the number of input
variables increases. Once all samples are available, they are used
to fit a function. In general, the functional form is fixed with un-
known coefficients, which are to be found by minimizing the error
between the function and samples.

In general, surrogate modeling does not require detailed knowl-
edge on the physical problem; it can be considered as a black-box.
In this paper, however, the surrogate model is simplified by
observing the physical behavior of the system, in which the equiv-
alent SIF can be expressed as a function of the four parameters in
the following form:

Keq ¼
p0

2700 MPa
� f1ðxDÞ �

f2ð/Þ
2:5

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
250 lm

r
ð6Þ

First, the SIF, Keq, is proportional to the contact pressure because the
material response is linear elastic and stress increases linearly with
the applied load. In addition, Keq is proportional to the square root
of crack length which is basically identical to the traditional defini-
tion of SIF. Since these two relations are simple and explicit, there is
no need to introduce approximation using surrogate modeling. On
the other hand, the effects of lateral position and orientation are
not straightforward, and thus, require approximation. An important
point in the above equation is that the effects of these two parameters
are decoupled. This can be explained by considering two cracks lo-
cated in different lateral positions for which the failure mechanism
will still be the same except that the magnitude of contact periphery
stress will be different. In the above equation, it is assumed that the
aspect ratio of the semi-elliptical crack, the cracks angle to the surface
and the elliptical contact patch aspect ratio remain constant.

After simplifying the relationship between input variables and
output, the initial surrogate model with four variables can now
be simplified to two surrogate models with a single variable, which
is much more computationally efficient to build and more accu-
rate. To simulate the variation in SIFs due to orientation, seven
equally-spaced simulations are generated for the orientation angle
and five for the lateral position within their ranges and are interpo-
lated between for computational accuracy.

The next step is to choose a surrogate model. The difficulty is that
there is no single surrogate that outperforms all others. Depending
on functional behavior, one surrogate performs better than the oth-
ers. In general, however, the functional behavior is unknown a priori.
One of the best practices is to build multiple surrogates using the
sampled data and choose the best one. It is generally accepted that
cross-validation (Myers and Montgomery, 2002) is a good tool to
choose the best surrogate. This procedure is relatively inexpensive
under the assumption that obtaining a sample requires expensive fi-
nite element analysis, but surrogate modeling can be finished with-
out requiring intensive computation. In this paper, four surrogates
are considered: Kriging, Radial Based Neural Network (RBNN), Sup-
port Vector Regression (SVR), and fourth-order polynomial response
surface (PRS). Different surrogates have different characteristics. For
example, the Kriging always pass the sampled data points, while PRS
does not pass the data point exactly. However, that does not mean
that the former is more accurate than the latter. The accuracy of a
surrogate should be measured at data points that are not used in fit-
ting the surrogate.

Figs. 4 and 5 show the approximation of f1(xD) and f2(/), respec-
tively, using four different surrogate models. Since all four surro-
gates are close to each other, it is difficult to tell which surrogate
is the best. Without having additional test points, cross-validation
can be used to find the best surrogate. In cross-validation, one data
point is dropped in fitting the surrogate and the error is measured
at the dropped data point, which is called a prediction error. If this
procedure is repeated for all data points, the root mean square of
prediction errors (PRESSRMS) can be used as an indicator of accu-
racy. PRESSRMS is a well established parameter to compare the
effectiveness of surrogates. The smaller the PRESSRMS value is,
the more effective the surrogate is.

Table 2 compares the PRESSRMS values for all four surrogate
models. It shows that Kriging is a good model to fit the lateral po-
sition, while PRS is good for the orientation.
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3.3. Uncertainty analysis – Monte Carlo simulation using surrogate

Once surrogate models are selected, they can be used to evalu-
ate the uncertainty of SIF according to the uncertainty in input
parameters. Since function evaluation in the surrogate model is
very fast, MCS can be used for that purpose. The procedure is to
generate many samples of input parameters according to their dis-
tribution types and to apply them to the surrogate model to gener-
ate samples of SIFs. From the data in Table 1, it is relatively
straightforward to generate samples of uniformly distributed crack
sizes and orientations using a random number generator. However,
generating samples of lateral positions is not straightforward be-
cause they are uniformly distributed on a sphere.

The method to uniformly distribute points on a sphere is based
on Archimedes theorem, which is stated as ‘‘the axial projection of
any measurable region on a sphere on the right circular cylinder cir-
cumscribed about the sphere preserves area.” The physics behind this
theorem is explained in the Shao and Badler (1996). According to
the theorem, two independent uniformly distributed random vari-
ables, z � U[�1,1] and h � U[0,2p] are sampled based on their dis-
tribution types. Each combination of (z,h) corresponds to a sample
of a point on the surface of the sphere, whose coordinates are given
by

ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

cos h;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

sin h; z
� �

ð7Þ

This method uniformly distributes points on the surface of a unit ra-
dius sphere. The normalized lateral position xD in Eq. (6) is equiva-
lent to x in Eq. (7) if the coordinate system is set such that the center
line of contact patch is on the yz-plane. For dimensions in Table 1,
the crack will be located within the contact patch if

jxDj 6
b0

d
ð8Þ

During MCS, a crack is located randomly on the surface of the ball
bearing, whose lateral position is calculated from Eq. (7). If the crack
lies within the contact patch according to Eq. (8), the equivalent SIF
is calculated using Eq. (6).

The objective is to calculate the probability of fatigue failure of
the silicon nitride ball bearing under input uncertainties described
in Table 1. In this paper, the failure mode is defined when the
equivalent SIF is larger than the fatigue threshold. For that purpose,
a limit state function is first defined as

g ¼ Keq � Kth ð9Þ

and the probability of failure is defined by

PF ¼ Probðg > 0Þ ð10Þ

In MCS, the probability of failure is calculated by counting the num-
ber of samples that are failed. When the total number of random
samples is N, the probability of failure can be calculated by

PF ¼
1
N

XN

j¼1

IðgjÞ ¼
NF

N
ð11Þ

where I is an index function whose value is one when the argument
is positive and zero otherwise, and NF is the number of failed sam-
Table 2
Cross-validation errors (PRESSRMS) for different surrogate models.

Model PRESSRMS

Lateral position Angular position

Kriging 0.1187 0.3921
RBNN 0.2597 0.1895
SVR 0.6224 0.4388
PRS 0.2308 0.1658
ples. Due to the random nature of MCS, different sets of samples
may yield different values of probability of failure; exact PF can only
be calculated when the number of samples approaches infinity. The
standard deviation of the probability of failure can be estimated
using

rPF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PFð1� PFÞ

N

r
ð12Þ

Note that the standard deviation is inversely proportional to the
number of samples. In a similar way, the probability of survival
can be calculated by

PS ¼ 1� PF ¼ 1� NF

N
ð13Þ

It is noted that the PS has the same standard deviation with PF.
Table 3 shows the results of uncertainty analysis using MCS and

surrogate modeling. In order to see the effect of samples, two dif-
ferent sets of samples are used: one with 105 and the other with
106 samples. Samples of the uncertain input parameters are ran-
domly generated according to their distributions, and output sam-
ples of equivalent SIFs are calculated using Eq. (6). Since the fatigue
threshold is also a random variable, the samples of equivalent SIFs
are compared with that of fatigue threshold to determine the num-
ber of failure cases. In the table, NC is the number of samples in
which cracks are located within the contact patch, and NF is the
number of samples that fail. It is clear that the uncertainty in the
probability, rPF, decreases as the number of samples increases. It
can be concluded that for given uncertainties in input parameters,
the chance that a ball bearing may fail is about 0.6%. In practice, the
failure probability will be lower because the maximum applied
Hertzian stress is used for p0.

The plot of cumulative distribution function (CDF) of the limit
state function g = Keq � Kth for the case of 100,000 samples is
shown in Fig. 6. In order to emphasize the failure probability,
1 � CDF is plotted in log-scale. The ordinate value at g = 0 is the va-
lue of failure probability. The discontinuity in the slope near
g = �2.5 is due to the fact that those cracks lying outside the con-
tact patch do not fail, and hence, do not contribute to the SIF calcu-
lation. As can be observed in the plot, the slope of the CDF curve
near g = 0 is relatively high, which means that the failure probabil-
ity can change significantly according to a small variation of the
limit state function g. This can be achieved in various ways, such
as using a material with higher Kth or reducing initial crack size
that can reduce Keq.

3.4. Parametric study

Even if the accuracy of the failure probability depends on uncer-
tainty quantification of input parameters, it can still provide the
possibility of improving the failure probability. An important ques-
tion is how much the failure probability can be improved by mod-
ifying the input uncertainty. For example, the initial distribution of
crack size was uniform between 200 and 350 lm. If the manufac-
turing technology is improved such that the largest initial crack
size is reduced by 10%, then it would be beneficial to estimate
how much the probability of failure can be improved. It is also pos-
sible to apply more strict inspection threshold, such that the max-
imum crack size can be reduced. In practice, it is not feasible to
Table 3
Probability of failure values for different sample sizes.

N NC NF PF rPF

100,000 67,816 557 5.57E�03 2.35E�04
1,000,000 679,338 5990 6.00E�03 7.71E�05



Fig. 6. Cumulative distribution function of the limit state function g = Keq � Kth.

Table 5
Effects of improvements on probability of failure when the lowest fatigue threshold is
increased from 2.46 MPa

p
m to 2.53 MPa

p
m (N = 1,000,000).

Case NF PF rPF

Original 5990 6.00E�03 7.71E�05
Improved 4563 4.60E�03 6.73E�05

Table 6
Effects of combined improvements on probability of failure when both crack size and
fracture toughness are improved.

Case NF PF rPF

Original 5990 6.00E�03 7.71E�05
Improved 3554 3.60E�03 5.95E�05

Fig. 7. Variation of probability of failure as a function of the largest initial crack size,
for peak Hertz stress po = 2.7 GPa.
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change the lateral position and the orientation of cracks as they are
by nature random. However, the initial crack size and the fatigue
threshold can be modified by using different manufacturing tech-
nology or different materials.

Table 4 compares the probability of failure when the initial dis-
tribution of crack size is reduced from U[200,350] lm (original) to
U[200,335] lm (improved). Both cases use the same number of
samples, 1,000,000. Note that reducing the largest initial crack size
by only 15 lm (4.4%) improves the probability of failure dispropor-
tionately by 25%. A similar trend can be observed when the lowest
fatigue threshold is increased by 0.07 MPa

p
m (2.8%) such that the

range is reduced from U[2.46,3.14] MPa
p

m (original) to U
[2.53,3.14] MPa

p
m (improved). The effect of this improvement

on the probability of failure is tabulated in Table 5, in which the
probability of failure is improved by 24%. It is noted that improve-
ment on fatigue threshold or crack size has a similar pronounced
effect on the probability of failure. Table 6 shows the combined
improvements when both the initial crack size and the fatigue
threshold are improved. It turns out that the probability of failure
can be improved by 40% due to these combined changes.

The variation of the probability of failure as a function of the
largest initial crack size is shown in Fig. 7. It is noted that the prob-
ability of failure is very sensitive to the initial crack size. For exam-
ple, when the largest initial crack size is reduced by 17% (from 350
to 290 lm) the probability of failure of the original material is de-
creased by 71% (from 0.006 to 0.0017). A similar improvement is
observed for the material with higher fracture threshold. In order
to isolate the effects of location and orientation of cracks, the prob-
ability of survival (1 � PF) is computed for a deterministic crack
size. The variation of the probability of survival as a function of
crack size is shown in Fig. 8. Small crack sizes have a very high
probability of survival. As the crack size increases, the probability
of survival decreases and the decrease is less for a tougher
material.

Piotrowski and O’Brien (2006) have measured the fracture
toughness of aerospace quality silicon nitride ball bearings using
radial compression of balls with a Vickers indented flaw and report
Table 4
Effects of improvements on probability of failure when the largest allowable initial
crack size is reduced from 350 to 335 lm (N = 1,000,000).

Case NF PF rPF

Original 5990 6.00E�03 7.71E�05
Improved 4548 4.50E�03 6.73E�05
values at ±12% uniform variation about 4.5 MPa
p

m. We use this
information to evaluate the variation of probability of survival as
a function of crack size. The probability of survival as a function
of crack size when the fracture toughness is 4.5 MPa

p
m is shown

in Fig. 9. Since the fracture toughness is much higher than that of
Table 1, it allows the presence of much larger crack size with the
same level of probability of survival. If an appropriate cost model
is used for manufacturing and inspection methods, Figs. 7–9 can
be used to select the optimum combination of material and NDE
technique for the given level of safety of ball bearings.
Fig. 8. Variation of probability of survival with crack size, for peak Hertz stress
po = 2.7 GPa.
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3.5. Generalization of survivability for different designs

Although the parameter studies in the previous section are per-
formed only with a specific configuration, such as a single ball
diameter and a single value of maximum pressure, they can be
generalized to different configurations by non-dimensionalization
so that the survivability results can be applicable to different de-
signs of ball bearings. In particular, the following parameters are
of interest in design: ball radius, R, crack semi-width, a, contact
patch width, b0, and the maximum contact pressure, p0.

In the uncertainty analysis discussed in the previous section,
the ball radius does not appear as a parameter, but it contributes
indirectly to ball survivability via the maximum pressure, p0, the
contact patch width, b0, and the crack semi-width, a. The contact
patch dimensions, for a given Hertzian pressure p0, are a function
of conformity between the ball and the inner and outer raceway ra-
dii of curvatures. For a given bearing support load a wide range of
contact patch parameters can be selected based on bearing design
preferences. In addition, the mean crack size is proportional to R2/3.
To generalize our results, we define and select a range of values for
two non-dimensional parameters that are related to the contact
patch area and Keq.

The first non-dimensional parameter depends on the contact
patch width (b0) and circumference of the sphere. We note that
the contact patch area is equal to pa0b0. Thus, a non-dimensional
conformity parameter is defined as

c ¼ 2pR
b0

ð14Þ

A lower value of c means greater conformity in the circumferential
direction of the ball-raceway contact. In the numerical study below,
we have selected a range of ball diameters varying from 4.763 mm
(3/1600) and 25.4 mm (100), and the load ellipticity (b0/a0) varies be-
tween 0.125 and 1.0, which can be converted into the conformity
parameter between 9.82 and 78.54. We have included a wide range
of ellipticities even though ratios close to 1.0 are not seen in ball bear-
ings, but are encountered in ball-on-disc and other tribological tests.

Table 7 shows the values of parameters that are used in MCS in
which four different bearing diameters and five different contact
patch widths are considered. For any given ball size, there exists
a range of possible contact patch ellipticities, for a given Hertzian
stress p0. Since ellipticity of load directly influences the width of
the contact patch band, it will affect ball survivability. To account
for this effect, we normalize equation f(xD) for each contact patch
width.
Fig. 9. Variation of probability of survival with crack size for a material with fatigue
threshold 4.5 MPa

p
m, for peak Hertz stress po = 2.7 GPa.
The second non-dimensional parameter is defined by normaliz-
ing the equivalent stress intensity factor with respect to bearing
parameters of maximum contact pressure, p0, and mean crack size,
amean, as

K�eq ¼
Keq

p0
ffiffiffiffiffiffiffiffiffiffiffi
amean
p ð15Þ

In the above definition, the fatigue threshold Kth is not included be-
cause often the same Si3N4 material with different grades may have
different fatigue thresholds (Cundill, 1997). In addition, it is conve-
nient to separate material parameters from geometric parameters
for the purpose of uncertainty analysis. However, in order to evalu-
ate the probability of failure or survival, the non-dimensional
parameter K�eq has to be compared with the non-dimensional fati-
gue threshold, defined as

K�th ¼
Kth

p0
ffiffiffiffiffiffiffiffiffiffiffi
amean
p ð16Þ

Fig. 10 plots the cumulative distribution of non-dimensional K�eq for
five different values of conformity parameters. At each conformity
parameter value, MCS with 1,000,000 samples is performed to cal-
culate the distribution. Physical dimensions corresponding to each
conformity value can be found in Table 7.

Reflecting on the plots in Fig. 10, a few general conclusions can
be made. Firstly, as the ball diameter decreases survivability in-
creases. This is due to the decreasing crack size since the mean
crack size amean is proportional to R2/3. In Levesque and Arakere
(accepted for publication), the crack size was shown to scale with
the bearing radius for normally colliding cone cracks. If ‘partial
cone’ cracks are only portions of axi-symmetric cracks, the same
proportionality may hold. As a result, bearing survivability can be
independent of bearing size. However, if amean is proportional to
Rx with x > 1, then larger balls are less likely to fail; whereas if
x < 1, smaller balls are superior. The implications of this observa-
tion for bearing design are significant since for a given load the
number of balls and ball diameter can be chosen to maximize ball
life. Note that the assumed Weibull distribution of subsurface
flaws, which is central to probabilistic bearing metal raceway life
estimation techniques (Lundberg and Palmgren, 1947; ISO, 1989),
does not hold here as it is not necessarily true that larger bearings
will have more flaws as the random process that induces cracks
could induce a similar number of flaws on any size bearings. In fact,
one may argue that since the normal velocity to induce cracking of
colliding spheres (which induces these flaws) is proportional to R3

(Levesque and Arakere, accepted for publication), it is less likely for
larger bearings to have the same number of flaws as their smaller
counterparts.

In addition, as contact patch width, b0, increases ball survivabil-
ity decreases because the contact band sweeps out more space on
the ball and is thus more likely to have non-negligible crack tip dis-
placement. For a 100 diameter Si3N4 ball, as (2pR)/b0 varies between
9.82 and 78.54, the survivability decreases only by 0.4%. Similarly,
for a 5/800 diameter ball, a similar change in (2pR)/b0 leads to de-
crease in survivability by 0.01%. This conclusion is only true when
the maximum contact pressure p0 remains constant.
Table 7
The dimensionalized range of contact patch widths examined for the analyzed range
of ball sizes. The contact patch size ranges from b0/a0 = 1/8–1.

d b0 (mm) a0 (mm)

25.4 mm (100) 1.00 8.00 6.00 4.00 2.00 1.00
15.875 mm (5/800) 0.63 5.00 3.75 2.50 1.25 0.63
12.7 mm (1/200) 0.50 4.00 3.00 2.00 1.00 0.50
4.763 mm (3/1600) 0.09 0.75 0.56 0.38 0.19 0.09



Fig. 10. Cumulative distribution of K�eq for different conformity values.
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4. Conclusions

The present paper presents a comprehensive procedure for
evaluating the probability of survival of silicon nitride hybrid ball
bearings, under various uncertainties, using surrogate modeling
and parametric studies. The surrogate models capture the effects
of RCF on SIFs induced at ball surface crack tips and are generated
via 3D FEA. The results are of immediate interest and relevance to
hybrid ball bearing and turbine engine manufacturers. From this
study, the following conclusions can be made:

1. Surrogate modeling using high fidelity SIF from FEA was con-
ducted for swift Keq calculations as a function of crack position,
orientation, crack size and maximum contact pressure.

2. The physical observation is used to reduce a multi-dimensional
surrogate model to multiple one-dimensional surrogate models,
which require less number of samples.

3. It is shown that the cross-validation technique is a good strat-
egy to select the best surrogate model.

4. The parametric study shows that reducing the maximum crack
size (by limiting inspection threshold) and increasing the fati-
gue threshold (by improving fracture toughness of a material)
are the most effective ways for reducing the probability of fail-
ure. We demonstrate that by decreasing the maximum crack
size by 4.4% and by increasing the lowest fracture threshold
by 2.8%, the probability of failure is disproportionately reduced
by 40%.

5. If the mean crack size (amean) is proportional to Rx with x > 1,
then larger balls are less likely to fail; whereas if x < 1, smaller
balls are superior. We have shown previously that amean is pro-
portional to R2/3 and therefore as the ball diameter decreases
survivability increases. This has important implications on
hybrid bearing design in terms of selection of ball size and ball
complement (number of balls) to support a given load at the
desired Hertzian pressure p0.

6. Non-dimensionalization technique is used to generalize the
bearing survivability for different dimensions and materials.
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