Computers
& Structures

PERGAMON Computers and Structures 79 (2001) 1959-1976

www.elsevier.com/locate/compstruc

Structural optimization of finite deformation elastoplasticity
using continuum-based shape design sensitivity formulation

Nam Ho Kim !, Kyung Kook Choi *, Jiun Shyan Chen °

Center for Computer-Aided Design and Department of Mechanical Engineering, College of Engineering, The University of Iowa,
208 Engineering Research Facility, lowa City, 1A 52242, USA

Received 28 November 2000; accepted 23 June 2001

Abstract

A continuum-based shape design sensitivity formulation and optimization method is proposed for finite deformation
elastoplasticity. In response analysis, the multiplicative decomposition of the deformation gradient into elastic and
plastic parts is used for the hyperelasticity-based elastoplastic constitutive model with respect to the intermediate
configuration. In design sensitivity analysis, the shape variation at the undeformed configuration is taken using a design
velocity concept and then is transformed to the current configuration to recover the updated Lagrangian formulation.
The design sensitivity equation of the direct differentiation method is solved at each time step without iteration. The
effect of using different reference frames for response analysis and sensitivity analysis is discussed in detail. The path-
dependency of the sensitivity is due to the evolutions of the intermediate configuration and the internal plastic variables.
A numerical example is shown to confirm the accuracy and efficiency of the proposed computational method using a

vehicle bumper optimization. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most gradient-based design optimization algorithms
require evaluation of the performance measures, such as
the cost or constraints, at the given design and the
sensitivity information of these performance measures
with respect to the design parameters. Accurate evalu-
ation of the performance measure and its sensitivity
information is very important for stability and rapid
convergence of an optimization algorithm. As engi-
neering problems becoming more complicated, the cost
of response analysis increases in spite of increased
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computing capability. If the conventional finite differ-
ence method is used to obtain the sensitivity informa-
tion, the cost of the sensitivity computation increases
tremendously; proportional to the number of design
parameters. In addition to the systematic design opti-
mization, design sensitivity information also provides
useful quantitative information to the design engineer
about the direction of the desired design change. In this
paper, an accurate and efficient method is proposed to
obtain the sensitivity information for nonlinear struc-
tural design problems.

Since many engineering applications involve plastic
deformation, the design sensitivity of this application
area has gained significant interest in recent years. In
response analysis of plastic deformation, the return-
mapping projection of the elastic trial stress is carried
out to meet the variational inequality through iterations
in the deviatoric stress space. The design sensitivity
analysis (DSA), on the other hand, computes the rate of
change of the projected solution to the response analysis
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Nomenclature

b° elastic left Cauchy—Green deformation ten-
sor

c fourth order spatial stiffness tensor

¢ second order elastic stiffness tensor in prin-
cipal space

cle algorithmic tangent stiffness tensor

C fourth order material stiffness tensor

e principal logarithmic strain

eP effective plastic strain

E elastic domain

E Lagrangian strain tensor

f yield function

f(x) incremental deformation gradient

F(X) deformation gradient

F°(X) elastic deformation gradient

FP(X) plastic deformation gradient

plastic modulus for the kinematic hardening
second order identity tensor

second order deviatoric identity tensor
principal direction of trial b°

outward unit normal to the yield surface
deviatoric principal Kirchhoff stress vector
second Kirchhoff stress tensor

mapping of shape perturbation

V(X) design velocity field

material point in the deformed geometry
material point in the undeformed geometry
displacement function

material derivative of displacement

Nwe ZI~NT

a e N v

Z variation of displacement

Z space of kinematically admissible displace-
ments

o principal back stress

& engineering strain at the current configura-
tion

&y explicitly dependent term of ¢

&p path dependent term of ¢

y plastic consistency parameter
boundary of structural domain

n nonlinear strain tensor

ny explicitly dependent term of n

fp path dependent term of #

k(eP)  radius of the yield surface

A1 Lame’s constants

c Cauchy stress tensor

T Kirchhoff stress tensor

P principal Kirchhoff stress vector

Q structural domain

v free energy function

' performance measure

1 =[1, 1, 17

ag(+,-) structural energy form

aj(z; -, -) structural bilinear form

ay(-,-) structural fictitious load form

lo(+) load linear form

2,(4) external fictitious load

Vo =0/0X

V. =0/0x

in the tangential direction of the constraint set without
the need of iteration. It is important to note that the
sensitivity analysis is linear and is computed without
iteration even if the response analysis is nonlinear. Al-
though rigorous mathematical studies in DSA for linear
problems have been made [1], many research results
were published for nonlinear problems without a mathe-
matical proof regarding the existence and uniqueness of
the design sensitivity.

Unlike the nonlinear elastic problem, the sensitivity
equation of the elastoplastic problem requires the sen-
sitivity information of the stress and the internal vari-
ables at the previous time step. The sensitivity equation
is solved at each time step, and the sensitivity informa-
tion of the stresses and evolution variables are updated
for the design sensitivity computation at the next time
step. The sensitivity equation at each load step computes
material derivatives of incremental displacements. The
material derivatives of total displacements are then ob-
tained by summing up material derivatives of incre-
mental displacements. Recently, several research results

were reported regarding DSA of elastoplastic material
with infinitesimal deformation, using the hypo-elastic
constitutive model. Accurate sensitivity results were ob-
tained by consistently following response analysis pro-
cedures and using the return-mapping algorithm and
algorithmic tangent operator. Vidal and Haber [2] dis-
cussed the accuracy of the sensitivity coefficients with
respect to the consistent tangent operator and the rate
form tangent operator. For the major research results of
DSA in infinitesimal elastoplasticity, refer to Refs. [2-8].

When the structure experiences large deformation,
the classical theory of elastoplasticity with infinitesimal
deformation assumption is modified to account for a
rigid body rotation. The objective stress rate plays an
important role in an elastoplasticity problem to correctly
represent the rigid body motion. Efficient numerical in-
tegration that preserves stress objectivity for hypo-elas-
tic constitutive model is highly desirable, but yet not
fully developed. Further, the tangent operator that is not
consistent with the integration of stress rate leads to
errors in DSA.
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For the finite deformation elastoplastic problem with
a hypo-elastic constitutive model, it is difficult to linea-
rize the variational equation consistently because of the
rigid body rotation. An incrementally objective inte-
gration method is advocated by Hughes and Windget
[9], but the consistent linearization of an objective inte-
gration method is not a trivial procedure. This lack of
consistent tangent stiffness induces iteration in the sen-
sitivity equation as experienced by Zhang et al. [10] and
Dutta [11]. For the case of the explicit method, since the
reference frame is at the previous configuration, Kleiber
[12] and Cho and Choi [13] succeeded in solving a sen-
sitivity equation without iteration.

On the other hand, relatively simple expressions of
the design sensitivity can be obtained for the steady state
problem. Maniatty and Chen [14] developed a design
sensitivity formulation for the steady state metal-form-
ing process using a semi-analytical adjoint variable
method. Zao et al. [15] solved an unconstrained opti-
mization problem to minimize the difference between the
final shape of the workpiece and the desired shape.
Balagangadhar and Tortorelli [16] discussed design op-
timization of steady state manufacturing process using a
reference frame approach. However, these approaches
cannot easily evaluate the residual stress and spring-
back phenomena at the end of the process since rigid—
plastic constitutive model is used.

An effective approach for finite deformation elasto-
plasticity is to consider a hyperelastic constitutive rela-
tion for the elastic response of elastoplasticity. This
method defines a stress-free intermediate configuration
composed of the plastic deformation, and the stress can
be obtained simply by taking the derivative of the strain
energy density function with reference to the interme-
diate configuration. Without errors involved in stress
integration, an enhanced accuracy is obtained for
problems with a large elastic deformation. In addition,
the same return-mapping algorithm as that of the clas-
sical theory can be used in the principal stress space.
Moreover, the consistent tangent stiffness guarantees the
quadratic convergence in response analysis, and it pro-
vides accuracy in DSA results. The theory of the mul-
tiplicative plasticity is proposed by Lee [17] to go beyond
the assumption of the small elastic strain in the theory of
the classical infinitesimal plasticity, which uses an ad-
ditive decomposition of the strain rate. This model is
suited for the single-crystal metal plasticity (see Ref.
[18]). A computational framework of this theory is
proposed by Simo [19], which preserves the conventional
return-mapping algorithm in the principal stress space.
For major research results of finite deformation elasto-
plasticity with multiplicative decomposition of defor-
mation gradient, refer to Refs. [17-24].

The Lagrangian formulation of DSA for multiplica-
tive elastoplasticity was developed by Badrinarayanan
and Zabaras [25] for die and process design. However,

since the structural domain is fixed in their parameter
DSA, complex transformation to the undeformed con-
figuration does not appear. In addition, they indicated
that the tangent stiffness matrix of response analysis is
different from that of the design sensitivity equation, and
thus another tangent stiffness matrix is computed for
DSA, which reduces the computational efficiency. Re-
cently, Wiechmann and Barthold [26] derived a sensi-
tivity formulation that leads to the same tangent stiffness
matrix as response analysis through a consistent linea-
rization. They transform all deformation configurations
into the parameter space where design variation is taken.
In this case, design velocity field has to be defined at the
parameter space, not at the initial structural domain. If
the mapping relation between parameter space and ini-
tial domain is not specified, this approach could yield
difficulty in design procedures. Thus, it is necessary to
develop shape DSA that uses design velocity informa-
tion at the initial undeformed domain.

A continuum-based shape DSA for finite deforma-
tion elastoplasticity with a multiplicative decomposition
of the deformation gradient is developed in this paper.
The spatial description of the variational equation is
transformed to the undeformed configuration by a
“pull-back” operation. After taking the material deriva-
tive with respect to the shape design parameters, the
spatial description is recovered by a “push-forward”
operation to the current configuration. This procedure is
necessary since the design parameters are defined in the
undeformed coordinate of the domain. It has been dis-
cussed in Ref. [19] that the specification of the inter-
mediate configuration allows an arbitrary rigid body
rotation. It is shown in this study, however, that the
sensitivity of elastic rotation is not negligible and needs
to be identified for sensitivity purpose.

In general, nonlinear finite deformation problems
mentioned above experience very large deformation. An
effective numerical method, which can handle mesh
distortion problem in conventional FEA is highly de-
sirable in analyzing finite deformation problems. In
addition, even if the original mesh shape is regular en-
ough, the mesh distortion by domain change during
the shape optimization poses difficulty in obtaining
stable and convergent solution. A number of meshfree
methods that do not require explicit meshes in domain
discretization have been proposed to alleviate the de-
pendence of numerical solution on the quality of mesh.
Belytschko et al. [27] proposed the element-free Galerkin
(EFG) method based on a moving least-square ap-
proximation. Duarte and Oden [28] developed the HP
Clouds method for hp-adaptivity based on the partition
of unity [29]. Liu et al. [30] developed the reproducing
kernel particle method (RKPM) by introducing a
modified kernel function that meets reproducing condi-
tions. The RKPM was further extended to highly non-
linear hyperelastic and elastoplastic problem by Chen
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et al. [31,32]. The continuum-based variational equation
of response analysis and DSA are discretized using
RKPM in this work to take these advantages of the
meshfree method for large deformation analysis and
shape design optimization.

In this study, the response analysis is formulated
meshfree discretization of the variational equation. The
material derivative of this variational form is obtained
using the concept of design velocity field to describe
shape design changes of the structural system. The shape
sensitivity expression obtained from the structural varia-
tional form depends on the domain design velocity. By
solving linear system of the sensitivity equation, the
design sensitivity of a displacement performance mea-
sure can be obtained. The sensitivities of the perfor-
mance measures such as stress and reaction force are
obtained using the direct differentiation method (DDM)
in this paper. Since the stress and reaction force per-
formance measures depend on the shape design variable
implicitly through the displacement, the design sensi-
tivity of the displacement is used to obtain the design
sensitivity of the performance measure.

The feasibility of the proposed methods is demon-
strated through the design optimization of a vehicle
bumper contact problem. The design sensitivity results
are compared with the finite difference results, and ex-
cellent agreements are observed. The cost of computing
sensitivity information is shown to be very small com-
pared with that of response analysis and thus, the finite
difference method.

2. Review of response analysis using multiplicative elas-
toplasticity in finite deformation

Many difficulties regarding the finite deformation in
plasticity can be resolved by using a phenomenological
model where the constitutive equation is formulated in
a hyperelasticity typed relationship. The multiplicative
decomposition of elastic—plastic deformation is con-
verted into additive decomposition by defining appro-
priate stress and strain measures. In the DSA point of
view, this formulation yields the fotal form of the design
sensitivity equation compared to the incremental form in
classical elastoplastic response analysis. A major diffi-
culty in DSA is due to the fact that the design para-
meters are referenced to the undeformed configuration,
whereas the reference for response analysis is the stress-
free intermediate configuration. The design sensitivity of
intermediate configuration needs to be stored and up-
dated at each load step.

2.1. Finite deformation elastoplasticity

In this section, the constitutive relation of multipli-
cative plasticity [18] and the associated computational

method using return-mapping algorithm [19] are sum-
marized. Let X be the material point in the initial do-
main, and its position in the current configuration is
denoted by x = X + z, where z is the displacement. The
deformation gradient F(X) of the material point X is
assumed to take the form of local multiplicative de-
composition as follows:

F(X) = F(X)F*(X) (1)

where FP(X) denotes the plastic deformation at the
stress-free intermediate configuration that is defined
through an elastic unloading process F¢ (X). The elas-
tic stress domain is defined using a Kirchhoff stress
tensor, T = ¢ det(F) and the stress-like internal variable
q, as

E={(zqlf(z,9) <0} (2)

where ¢ is the Cauchy stress and f the yield function.
The yield potential function f(z,¢) of Eq. (2) is an iso-
tropic function of ¢ due to the principle of objectivity.
That is, the yield potential function does not depend on
the orientation of the stress or internal variables. It is
assumed that the free energy function depends locally on
F°(X) only, since the free energy represents the stored
energy through the elastic deformation. In addition, the
free energy function is independent of the orientation,
like the yield potential function, as

¥ =y(b,¢) 3)

where b = FCF' is the elastic left Cauchy-Green de-
formation tensor and & is the vector of strain-like in-
ternal variables that is conjugate to ¢ in the sense that
q = —0y /0L

For the displacement-controlled problem, the defor-
mation state {F,,b;,&,} at time 7, and the incremental
displacement Az are known. The objective is to obtain
the current deformation that satisfies all the constitutive
and evolution equations. The relative deformation gra-
dient from time ¢, to ¢,,, is defined as

f(x) =1+V,(Az) (4)

The total deformation gradient at time ¢, is then
F)1+1(X) :f(x)Fn(X)

In computation, the elastoplastic evolution can be
described by an elastic trial state and a plastic return
mapping. The elastic trial state can be obtained by
eliminating the plastic flow and pushing forward the
elastic left Cauchy—Green deformation tensor to the
current configuration using the relative deformation
gradient as

b =T, =g, (5)

For the given trial state, the deformation tensor can be
represented by the spectral decomposition as
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3
b= Z v?zni Qn (6)
i=1

where v!' is the principal stretch and n' is the principal
direction. For simplicity, vector notations are defined
as follows. A logarithmic elastic principal stretch and
principal stress vectors are defined by e = [e;, e, e3]"
llog(v1),log(vy),log(vs)]" and =° = [0, 5, 78]", respec-
tively. The relation between the elastic trial principal
stress and the logarithmic principal elastic stretch is

(z*)" = et (7)

where ¢ = (A+%u)1® 1+ 2ulg, is the usual 3 x3
elasticity tensor for an isotropic material, 1 = [1,1,1],
Iy =1—-(1®1)/3, and 1 and p are Lame’s constants.
From the isotropic assumption, the principal direction
of 7 is coincided to that of 4°, thus

3
Tt = Z n on (8)
i1

If 7, evaluated using the trial state in Eq. (8), is within
the elastic domain of Eq. (2), then the trial stress in Eq.
(8) exacts. Otherwise, the plastic return mapping is
carried out along the fixed principal direction. The re-
turn-mapping procedures are listed below

C (@
@ = (@) e LD
of (v*, q) 9
§n+l = fn + Y aq ( )

720, f(*¢)<0, 73f(z",q)=0

where 7y is the consistency parameter. The return-map-
ping algorithms in Eq. (9) are with the same forms as
those of the classical plasticity. The only difference is
that the principal Kirchhoff stress and logarithmic strain
are used instead of the Cauchy stress and engineering
strain.

2.2. Return mapping algorithms for isotropiclkinematic
hardening materials

Since the plastic behavior can be efficiently described

by the deviator of stresses, the deviatoric principal stress
is defined by

szrpf%(rp-l)l (10)

For rate independent plasticity, the von Mises pressure
insensitive yield criterion and the associative flow rule
are commonly used for discretizing elastoplastic behav-
ior of metal-like material. The yield function is given as

f(n,e") = [|nll — \/%K(ep) =0 (11)

where § = s — a(eP) and a(eP) is the back stress. In Eq.
(11), x(eP) is the radius of the yield surface and deter-
mined by the isotropic hardening rule. The internal
variables are reduced to the effective plastic strain e? and
the back stress.

The return-mapping algorithm in the principal Kir-
chhoff stress space is
T = ()" = 2N

Ay = &y + VHV(ep)N

2
eEH =e + \/;V

where H,(eP) is a plastic modulus for the kinematic
hardening and

(12)

tr

n

N=—=—+—
[l Al

(13)

is an outward unit normal to the yield surface. In Eq.
(12), y is computed using a local Newton-Raphson
method by imposing the following consistency condition

Fl0e) = ] - 2x(e)
= )~ R L — 2 =0 (18

which is in general a nonlinear equation in y. The con-
vexity of the elastic domain guarantees the stability of
the return-mapping algorithm. If the isotropic/kinematic
hardening is a linear function of y or the effective plastic
strain, then only one iteration is required to compute the
return map point. The gradient of f'in Eq. (14) can be
evaluated by

of \f 2 1
L —_(2u+H SHy+2K | =—= 1
o <u+ e mv+3fc> y (15)

The Kirchhoff stress tensor can be obtained from Eq.
(8) using the principal stress and principal direction as

3
7= er’mi, where m' = n' @ n' (16)
pa

The left Cauchy-Green deformation tensor is updated
using the formula in Eq. (6), which represents the in-
termediate configuration

3
b = exp(e)n’ @ (17)
pa

where e = e — yN is the elastic logarithmic principal
strain.
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2.3. Consistent algorithmic tangent operator

The consistent tangent operator can be obtained by
taking the derivative of the Kirchhoff stress tensor in Eq.
(16) with respect to the strain. This spatial tangent op-
erator is related with the material tangent operator by

Const = For By Fig Fyy Cuuker (18)

where Cp;, = 0S;;/0Ek, is the material response tensor,
Ex; is a component of Lagrangian strain tensor, and Sj;
is a component of 2nd Piola—Kirchhoff stress. Since the
stress is a function of the elastic trial strain and the in-
termediate configuration is held fixed in the elastic trial
process, all the material tensors are referred to the in-
termediate configuration and thus the linearization is
carried out with respect to the intermediate configura-
tion. By considering the return-mapping algorithm in
the stress calculation, the consistent tangent operator in
the principal stress space can be obtained by
p 2
e E%: fod —4y2AN®N—|“‘:Tj|)|(IdEV —N®N)

(19)

which is 3 x 3 symmetric matrix in the principal stress
space. Eq. (19) has the same form as the classical plas-
ticity except that the principal stress and logarithmic
stretch is used here. Using the property in Eq. (18), the
stress in Eq. (16) is differentiated to yield

3 3

3
e DI TP S C)
j=1

i=1 i=1

which contains all the symmetric properties between
indices. In Eq. (20), ¢ is the linearization of m, which is
independent of the plastic flow because the plastic evo-
lution is carried out in the fixed principal direction. The
expression of ¢ is given in detail by Simo and Taylor
[33].

2.4. Variational principles for finite deformation

Let f and f° be the body force in @ and surface
traction on I't. The variational equation at time ¢, can
be written in different forms depending on the reference
configuration used and the stress/strain measures as

ag(”z,Z)E/t:EdQ:/S:EdQ
Q Q

:/ZTdeQ+/ ZTdeF
Q rr
=l(z), VzeZ 1)

where Z is the space of the kinematically admissible
displacement. In Eq. (21), overbar “—”" denotes the first

order variation and “:”” is the contraction of tensors (i.e.,
a: b= a;b;). The notations aqg("z,z) and £o(Z) are used
for the structural energy and load linear forms. The left
superscript n denotes the configuration time ¢, but will
be ignored, unless necessary for clarification. The fol-
lowing relations can be obtained from the definition of
the stress and strain tensors

t=FSF' (22)

e=FTEF' (23)

Using the relations in Eqgs. (22) and (23), the updated
Lagrangian formulation can be derived from the total
Lagrangian formulation. In this way, the equivalence of
two formulations can be shown and the basis of DSA
can be established. From the definition of the Lagran-
gian strain tensor E = (1/2)(F'F — I), its variation and
increment can be derived as

1
E=5 (Voz'F + F'V37) (24)

1
AE =3 (VoAZ"F + F'VAz) (25)

where the notations Vyz = 0z/0X and V,z = 0z/0x are
used henceforth. Since the strain variation in Eq. (24)
depends on the displacement, its increment is

1
AE = 3 (Voz'VoAz + VA7 V7) (26)

Using Eqgs. (24)—-(26) and AS = C : AE, the increment of
the integrand of the structural energy form in Eq. (21) is
obtained as

A(S:E)=E:C:AE+S:AE (27)

Thus, the incremental equation of the total Lagrangian
formulation becomes

a5 (z;Az,%) E/(E: C:AE +S:AE)dQ
Q

=lo(z) — / S :EdQ
Q

=1o(Z) —ao(z2,2), VzZeZ (28)

To derive the spatial formulation, Eq. (28) is trans-
formed into the current configuration using the relations
in Egs. (22) and (23). That is, each integrand of Eq. (28)
can be transformed to the current configuration by

E:C:AE=z%:c:8A7) (29)

S :AE = FSF" : (V,z'V,Az) = 7: §(Az,7) (30)

where y(Az,z) = (1/2)(V,z'V,Az + V,AzTV,Z) is the
nonlinear strain increment. Thus, all the necessary terms
are transformed to the current configuration. The lin-
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earized incremental equation with respect to the current
configuration is then

ay(z;A2,2) = /[E cc:e(Az) +1:n(Az,2)]dQ
=4o(Z) —ao(2,2), VZeZ (31)

which is the updated Lagrangian form. Note that Egs.
(28) and (31) are of equivalent formulations and they
have the same stiffness matrix and residual. Let the
current time be 7, and the iteration count be k£ + 1, then
the linearization of Eq. (31) using the incremental form
becomes

an("? AT 7)
_ / [E . c:s(Azk“) +n‘l.'k . TI(AZkH,Z)]dQ
Q
=lo(z) —ao("?5,2), VzZeZ (32)

Eq. (32) is solved iteratively until the right side, which is
the residual force, vanishes. After convergence, time step
is advanced and the same procedure repeats until the
final configuration is reached. Notice that the integra-
tion of the internal energy term is carried out in the
undeformed configuration because of the employment
of the Kirchhoff stress. Even if two formulations are
equivalent, the choice of the specific formulation de-
pends crucially upon the constitutive relation.

3. Shape design sensitivity formulation for finite elasto-
plasticity: spatial description

In shape DSA of the nonlinear elastic material, even
if analysis is carried out incrementally, it is well known
that the sensitivity equation is linear and needs to be
solved only one time at the final converged configuration
with tangent stiffness matrix the same as that of the in-
cremental analysis. Two types of formulations are usu-
ally used in the literature: the total Lagrangian and
updated Lagrangian formulations. The first one uses the
undeformed configuration as a reference and in the
second case current configuration is the reference, and
these two methods are mathematically equivalent.
However, from the sensitivity point of view, the equi-
valence of the two formulations is not established clearly.
Since the perturbation of the design is defined only
on the initial (undeformed) configuration, the total
Lagrangian formulation is a more natural choice [35].
Cho and Choi [13] discussed updating design velocity
fields for each time step by incorporating shape DSA
with respect to the updated Lagrangian formulation for
the elastoplastic material. The design velocity fields at
the current time are computed using the displacement
sensitivity and the design velocity at the previous time.
Thus, the sensitivity equation has to be solved at each

time step for the material model that is elastic or hy-
perelastic for updated Lagrangian formulation. This
procedure is very inefficient compared to the total
Lagrangian formulation. However, in the updated
Lagrangian formulation of the sizing DSA done by Choi
and Santos [34], the sensitivity equation is solved only
once at the final converged time step. In this section, a
shape DSA of the updated Lagrangian formulation that
needs to be solved only once that the final converged
configuration is proposed for elastic or hyperelastic
material.

3.1. Material derivatives

In shape DSA, the shape of the domain that a struc-
tural component occupies is treated as the design vari-
able. Consider an undeformed domain Q with boundary
I' at the initial design T = 0 as shown in Fig. 1. Suppose
that only one parameter t defines the mapping T for
shape perturbation between original geometry and per-
turbed geometry. The mapping for shape perturbation
T:X — X.(X), X € Q,is given by

X.=T(X,7)
Q. = T(Q,7) (33)
r.,=17(,r)

The mapping of Eq. (33) can be interpreted as a dynamic
process perturbing a continuum shape design from an
initial domain Q, at t =0, to a perturbed domain Q..
Define a design velocity field as

_dX. dT(X,r) 0oT(X,1)
V(Xe 1) = dt dr o

(34)

with 7 playing the role of time. In a neighborhood of
7 =0, under the reasonable regularity hypothesis and
ignoring higher order terms,

T(X,7) = T(X,0) + r@ +0(7?)
~ X +1V(X,0) (35)
r I;

Fig. 1. Variation of undeformed domain by one-parameter
family of mappings.
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where X = T(X,0) and V(X) = V(X,0) Detailed for-
mula for material derivative can be found in Ref. [1].
The material derivative of the domain integral func-
tional

P, — / g.(X.)dQ (36)
is
F0| = [+ s0naivyae (37)

where ¢ = dg/dt. The material derivative of the bound-
ary integral functional

is

5| = [0+ seomjar (39)

where k is the curvature of the boundary and V; is the
normal component of the design velocity. Eq. (37) can
be used to obtain derivatives of the structural variational
form and the performance measure that is defined as a
domain integral. Eq. (39) can be used obtaining the
derivatives of the performance measure that is defined as
a boundary integral.

The solution z,(X,) of Eq. (21) referring to the initial
coordinates X, of the perturbed domain is assumed to
be a differentiable function with respect to the shape
design variable. The mapping z.(X,) = z.(X + V(X))
is defined on Q, and z.(X;) depends on t in two ways.
First, it is the solution to the equilibrium of Eq. (21) on
Q.. Second, it is evaluated at a point X, that moves with
7. The pointwise material derivative of z.(X,) at X € Q,
if it exists, is defined as

d
t=—a(X+ V(X))

d
i S X VX)) — 2(X)

(40)

If z.(X:) has a regular extension to a neighborhood of
Q., then

2(X) = Z(X) + VozV(X) (41)
where
Z/EITEIJZI(X);Z(X) (42)

is the partial derivative of z. and Vyz = [Vz1, Voz,
VOZng.

3.2. Shape design sensitivity analysis of finite elasticity

In this section, a new shape design sensitivity for-
mulation for the updated Lagrangian formulation with
the same efficiency as the total Lagrangian formulation
is proposed for the elastic material. The design deriva-
tive is taken at the undeformed configuration, and then
all the variables are transformed to the current configu-
ration using a similar procedure as the one described
in Eq. (31). Since, the sensitivity equation at the cur-
rent configuration is the transformation from the unde-
formed configuration, two formulations give the same
fictitious load form but different representations.

After computing all necessary terms of DSA using
the total Lagrangian description, these terms will be
transformed to the current configuration to be consis-
tent with response analysis. This approach is important
because the shape design is perturbed at the undeformed
configuration. The design derivative of structural energy
form becomes

i/ S;Fdsz:/(S:E+s;i+s:idivV)dQ
dr /o o
(43)

where d/dz(-) denotes the design derivative, whereas
d/ds(-) represents the time derivative in the response
analysis. In Eq. (43), V denotes the design velocity
field, which represents the direction and the magnitude
of the shape perturbation at the undeformed geome-
try. The last term div ¥ comes from the domain per-
turbation effect. The first part on the right of Eq. (43)
can be expressed in terms of the displacement sen-
sitivity and design velocity by using the constitutive re-
lation.

The material derivative of the stress can be expressed
in terms of the material derivative of the strain as

S=C:E (44)

where C is fourth order material constitutive tensor
defined in Eq. (18). Since the Lagrangian strain tensor is
defined in terms of the deformation gradient, the design
derivative of F is obtained as

F= %(1 + Voz) = Voz — VozVoV (45)
where z = d/dz(z) is the material derivative of the dis-
placement vector. In Eq. (45), the property that the
partial derivative with respect to design can be ex-
changed with the spatial gradient at the reference con-
figuration is used [1]. Thus, the material derivative of the
Lagrangian strain tensor can be expressed as

1

E =5 [(Vot = VozVo¥)'F + FT(Voi = Voz¥o )]

(46)
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By using the property in Eq. (23), Eq. (46) can be trans-
formed into the current configuration as

FTEF ' =¢(2) +ev(z) (47)
where

1
ev(z) = — 3 (VozV, V + V,V'Voz") (48)

denotes the explicit dependence on the design velocity
field and response. Note that ey(z) contains two different
gradient operators, Vo and V,. Thus, the spatial de-
scription of the first integrand on the right of Eq. (43)
can be expressed as

S:E=E:C:E=%:c¢:83)+%:c:8(2) (49)

Eq. (49) separates the stress sensitivity into known and
unknown parts. The known part &:c:é&y(z) can be
computed using the design velocity and current re-
sponse. The unknown part & : c¢: &(2) yields aj(z;%,2)
when Az is replaced by z.

For the second part of Eq. (43), the material deriv-
ative of the strain variation is obtained, using Eqgs. (24)
and (49),
= d1
E=qal

- % [(VozVo V) F 4+ FT(VozVo V)] + % [Voz' (Voz

Voz'F + F'V(37)

—VozVoV) 4 (Voz — VozVo V) ' Voz)

(50)
By pre-multiplying F~' as in Eq. (47), Eq. (50) becomes
FTEF™' = 5(2,2) +ny(2.2) (51)
where

1
My(z.2) = =5 [V.2 (VozV V) + (VosV, V) 'V,
1
— 5 [(Voz9, ¥) + (VozV, 7)) (52)

Thus, the second integrand on the right of Eq. (43) can
be expressed in terms of the current configuration as

S:F:r:n(2,2)+r:nv(z72) (53)

By substituting Egs. (49) and (53) into Eq. (43), the
material derivative of the structural energy form at the
current configuration can be obtained as

& loe 2 = apz:27) +dy(z,2) (54)

where
ay(z,%2) = /[E ceey(z) +1iny(z,2) + 7 edivl]dQ
o

(55)

is the structural fictitious load form, which is linear in V
and z. Once the results of response analysis, z and 7, are
given at the current time, ai/(z,%) can be computed ex-
plicitly without any sensitivity information from the
previous configuration. Note that the spatial fictitious
load form d4;(z,z) in Eq. (55) is a transformed version of
the material fictitious load form given by Santos and
Choi [35]. These two approaches yield the same fictitious
load vectors. Thus, the same design sensitivity result Z is
expected from these two formulations.

The material derivative of the load linear form in Eq.
(21) can be obtained as

by(z) = /Q [zT(VfB V) +z B div V] de
+ / [ZT(VfSV)+KZTfSK1]dF (56)
I't

Here it is assumed that the external force is independent
of the design change, i.e., fB’ :fS’ = 0. Eq. (56) is de-
fined as the external fictitious load. Starting from the
undeformed reference frame, after proper transforma-
tion, the sensitivity equation corresponding to the cur-
rent configuration is obtained as

ag(2:2,7) = 4y(2) — ay(z,2), VZEZ (57)

Note that the sensitivity equation, Eq. (57), is solved
only once at the final converged time with the same
stiffness matrix as that in the response analysis, and the
solution of Eq. (57) is not an incremental sensitivity, but
the total displacement sensitivity. To conclude, the
sensitivity equation of the updated Lagrangian formu-
lation is equivalent to the sensitivity equation of the
total Lagrangian formulation, and the total form of the
sensitivity equation can be obtained if the constitutive
equation is given as a total form.

3.3. Shape design sensitivity formulation for finite defor-
mation elastoplasticity

When the material deformation is in the plastic
range, the intermediate configuration contributes to the
sensitivity formulation. The reference frame of response
analysis, which is the intermediate configuration, is dif-
ferent from the reference frame of design perturbation,
which is the undeformed configuration. Fig. 2 shows the
procedure for response analysis and design perturbation.
The transformation between the undeformed and inter-
mediate configurations is not involved in the lineariza-
tion of response analysis because it is fixed in the elastic
trial process. Since the intermediate configuration is
changed as the shape design is perturbed in the unde-
formed configuration in DSA, this transformation is not
fixed from the sensitivity viewpoint. The path-depen-
dency of the sensitivity equation comes from this
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Undeformed Configuratio
(Design Reference)

Intermediate Configuration
(Analysis Reference)

Fig. 2. Illustration of analysis and design perturbation proce-
dure.

transformation as well as the dependency of the plastic
evolution variables.

Since response analysis refers to the intermediate
configuration, the material derivative of the elastic trial
Lagrangian strain tensor E° = (1/2)[F°[FC —1I] in the
intermediate configuration is

E° :%(FJFe + F ) (58)
and the transformation of Eq. (58) into the current
configuration leads to

. 1 . .
FUEF' = 5 (F F 4R (59)

Note that the push-forward transformation is from
the intermediate configuration to the current configu-
ration. Since F* refers to the intermediate configuration,
it should be transformed to the undeformed configura-
tion where the design velocity is given explicitly, by
taking the material derivative of decomposition in Eq.
(1). By using F* = FF°' — FFPF*"' and defining a
path-dependent matrix G as

G = FF°F! (60)

which is a transformation of F® into the current con-
figuration, Eq. (59) can be rearranged as

. 1 . . 1
Fe TEeFe 1 :E(F—TFT +FF—1) 7§(G+ GT)
= &(2) +ev(z) +2e(2) (61)
where ¢(z) and &y(z) are the same forms as the sensitivity
formulation in the finite elasticity and &p(z) is the con-
tribution from the elastic trial intermediate configura-
tion where the path-dependency comes from
1
-3 (
While left side of Eq. (61) is the push forward
transformation, the right side of Eq. (61) is equivalent to

&(z) = —=(G+G") (62)

pulling back E° to the undeformed configuration, taking
the material derivative, and pushing forward to the cur-
rent configuration. The trial elastic deformation gradi-
ent F° must be extracted from response analysis and the
material derivative of FP must be stored from the pre-
vious sensitivity procedure. An interesting observation
can be made from the comparison of the rate form and
multiplicative plasticity: (1) in additive rateform plas-
ticity, the path-dependency is resulting from the design
derivative of the stress tensor at the previous time step
and, (2) in multiplicative plasticity, the path-dependency
is due to the transformation between the intermediate
and current configurations.

The same procedure must be applied to the VariTation
of the Lagrangian strain tensor E = (1/2)[F F*+
F<'F'] in the intermediate configuration as

FUEF =y(2,2) +ny(z.2) + mp(2,2) (63)

where, 1p(z,7) is obtained using a similar procedure as
for &p(z),

1
Mp(2,2) = —5(Va2G + V,Z2'G+G'V,z+G'V,z")
(64)

which is the contribution of the elastic trial intermediate
configuration through the nonlinear strain term.

The material derivative of the Kirchhoff stress in Eq.
(16) becomes

3

t=Y (Pm' +nir) (65)

i=1

The material derivative of the principal stress is a
function of the principal logarithmic strain. The fol-
lowing relation can be obtained by the chain rule of
differentiation and the push-forward operation,

3 tr
a'[P Qe T T - -1 an arp
P =N L (2F_—_LF° ). (F E°F° —eP =3
i} ;6@’( o ) ( )+aepe,,+aaan
3
30 ot otP
= Uyl T8 (3 LeP o
;c” m': [e(2) +ev(z) +ep(2)] + 50 e) + 5 -d
(66)
where
ot 2uy
— =2UAN@N +7+——(Igey — NN 67
o ey ) )
otP ,

are of the same forms as those in the sensitivity formu-
lation for the classical infinitesimal plasticity. The path-
dependency of the material derivative of the Kirchhoff
stress comes from ep(z), #p(2,Z), &,, and éP. Since m' is
only related to the elastic trial state, it is independent of
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the plastic evolution and its material derivative can be
obtained from the derivative of the elastic trial strain:

oc*
=2¢: [e(2) + ev(z) + &p(2)] (69)

= (zpe Crn FeT> C(FEF

Thus, the design derivative of the Kirchhoff stress tensor
can be expressed in terms of z, configuration of response
analysis, and sensitivity results of the previous time step,
as

(tPm’ 4 Prd’)

i
-

i(cf}gm[ ®@m’ +217¢) : [8(2) + ev(2) (70)

ep(z)] + 7
:[e(2) +ev(z) +ep(z)] + 7

Il

i

fic

s+

where ¢ is the fourth order consistent tangent stiffness
tensor at the current configuration and

3
otP or? ,
fic _ i i -p i
T <_6rz an+aepen)m (71)

i=1

is the path-dependent term due to plastic evolution. The
7 term must be included when the material is in the
plastic range. It is clear from Eq. (71) that the sensitivity
information of &, and éP at the previous time step needs
to be stored for the displacement sensitivity computation
at the current time step.

From the material derivative of the Kirchhoff stress
in Eq. (70) and the transformation of the material de-
rivatives of the Lagrangian strain tensor to the current
configuration in Egs. (61) and (63), the material deriva-
tive of the structural variational form can be obtained
as
d

Sl -5 [eae=c@an rden (0

where
ay(z,%2) = /[E ceey(z) +tiny(z,z) + 7 edivl]dQ
o

+/[§:c:sp(z)+r:np(z,2)+rﬁ°:E]dQ
(73)

is the structural fictitious load form for the finite plas-
ticity that can be computed from the result of response
analysis and the result of sensitivity equation at the
previous time step for a given design velocity field. Using
the same procedure as finite elasticity in Section 3.2, the
sensitivity equation at the current configuration is ob-
tained as

a;(z; 3,2) = ZIV(Z) - alv(z> 7), VzeZ (74)
The linear system of Eq. (74) needs to be solved at each
time step to compute the displacement sensitivity z. Note
that the sensitivity equation of the classical rate-form
plasticity provides the incremental displacement sensi-
tivity whereas the sensitivity Eq. (74) provides the total
displacement sensitivity even though Eq. (74) is solved at
each time step.

After computing the displacement sensitivity z, the
material derivatives of other path-dependent variables
can be updated. The material derivative of the loga-
rithmic principal stretch can be obtained from the defi-
nition of the strain and principal direction as

& = (2Fe age FeT) (FEF)
=m' : [a(2) + ev(2) + ()] (75)

The material derivative of the unit normal vector to the
yield surface and the plastic consistency parameter y can
be obtained by differentiating Eqs. (13) and (14), re-
spectively, as

: 1

N:W(ldev —N®N)(2,ue" —dn) (76)

7= ANT(2ué" — &,) — AK'eP (77)

Note that the local Newton’s method is used to compute
the plastic consistency parameter y for nonlinear hard-
ening rule in response analysis whereas no iteration is
required to compute j in Eq. (77). By using Egs. (76) and
(77), &, and &P are updated, using the same procedure as
response analysis, as

. . 2.\, :
an+l = d,, + (Hz + gHa’y> V + Ha“/N (78)

éEJrl = ég + \/%/ (79)

The only thing left is the evaluation of the material
derivative of deformation gradient G at the intermedi-
ate configuration, as given in Eq. (60). Since response
analysis updates the symmetric left Cauchy—Green de-
formation tensor b° = FCF¢ using Eq. (17), it is difficult
to extract any information of F° or FP separately. In
addition, it is difficult to express G in Eq. (60) in terms
of 5° and #°. From the updated Lagrangian formula-
tion and the assumption of the isotropic material, the
specification of the intermediate configuration is not
necessary in response analysis. The intermediate con-
figuration has an ambiguity up to the order of the rigid
body rotation.

However, since FP plays the role of the design velocity
field at the intermediate configuration, it is necessary to
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specify the intermediate configuration for DSA pur-
poses. Without any loss of generality, it is possible to
define the intermediate configuration as the unrotated
de-stressing process (see Ref. [17]). By removing the
rotational part from the polar decomposition of F* =
VER®, the elastic deformation gradient can be obtained
as

F=v=VK (80)

In this approach, the intermediate configuration defined
by FP contains the rigid body rotation as well as the
local de-stressing. Since the plastic evolution occurs on
the principal logarithmic stretches of the current fixed
configuration, the elastic deformation gradient F° and
its design derivative can be expressed as

3

F =" exp(e! — yNy)m (81)
=1

and

3
Fe= Z exp(el” — yN;) (e — N; — yN;)m'

i=1

£ explel — N : [o() +av(@) + al@)]  (82)

Finally, the material derivative of the intermediate
configuration can be obtained as

FP=F 'F—F FF° (83)

An interesting observation can be made by reducing the
problems to elastic. If F* = F and F® = I, then F* = 0in
Eq. (83) and the same structural fictitious load form as
the finite elasticity in Eq. (55) is recovered. However,
from the definition of F° in Eq. (82), F° = V* #F,
FP = R°, and F? # 0. Thus, the structural fictitious load
form is different from that of the finite elasticity. This
situation occurs because the intermediate configuration
is different from the undeformed configuration even if
the material is in elastic state. Thus, this type of de-
composition is inappropriate from the DSA viewpoint
even though response analysis yields an equivalent result
as discussed by Simo [36]. The sensitivity of elastic ro-
tation is not negligible and needs to be identified for
sensitivity purpose. Note that the undeformed configu-
ration cannot be recovered using the elastic deformation
gradient in Eq. (80) even if no plastic deformation oc-
curs.

To bring this inconsistency to a settlement, consider
the return-mapping algorithm in Eq. (12) in the princi-
pal strain space. The logarithmic elastic principal stretch
vector is updated by

Il
N:—»
=

|
=

~
3

Il
N

e exp(—yN;)) (84)

where exp(—yN;) is the principal value of incremental
plastic deformation gradient fP with the current fixed
principal direction. Thus, the incremental plastic defor-
mation gradient is defined as

3

fP =" exp(—N)m’ (85)
=1

and the updated elastic deformation gradient is

F:H :pr::l (86)

Note that the incremental plastic deformation gradient
fP in Eq. (85) is a symmetric tensor, which means the
incremental plastic spin vanishes. From the relation of
Eq. (1), the plastic deformation gradient is updated by
F° =FF,, (87)

n+1 n+1

and its material derivative is updated by

o d o .
FS-H = a (FVH:I)FVH’I + FnJr]lFVH’l (88)

where F,,; is given in Eq. (45) and

d ol el e ol

E(Fn+l) = _F/1+1Fn+1Fn+1

with

Fro =P+ (89)

To show the consistency with the finite elastic state in
the previous section, consider the elastic case, y =0,
then f° = F?,, = I and F,, = 0. Thus, the formulation
exactly recovers the finite elasticity. It is shown that the
intermediate configuration F',, needs to be specified for
the sensitivity purpose and is updated by removing the

incremental plastic spin.

4. Numerical example: shape design sensitivity analysis
and optimization of a bumper contact problem

Meshfree methods are developed in recent years to
remove or reduce the mesh dependence of the conven-
tional finite element method. In these methods, the
shape function is not constructed from the reference
domain but is formulated based on locations of material
points. The order of completeness and the smoothness
of the shape function can be easily changed. Insensitivity
to the mesh distortion in these methods is a very im-
portant feature in nonlinear analysis and shape optimi-
zation. Higher accuracy can be achieved by adding
nodes to the domain without remeshing. The domain is
discretized by nonoverlapping regions (integration
zone), and standard Gauss integration is used to eval-
uate the domain integral. This domain partitioning is
independent to the nodal locations, and nodes are not
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interconnected by elements. However, complexities in
imposing the essential boundary condition and relatively
high computational cost are weaknesses in these meth-
ods in spite of the aforementioned advantages. Some
advances to resolve these difficulties have been devel-
oped [37,38]. For detailed discussions of meshfree
methods, refer to Refs. [27-33,37,38]. For application of
meshfree method to DSA, refer to Ref. [39].

The bumper of a vehicle is designed to protect the
body from impact and to absorb the impact energy
through the plastic deformation. The DOT regulation of
the vehicle design requires that the bumper be able to
sustain a 5S-mph impact. In analysis, the bumper struc-
ture collides with a flat rigid wall. For DSA, the sensi-
tivity coefficients of performance measures with respect
to shape design parameters are computed. A DSA for-
mulation of the contact problems developed by Kim
et al. [39] is applied to this problem. Let br(z,z) and
by(z;Az,z) be the contact variational form and its li-
nearization. Let denote the current time as ¢, and the
iteration count as k -+ 1, then the linearization of the
structural variational equation including contact condi-
tions becomes,

ap('?; AL 2) + b (2 AT 2)s
:59(2)—ag(”zk,z)—br("zkj)’ vVzeZ (90)

and the DSA equation becomes

an(2;2,2) + b1(2;2,2) = £y(2) — ay(2,2) — by(2,2),
vieZ 1)

where b(z,Z) is the contact fictitious load form pre-
sented in Ref. [39].

The cross-section of the metal bumper is modeled by
144 RKPM particles and 71 integration zones as shown
in Fig. 3. Frictional contact conditions are established
between the rigid wall and particles at the outer surface
of the bumper with the contact penalty parameter
o, = 10> and the friction coefficient u = 0.4. The mag-
nitude of w, is chosen such that w, has the same mag-
nitude as the stiffness of the bumper. Finite deformation
elastoplasticity with multiplicative decomposition of the
deformation gradient is used as a constitutive model
with Young’s modulus £ = 206.9 GPa, Poisson’s ratio
v = 0.29, plastic hardening modulus H# = 1.1 GPa, and
initial yield stress o, = 0.5 GPa. Linear isotropic
hardening is considered where the plastic consistency
parameter can be solved explicitly without iteration.

The mounting points to the vehicle body are moved
2.8 cm toward the rigid wall. Nonlinear response ana-
lysis is carried out with 20 load steps using the standard
Newton-Raphson method. After the solution is con-
verged at each load step, the decomposed tangent stiff-
ness matrix is stored for DSA, and following DSA, the

Uy
Ue 75}
=>U
Us . .
" Mounting Point
1
—>U7
Ui
U4
o un
Ui
16
Mounting Point
Y|
X

Fig. 3. Geometry and shape design parameterization of bum-
per contact problem.

intermediate configuration and internal plastic variables
are updated. Fig. 4 shows the contour plots of the ef-
fective plastic strain and von Mises stress at the final
converged configuration. The contact points moved
outward as the deformation increases. Due to friction,
the contact points do not move vertically. Excessive
stress concentration and plastic strain are observed be-
tween the lower contact point and mounting point.
These high stress and strain concentrations will be re-
duced through shape design changes.

Since a bumper is usually manufactured by a sheet-
metal stamping process, it is inappropriate to change the
thickness at each section in shape design optimization.
The boundary of the bumper is represented by a cubic
spline curve, and each particle point on the boundary
has a unique parametric representation. The locations of
the control points of each boundary curve are chosen as
shape design parameters. The design velocity vector
corresponding to the particle point can be computed
using parametric representation. To maintain a constant
thickness of 0.5 cm, design parameters corresponding to
the inner/outer control points are retained in the thick-
ness direction. Sixteen design parameters are chosen as
shown in Fig. 3. After choosing the design parameters,
the boundary design velocity field is obtained by per-
turbing the boundary curve in the direction of each
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Fig. 4. Effective plastic strain and von Mises stress contour plots for bumper contact problem.

design parameters. Since all the particle points are on
the boundary curve, the computation of the domain
design velocity field is unnecessary. Refer to Ref. [40] for
detailed explanation of the design velocity field.

Using the design velocity information, DSA is carried
out. Since the constitutive model is based on the finite
deformation elastoplasticity with multiplicative decom-
position of the deformation gradient, the sensitivity
formulation is path-dependent and is solved at each
converged load step. The frictional contact also con-
tributes to the path-dependency. After convergence in
the response analysis at the current load step, the de-
composed tangent stiffness matrix is stored for sensitiv-
ity analysis. Using the response analysis results, design
velocity, and the material derivative of the intermediate
configuration and internal plastic variables, the fictitious
load form in Eq. (73) is computed. The linear system of
Eq. (91) is solved using the decomposed tangent stiffness
matrix obtained from response analysis with the ficti-
tious load. No iteration is required to solve the sensi-
tivity equation, but Eq. (91) is solved for the number of
design parameters. Thus, the decomposition of tangent
stiffness matrix is important. This procedure is quite
efficient compared to iterative response analysis.

The design sensitivity equation is solved for the ma-
terial derivative of the displacement 7. After computing
z, the material derivative of the intermediate configura-
tion and internal plastic variables are updated using z.

The sensitivity coefficients of the performance measure
are computed after solving the design sensitivity equa-
tion at the final converged load step. Possible perfor-
mance measures are the displacement, stress tensor,
internal variables, reaction force, contact force, and the
normal gap distance. To show efficiency of the proposed
method, the computation times of response analysis and
DSA are compared. The response analysis is carried out
with 275 s of CPU time. DSA takes 117 s for sixteen
design parameters, which is less then 3% of the response
analysis time per design parameter. This ratio is quite
efficient compared to the finite difference method. This
efficiency results from the fact that the sensitivity equa-
tion is solved without iteration and the decomposed
tangent stiffness matrix from response analysis is used.
Table 1 shows sensitivity coefficients and comparison of
sensitivity results with finite difference results, and they
agree extremely well. In Table 1, the third column AY
denotes the first order sensitivity results from the for-
ward finite difference method with perturbation of t =
107%, and the fourth column represents the sensitiv-
ity computation results of the proposed method. In the
first column, z,, e, and F, are performance measures
such as the displacement, effective plastic strain, and
contact force, respectively. For example, }; denotes the
effective plastic strain at integration zone 15, and Fi 00
denotes the x-directional contact force at the slave node
100.
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Table 1

Comparison of design sensitivity results with finite difference method

1973

Performance (¥) AY Y (AP/P') x 100%
25}

els 0.680005E — 01 —0.179756E — 07 —0.179757E — 07 100.00
ks 0.164338E + 00 0.311392E — 08 0.311393E — 08 100.00
e 0.126643E — 01 —0.901637E — 10 —0.901545E — 10 100.01
Zy39 0.429139E + 00 0.120943E — 06 0.120940E — 06 100.00
Fevioo 0.379375E + 01 0.473864E — 07 0.473865E — 07 100.00
Uy

el 0.680005E — 01 0.246181E — 07 0.246181E — 07 100.00
s 0.164338E + 00 0.105172E — 08 0.105173E — 08 100.00
e 0.126643E — 01 0.589794E — 09 0.589795E — 09 100.00
Zy39 0.429139E + 00 —0.295825E — 06 —0.295824E — 06 100.00
Fevioo 0.379375E + 01 0.335517E — 09 0.335511E — 09 100.00
ug

els 0.680005E — 01 —0.170857E — 07 —0.170857E — 07 100.00
s 0.164338E + 00 —0.237257E — 08 —0.237256E — 08 100.00
e 0.126643E — 01 —0.720239E — 10 —0.720198E — 10 100.01
Zy39 0.429139E + 00 0.167699E — 06 0.167698E — 06 100.00
Fevioo 0.379375E + 01 —0.176290E — 07 —0.176292E — 07 100.00
us

el 0.680005E — 01 0.581799E — 09 0.581877E — 09 99.99
s 0.164338E + 00 —0.635253E — 09 —0.635254E — 09 100.00
e 0.126643E — 01 —0.185890E — 08 —0.185890E — 08 100.00
Zy39 0.429139E + 00 —0.397143E — 07 —0.397141E — 07 100.00
Fevioo 0.379375E + 01 0.250196E — 07 0.250194E — 07 100.00
Uio

els 0.680005E — 01 —0.262956E — 09 —0.262932E — 09 100.01
s 0.164338E + 00 0.136684E — 09 0.136687E — 09 100.00
e 0.126643E — 01 0.873228E — 09 0.873231E — 09 100.00
Zy39 0.429139E + 00 —0.168128E — 06 —0.168129E — 06 100.00
Fevioo 0.379375E + 01 —0.431408E — 07 —0.431402E — 07 100.00

With safety consideration, a design optimization
problem is formulated such that the area of the bumper
cross-section is minimized with constraints on effective
plastic strains. Since the impact condition is approxi-
mated by a quasistatic problem with the displacement
driven method, equivalent inertia force is maintained by
imposing constant normal force between the original
and new designs through a design constraint. A design
optimization problem with seven constraints on effective
plastic strains and one constraint on the normal contact
force is formulated as

minimize Area

subject to  e[¢(0.1) <0.05, €,(0.15)<0.05
€55(0.16) < 0.05, €5,(0.16) <0.05
€,(0.15) < 0.05, €5,(0.15)<0.05
€2,(0.14) £0.05, F,(4.55) = 4.55

—-1.0<uy; <1.0 i=1,16

(92)

The design optimization is carried out using the se-
quential quadratic programming (SQP) method in DOT

[41]. The performance values are supplied to DOT from
nonlinear response analysis (RKPM), and the sensitivity
coefficients are provided by the proposed method. The
initial design is infeasible, and all constraints on effective
plastic strains are violated. The optimization is con-
verged after 18 iterations and all constraints are satis-
fied. The cost function is reduced by 7% of the original
value, and the normal contact force is slightly increased
compared to the initial design. Fig. 5 shows the opti-
mized shape design and the results of response analysis.
Interestingly, the cross-section of bumper geometry is
changed to somewhat symmetric shape even though the
original design is not symmetric. The optimizer removed
windings of the upper/lower parts because they are weak
in bending type deformation. If a three-dimensional
bumper is considered, the optimum shape is expected to
be different from two-dimensional result.

Fig. 6 shows the iteration history of the cost func-
tion and constraints. After iteration number 5, no signifi-
cant changes in the cost and constraints are observed.
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¢ New Design
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Fig. 5. Design optimization results of quasistatic bumper contact problem (a) optimized geometry, (b) effective plastic strain, (c) von
Mises stress.
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Fig. 6. Design optimization history for quasistatic bumper contact problem.
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However, design parameters are changed relatively large
during these iterations to find the optimum point. At
the optimum design, six constraints on effective plastic
strains and one constraint on the normal contact force
are active.

5. Conclusions

Nonlinear shape DSA and optimization method for
finite deformation elastoplastic structures with contact is
developed using a continuum approach. The multipli-
cative decomposition of the deformation gradient and
return mapping in the principal stress space are used.
The difference of reference configurations between re-
sponse analysis and DSA requires additional terms on
the sensitivity equation, which represent the path-
dependent effect. It is shown that the intermediate con-
figuration needs to be specified for DSA purposes, which
is not necessary in response analysis. The response
analysis and DSA are carried out using the meshfree
method (RKPM). The design sensitivity equation uses
the same tangent stiffness as that of the response anal-
ysis, and thus no iteration is required to solve the design
sensitivity equation at each converged load step for the
path-dependent problem. The proposed DSA method is
a very accurate and extremely efficient compared to the
finite difference method.
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