
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

How coupon and element tests reduce conservativeness in element
failure prediction

Chan Y. Park, Nam H. Kim n, Raphael T. Haftka
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA

a r t i c l e i n f o

Article history:
Received 26 February 2013
Received in revised form
18 October 2013
Accepted 31 October 2013
Available online 11 November 2013

Keywords:
Failure prediction
Coupon and element test
Effect of tests
Design conservativeness
Uncertainty quantification
Convolution integral

a b s t r a c t

Structural elements, such as stiffened panels, are designed by combining material strength data obtained
from coupon tests with a failure theory for 3D stress field. Material variability is captured by dozens of
coupon tests, but there remains epistemic uncertainty due to error in the failure theory, which can be
reduced by element tests. Conservativeness to compensate for the uncertainty in failure prediction (as in
the A- or B-basis allowables) results in a weight penalty. A key question, addressed here, is what weight
penalty is associated with this conservativeness and how much it can be reduced by using coupon and
element tests. In this paper, a probabilistic approach is used to estimate the conservative element failure
strength by quantifying uncertainty in the element strength prediction. A convolution integral is used to
efficiently combine uncertainty from coupon tests and that from the failure theory. Bayesian inference is
then employed to reduce the epistemic uncertainty using element test results. The methodology is
examined with typical values of material variability (7%), element test variability (3%), and the error in
the failure theory (5%). It is found that the weight penalty associated with no element test is significant
(20% heavier than an infinite number of element tests), and it is greatly reduced by more element tests
(4.5% for 5 element tests), but the effect of the number of coupon tests is much smaller.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty has always been a major concern in structural
design. For example, predicting the strength of a structural
element has two major sources of epistemic uncertainty (uncer-
tainty associated with the lack of information). The first comes
from errors in failure prediction based on calculated stresses and a
failure theory. The second source is errors in measuring variability
of material properties. Coupon tests are performed to measure
material variability, but the estimated variability has error due to
the limited number of coupons.

Aircraft designers use conservative measures, such as A- or
B-basis allowable, to compensate for uncertainty in material
strength prediction as in MIL-HDBK [1]. For example, the B-basis
introduces conservativeness in two ways. To compensate for
variability, the B-basis uses the lower 10% value of the material
strength distribution. However, calculating the lower 10% relies on
the number of coupons, which brings in epistemic uncertainty.
Thus, the B-basis requires an additional 95% confidence level to
compensate for the epistemic uncertainty. That is, the B-basis
provides a value that belongs to the lower 10% with 95%

probability. The B-basis is calculated based on a sample mean
and standard deviation with a factor for one-sided tolerance limit
with an assumed population distribution. MIL-HDBK [1] and Owen
et al. [2] presented tables of the factors with various population
distributions. To compensate for the error in a failure theory, it is
common practice to repeat element tests three times and then
select the lowest test result as a conservative estimate of the
failure envelope; this process can be interpreted as applying a
knockdown factor on the average test result.

Treating epistemic uncertainty is reflected in the literature of
probabilistic design. Noh et al. [3] compensated for epistemic
uncertainty caused by the finite number of samples with a
confidence level of 97.5%. Matsumura et al. [4] and Villanueva
et al. [5] considered the effect of epistemic uncertainty in a
computer model on estimating probability of failure of an inte-
grated thermal protection system of a space vehicle and
demanded 95% confidence for the epistemic uncertainty.

These conservative statistical approaches have worked success-
fully to achieve the safety of structural designs. However, they
were applied at an individual test stage without considering their
overall efficiency to achieve the safety level at the final stage. Also,
it has not been quantified howmuch these tests reduce the weight
penalty compared to the design without tests.

When we use failure theory to predict the strength of an
element, we propagate uncertainty in coupons and combine it
with uncertainty in the failure theory. We build and test the
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structural element in order to reduce the combined uncertainty.
The remaining uncertainty after tests depends on the numbers of
coupons and elements. Coupon tests are relatively cheap com-
pared to element tests, and therefore, we usually perform many
more coupon tests (several dozens) than element tests (a handful).
The objective of this paper is to model the effect of these tests on
making a conservative element strength prediction with a 95%
confidence level by quantifying the uncertainty in the prediction
process and to analyze the tradeoff between the number of
coupons and elements for reducing the conservativeness.

In the overview of future structure technology for military
aircraft, Joseph et al. [6] noted that a progressive uncertainty
reduction model, which is seen in building-block tests, can be a
feasible solution today, since a complete replacement of traditional
tests with computational models is not feasible yet. Lincoln et al.
[7] pointed out that building-block tests play a key role in reducing
errors in failure prediction of composite structures due to large
uncertainty in computational models. They noted that the use of
probabilistic methods can significantly lower the test cost by
reducing the scope of the test program.

There are also several studies investigating the effect of tests on
safety and reducing uncertainty in computational models. Jiao and
Moan [8] investigated the effect of proof tests on structural safety
using Bayesian inference. They showed that proof tests reduce
uncertainty in the strength of a structure, and thus provide a

substantial reduction in the probability of failure. An et al. [9]
investigated the effect of structural element tests on reducing
uncertainty in element strength using Bayesian inference. Acar
et al. [10] modeled a simplified building-block process with safety
factors and knockdown factors. Bayesian inference is used to
model the effect of structural element tests. They show the effect
of the number of tests on the design weight for the same
probability of failure, and vice versa. Jiang and Mahadevan [11]
studied the effect of tests in validating a computational model by
obtaining an expected risk in terms of the decision cost. Urbina
and Mahadevan [12] assessed the effects of system level tests for
assessing reliability of complex systems. They built computational
models of a system and predicted the performance of the system.
Tests are then incorporated into the models to estimate the
confidence in the performance of the systems. Park et al. [13]
estimated uncertainty in computational models and developed a
methodology to evaluate likelihood using both test data and a
computational model. McFarland and Bichon [14] estimated prob-
ability of failure by incorporating test data for a bistable MEMS
device.

In this paper, we assume that with an infinite number of
coupons and elements, the epistemic uncertainty associated with
samples and failure theory can be eliminated. With a finite
number of tests, the epistemic uncertainty is compensated for by
using a conservative mean value at the 95% confidence level, in the

Nomenclature

be error bound for failure theory
bs estimated bound for standard deviation of structural

element
êk;Ptrue possible true error in failure theory
f initðμe;Ptrue; se;PtrueÞ initial joint PDF for given mean and stan-

dard deviation of structural element
f k;Ptrueðek;PtrueÞ PDF for given possible true error in failure theory
f μc;Ptrueðμc;PtrueÞ PDF for given possible true mean of material

strength
f μe;Ptrueðμe;PtrueÞ PDF for given possible true mean of structural

strength
f sc;Ptrueðsc;PtrueÞ PDF for given possible true standard deviation

of material strength
f se;Ptrueðse;PtrueÞ PDF for given possible true standard deviation

of structural strength
f updðμe;Ptrue;se;PtrueÞ updated joint PDF for given mean and

standard deviation of structural element
f updμe;Ptrueðμe;PtrueÞ updated marginal distribution for given mean

of structural element
f updse;Ptrueðse;PtrueÞ updated marginal distribution for given stan-

dard deviation of structural element
k3d;calc calculated ratio of structural element strength to

material strength
k̂3d;Ptrue possible true structural element strength to material

strength
k3d;true true ratio of structural element strength to material

strength
litestðμe;Ptrue;se;PtrueÞ likelihood function of ith test for given

mean and standard deviation of structural element
μ0:05 mean of 5th percentile of the mean element strength

for given test result
μ̂c;Ptrue possible true mean of material strength
μc;test measured mean of material strength from coupon test
μc;true true mean of material strength
μ̂e;Ptrue possible true mean of structural element strength

μe;test measured mean of structural element strength from
coupon test

μe;true true mean of structural element strength
nc the number of coupon tests
ne the number of element tests
PUD probability of unconservative design
PTD possible true distribution
ŝc;Ptrue possible true standard deviation of material strength
sc;test measured standard deviation of material strength

from coupon test
sc;true true standard deviation of material strength
ŝe;Ptrue possible true standard deviation of structural element

strength
se;test measured standard deviation of structural element

strength from coupon test
se;true true standard deviation of structural element strength
τ0:05 5th percentile of the mean element strength for given

test results
τ̂c;Ptrue possible true material strength
τ̂c;true true material strength
τ̂e;Ptrue possible true structural element strength
τ̂e;true true structural element strength
w0:95 95th percentile of the weight penalty for given test

results

Superscripts

init initial distribution (prior distribution)
upd updated distribution (posterior distribution)

Subscripts

calc calculated value using a theory
Ptrue possible true estimate reflecting epistemic uncertainty

of estimation process
test measured value from a test
true true value
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context of the B-basis. The aleatory uncertainty can then be
compensated for either by 90% of the population (deterministic
design) or by specifying probabilities of failure. We focus on the
effect of the number of tests on the conservative estimate of
element strength and the resulting weight penalty compared to
the case with an infinite number of tests. To have the conservative
estimate, we predict the mean element strength and its uncer-
tainty by combining two uncertainties from coupon tests and a
failure theory, using a convolution integral. Then, Bayesian infer-
ence is incorporated with element tests in order to reduce the
uncertainty. With the proposed two-stage uncertainty model, it is
possible to identify the effect of two types of tests on reducing
uncertainty and corresponding conservativeness and weight
penalty.

The paper is organized as follows: Section 2 introduces the
building-block test process used in this paper, which is composed
of coupon and element test stages, and sources of uncertainty.
Section 3 provides uncertainty modeling of the building-block test
process to estimate the element strength and its uncertainty. This
section has three subsections: coupon tests, element design and
element tests. Section 4 introduces different measures that are
used to evaluate the efficiency of different tests. Section 5 presents
numerical results, followed by conclusions in Section 6.

2. Structural uncertainties

For aircraft structures, the building-block test process (Fig. 1) is
used to find design errors and to reduce uncertainties in design
and manufacturing. At each level, analytical/numerical models are
calibrated to account for discrepancies between model prediction
and test results. Since the errors are unknown at the modeling
stage, they may be modeled as uncertainty (epistemic), and test
results may be used to reduce the uncertainty. Starting from
simple coupon tests at the bottom level, structural complexity
gradually increases further up the building-block pyramid. The
number of tests gradually reduces from bottom to top; for

example, 50 coupons, 3 elements, and 1 component. In higher-
level tests, it is difficult to understand deviations from analytical
predictions, tests are more expensive and any design modification
can be expensive. The building-block test process is designed to
detect modeling errors at a lowest level.

Although building-block tests are designed to reduce uncer-
tainty, it is difficult to quantify how much tests in each level can
contribute to uncertainty reduction, which is the main objective of
this paper. Once the contribution of tests to uncertainty reduction
is understood, a design engineer can decide how to allocate
resources to different levels in order to achieve the target
reliability at minimum cost.

Although the actual building-block test process has many
levels, this paper only considers coupon and element tests to
demonstrate the effect of these tests on uncertainty reduction.
Table 1 shows the objectives of these two tests and the sources of
uncertainty.

In this paper, the failure stress of a structural element is
simulated with randomly generated test results. True distributions
are used only for generating test samples and assessing the
estimated failure stress.

3. Modeling uncertainty in the building-block test process

In order to model the two-level building-block test process, it is
assumed that the strength of coupons and elements follows a
normal distribution due to material variability. This assumption
can easily be removed when actual test results are available and
the type of distribution can be identified using various statistical
methods, such as the one in MIL-HDBK [1]. In the following
subsections, uncertainties at each stage are modeled.

3.1. Coupon tests: modeling uncertainty in estimating statistical
properties

Due to inherent variability, the material strength shows a
statistical distribution. Coupon tests are conducted to estimate
the distribution and to determine regulatory (e.g., FAA) strength
allowables (e.g., A-basis or B-basis) that compensate for the
uncertainty. It is assumed that the true material strength, τ̂c;true,
follows a normal distribution, as

τ̂c;true �Nðμc;true; sc;trueÞ ð1Þ
where μc;true and sc;true are, respectively, the mean and standard
deviation of τ̂c;true. The circumflex symbol represents a random
variable. The subscript “c” is used to denote coupons. In this paper,
Eq. (1) is only used for the purpose of simulating coupon tests; the
true distribution is unknown to the designer.

Since the true distribution parameters are estimated with a
finite number of coupons, the estimated parameters have sam-
pling uncertainty (or error). Thus, it is natural to consider these
parameters as distributions rather than deterministic values. In
this paper, this estimated distribution is called the possible true
distribution (PTD) of the parameter. For example, if μc;true is
estimated from 50 coupons, with a sample mean of 1.02 and
sample standard deviation of 0.1, then the PTD of the mean is a
distribution following N(1.02, 0.1).
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Fig. 1. Building-block test process for aircraft structural components.

Table 1
Sources of uncertainty in the building-block test process for estimating element strength.

Test stage Objectives Uncertainty sources

Coupon test Estimate mean value and variability of material strength Sampling error due to a finite number of coupons
Element design Estimate multi-axial strength based on a failure theory Incomplete knowledge of failure mechanism: error in failure theory
Element test Reduce uncertainty in the multi-axial strength Sampling error due to a finite number of elements
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In this setting, the estimated material strength essentially
becomes a distribution of distributions. The PTD of material
strength can be obtained using a double-loop Monte Carlo
simulation (MCS), as shown in Fig. 2. In figure, the outer loop
generates N samples of the two distribution parameters, from
which N pairs of normal distributions, N(μi, si), can be defined. In
the inner loop,M samples of material strengths are generated from
each N(μi, si). Then, all N�M samples are used to obtain the PTD of
material strength, which includes both material variability and
sampling errors.

In order to model the above MCS process analytically, the PTD
of material strength, τ̂c;Ptrue, is firstly defined as a conditional
distribution as

τ̂c;Ptruejðμ̂c;Ptrue ¼ μc;Ptrue; ŝc;Ptrue ¼ sc;PtrueÞ �Nðμc;Ptrue; sc;PtrueÞ ð2Þ

where the left-hand side is a conditional random variable given
μc;Ptrue and sc;Ptrue. Since μ̂c;Ptrue and ŝc;Ptrue are random, Eq. (2)
corresponds to an incident of possible true distributions. In Fig. 2,
randomly generated μi and si correspond to μc;Ptrue and sc;Ptrue,
respectively.

Note that μ̂c;Ptrue and ŝc;Ptrue depend on the number of coupons.
With nc coupons, μ̂c;Ptrue is nothing but the distribution of the
sample mean and can be estimated as

μ̂c;Ptrue �N μc;test ;
sc;testffiffiffiffiffi

nc
p

� �
ð3Þ

where μc;test and sc;test are, respectively, the mean and standard
deviation of coupons. With an infinite number of coupons, μ̂c;Ptrue
will become a deterministic value; i.e., no sampling error.

It is also well-known that the standard deviation ŝc;Ptrue follows
a chi-distribution of order nc�1. In a way similar to the mean,
ŝc;Ptrue can be estimated as

ŝc;Ptrue �
sc;testffiffiffiffiffiffiffiffiffiffiffiffiffi
nc�1

p χðnc�1Þ ð4Þ

where χðnc�1Þ is the chi-distribution of the order nc�1 [15].
Let f μc;Ptrueðμc;PtrueÞ and f sc;Ptrueðsc;PtrueÞ be the PDFs of μ̂c;Ptrue and

ŝc;Ptrue, respectively. Then, the PDF of τ̂c;Ptrue is derived as

f c;Ptrueðτc;PtrueÞ ¼
Z 1

0

Z 1

�1
φðτc;Ptruejμc;Ptrue; sc;PtrueÞ

f μc;Ptrueðμc;PtrueÞf sc;Ptrueðsc;PtrueÞ dμc;Ptrue dsc;Ptrue ð5Þ

where the notation φðxja; bÞ denotes the value of a normal PDF
with mean a and standard deviation b at x.

Fig. 3 compares the PDF of τ̂c;true �Nð1:1;0:077Þ with that of
τ̂c;Ptrue with different numbers of coupons. In the case of 30
coupons, the samples have μc;test ¼ 1:053 and sc;test ¼ 0:096. Using
Eqs. (3) and (4), the standard deviations of μ̂c;Ptrue and ŝc;Ptrue are
estimated to be 0.018 and 0.013, respectively, which reflect the

randomness of the samples. Note that in the case of 30 coupons,
the mean was slightly underestimated, but a large standard
deviation compensates for it. In the case of 80 coupons, the
samples have μc;test ¼ 1:113 and sc;test ¼ 0:083. The standard devia-
tions of μ̂c;Ptrue and ŝc;Ptrue are 0.009 and 0.007, respectively. As
expected, τ̂c;Ptrue with 80 coupons yields a narrower estimate than
that of 30 coupons.

3.2. Element design: combining uncertainties

To design a structural element, the material strength from
coupon tests must be generalized to multi-axial stress states using
a failure theory. Since the failure theory is not perfect, additional
error (i.e., epistemic uncertainty) is introduced, which needs to be
combined with the sampling error in the coupon test. Since the
uncertainty in element strength can be represented using the
distributions of the mean and standard deviation, the uncertain-
ties of these two random variables are modeled separately [16].

A failure theory provides a relation between uni-axial strength
and multi-axial strength. In this paper, this relation is represented
using a prediction factor k3d;true as

τe;true ¼ k3d;trueτc;true ð6Þ

where τc;true is a true uni-axial material strength, and τe;true is a true
multi-axial equivalent strength. Subscript “e” is used to denote
that the variable is for an element. For example, when the von
Mises criterion is used, k3d;true ¼ 1. The relation between the two

Outer loop
fInner loop

Fig. 2. Double-loop Monte Carlo simulation to obtain the possible true distribution of material strength.
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Fig. 3. The distribution of possible true material strength estimated with 30 and 80
coupons, sampled from the true distribution τ̂c;true�N(1.1, 0.077) (solid curve).
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mean values can be obtained from Eq. (6) as

μe;true ¼ k3d;trueμc;true ð7Þ

Again, k3d;true is unknown to designers; only its estimate k3d;calc
is given from the failure theory. Therefore, the epistemic uncer-
tainty in the failure theory can be represented using the PTD of the
prediction factor as

k̂3d;Ptrue ¼ ð1� êk;PtrueÞk3d;calc ð8Þ

where error êk;Ptrue is assumed to follow a uniform distribution
with bounds of 7be, which reflect the designer's confidence in the
failure theory. Then, the designer's estimated relationship corre-
sponding to Eq. (7) can be written as

μ̂e;Ptrue ¼ k̂3d;Ptrueμ̂c;Ptrue ð9Þ

Fig. 4 shows the process of obtaining μ̂e;Ptrue through MCS. First,
N samples from μ̂c;Ptrue and M samples from k̂3d;Ptrue are generated.
Then, μ̂e;Ptrue is estimated from N�M samples that are obtained by
taking every possible combination of the two sets of samples.

In this paper, a convolution integral is used to calculate the PDF
of μ̂e;Ptrue. The convolution integral provides an accurate PDF using
numerical integration, whereas MCS brings in additional uncer-
tainty. A comparison between MCS and the convolution integral is
given in the example section. In the case of a normally distributed
mean and uniformly distributed error, the PDF of μ̂e;Ptrue can be
written as

f μe;Ptrueðμe;PtrueÞ ¼
Z μe;Ptrue

ð1þ be Þ

μe;Ptrue
ð1� be Þ

1
2beμc;Ptrue

φ μc;Ptruejμc;test ;
sc;testffiffiffiffiffi

nc
p

� �
dμc;Ptrue

ð10Þ

where be is the error bound of êk;Ptrue and k3d;calc ¼ 1:0 is assumed.
See Appendix A for detailed derivations. The integral domain is
divided to 200 segments, and the integral is evaluated using
Gaussian quadrature with 3 points for each of the 200 segments.

Fig. 5 shows the PDF of typical μ̂e;Ptrue for nc¼10 and 50. As the
number of coupons increases, the PDF approaches a uniform
distribution, which corresponds to the uncertainty in the failure
theory. When the number of coupons is small, the distribution has
a long tail because of sampling errors in the coupon tests. This
μ̂e;Ptrue serves as the prior distribution representing the designer's
knowledge before element tests.

Unlike the mean, there is only a weak relationship between the
standard deviation of coupon strength and that of element strength.
Usually test conditions are well controlled to minimize uncertainty;
the standard deviation of the test is substantially smaller than that
of material properties. The distribution of ŝe;Ptrue is defined as a
uniform distribution with lower and upper bounds as

f se;Ptrueðse;PtrueÞ ¼
1

ðsuppere �slower
e ÞIðse;PtrueA ½slower

e ;suppere �Þ ð11Þ

where Ið�Þ is the indicator function, and suppere and slower
e are upper

and lower bounds of the standard deviation of element strength,
respectively. These bounds are estimated to cover a true standard
deviation of the element test.

3.3. Element tests: Bayesian inference to reduce errors

The PTDs in Eqs. (10) and (11) are the combined uncertainties
from (a) material variability, (b) sampling errors in coupon tests
and (c) error in the failure theory. Although material variability
will always exist, the other two epistemic uncertainties can be
reduced using element tests. In this section, the effect of element
tests on reducing uncertainty is modeled using Bayesian inference.

For the purpose of Bayesian inference, Eqs. (10) and (11) are
used as marginal prior distributions. Since no correlation informa-
tion is available, these distributions are assumed to be indepen-
dent. Therefore, the prior joint PDF is given as

f initðμe;Ptrue; se;PtrueÞ ¼ f μe;Ptrueðμe;PtrueÞf se;Ptrueðse;PtrueÞ ð12Þ

In Bayesian inference, the updated joint PDF with ne number of
element tests is expressed as

f updðμe;Ptrue; se;PtrueÞ ¼
1
A

∏
ne

i ¼ 1
ℓi
testðμe;Ptrue; se;PtrueÞf initðμe;Ptrue; se;PtrueÞ

ð13Þ
where A is a normalizing constant and ℓi

testðμe;Ptrue;se;PtrueÞ is the ith
likelihood function for given μe;Ptrue; se;Ptrue. From the assumption
that the true element strength τ̂e;true follows a normal distribution
and by ignoring errors associated with the test, the likelihood
function can be defined as a probability of obtaining test result

Fig. 4. Process of estimating element mean strength.
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Fig. 5. Distributions of estimated element mean strength for different numbers of
coupons (be¼0.1, μc;true¼0.85, sc;true¼0.068, and k3d;calc¼1.0).
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τie;test for given μe;Ptrue and se;Ptrue as

ℓi
testðμe;Ptrue; se;PtrueÞ ¼ φðτie;test jμe;Ptrue;se;PtrueÞ ð14Þ

Note that the likelihood function is not a probability distribution,
but a conditional probability. The numerical scheme to evaluate
the updated joint PDF is explained in Appendix B.

Using the updated joint PDF, the marginal PDFs of μe;Ptrue
and se;Ptrue can be obtained as

f updμe;Ptrueðμe;PtrueÞ ¼
Z 1

0
f updðμe;Ptrue; se;PtrueÞ dse;Ptrue ð15Þ

f updse;Ptrueðse;PtrueÞ ¼
Z 1

�1
f updðμe;Ptrue; se;PtrueÞ dμe;Ptrue ð16Þ

The above distributions represent the uncertainty in estimating
the mean and standard deviation of the element strength. The
standard deviations of distributions in Eqs. (15) and (16) are
measures of remaining uncertainty after the element tests.

3.4. Conservative prediction based on the updated possible true
distribution

In common practice, element strength is calculated based on
the lowest element test result of three tests and used as a design
allowable. The process can be interpreted as applying a knock-
down factor on the test average. In this paper, a conservative
estimate of the mean element strength is used as a design
allowable.

If a conservative estimate is wanted, the low 5th percentile of
f updμe;Ptrue can be used for the 95% confidence level. The mean values
of distributions in Eqs. (15) and (16) are, respectively, the estimate
of mean and standard deviation of element strength. The 5th
percentile of the marginal PDF for the mean element strength is
expected to be less than the true mean element strength with a
95% confidence level. The 5th percentile, τ0:05, is calculated using
Eq. (15) asZ τ0:05

�1
f updμe;PtrueðxÞ dx¼ 0:05 ð17Þ

Fig. 6 illustrates the effect of one element test on calculating the
5th percentile. In this illustration, we choose the coupon tests to
have the true mean, and the element test to have the true mean
element strength. Since the true means of coupon and element

tests are assumed to 1 and 0.95, respectively, the element strength
prediction based on failure theory is unconservative by 5%.
However, by taking, the 5th percentile, the error in element
strength prediction is compensated. The figure shows the sub-
stantial reduction in uncertainty afforded even by a single element
test. As a consequence, the 5th percentile (black and red circles) is
actually higher after the test, allowing a reduction in the weight.

The results shown in Fig. 6 are merely an illustration for a
particular set of coupon and element test results. To see a general
observation, we repeat evaluating the 5th percentile for randomly
selected N sets of coupon and element test results (N¼100,000
here), from which the distributions of 5th percentiles shown in
Fig. 7 are obtained. Due to variability in test, the 5th percentiles
also have variability, which are shown as distributions in Fig. 7.

In Fig. 7, the area of the gray shade is the probability of having
the 5th percentile that is larger than the true mean element
strength. Since design allowables, which are larger than the true
mean, lead to unsafe design, this probability is referred as the
probability of unsafe design (PUD) herein. PUD is calculated with
the N random sets of test results as follows:

PUD¼ 1
N

∑
N

i ¼ 1
Iðτi0:054μe;trueÞ ð18Þ

When we design the truss with the 5th percentile, we expect
that the design will have PUD of 5%. However, it is not guaranteed
since prior distribution affects the 5th percentile, and the prior
distribution is based on an element strength estimate using a
failure theory. For example, a prior based on an un-conservative
failure theory gives more weight for un-conservative errors than
conservative errors. However, the tendency can be reduced by
updating the prior with element tests.

4. Assessing the merits of the numbers of coupon and element
tests

The objective of this section is to assess the effect of coupon
and element tests on reducing uncertainty, estimating design
allowables and the corresponding weight penalty. For that pur-
pose, a single set of test results is generated to calculate the 5th
percentile and to compute the corresponding weight penalty due
to conservativeness. These results are compared with the weight
obtained with an infinite number of coupon and element tests.
Since the results with a single set of tests are likely to be biased
due to sampling error, the above process is repeated 100,000 times
to estimate the average weight penalty.

0.85 0.9 0.95 1 1.05 1.1
0

10

20

30

40

50

60
with no element test
with one element test
5th percentile with no element test
5th percentile with one element test

Fig. 6. Comparison of uncertainty in mean element strength before and after the
first element test. The distribution with solid line before test is obtained with 50
coupon tests that happen to have the correct mean (1.0). The true element strength
is 0.95, and the updated distribution with dashed line is given for an element test
that has no error.

Fig. 7. Distributions of 5th percentiles with no element and with one element tests
while the true mean element strength is 0.95.
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With an infinite number of tests, prediction should be the same
with the true element mean, μe;true, regardless of variability. If a
truss member is designed with the 5th percentile for sustaining an
axial load F, the weight penalty due to the conservativeness in the
5th percentile is calculated as

wi ¼
Ai
0:05

A1
�1

 !
� 100¼ F=τi0:05

F=μe;true
�1

 !
� 100

¼ μe;true
τi0:05

�1

 !
� 100 ð%Þ ð19Þ

where index i represents the ith set of tests results.
When wi is 3% for (10/5), it means that a design with 10 coupon

tests and 5 element tests is 3% heavier than a design with an
infinite number of tests. Negative weight penalty indicates that the
design is unsafe that the 5th percentile is larger than the
true mean.

Fig. 8 illustrates the weight penalty distribution, mean weight
penalty, 95% weight penalty and PUD. The 0% weight penalty (the
black filled circle) represents design weight with an infinite
number of tests.

The mean of the weight penalty (the hollow circle) represents
expected conservativeness in the design. The 95% weight penalty
(the gray filled circle) represents weight penalty for very con-
servative designs due to variability in tests. That can be interpreted
as that the probability of having more conservative design weight
than the 95% weight penalty is 5%. Those measures are calculated
from N sets of test results (N¼100,000 here) as follows:

μ0:05 ¼
1
N

∑
N

i ¼ 1
wi ð20Þ

P0:95 ¼
1
N

∑
N

i ¼ 1
Iðwiow0:95Þ ð21Þ

where i is the index of N test sets and the subscript 0.95 in P0.95
represents that conservativeness in predicting element strength
is 95%.

With N repetitions, N 5th percentiles are collected, and they are
varied due to variability in tests. Eq. (20) is to calculate the mean of
weight penalty. Eq. (21) is to calculate the 95% percentile of weight
penalty of the N sets of test results.

Since a design with a 5th percentile being larger than the true
mean element strength is defined as an unsafe design, PUD in
Fig. 8 is exactly the same with PUD in Fig. 7 when N sets of test
results for two distributions are same.

This procedure needs to be performed for different realizations
of epistemic uncertainty. Here, for illustration, we repeat for four
cases, 1% and 5% unconservative errors and 1% and 5% conservative
errors. These appear to be sufficient to illustrate the effect of
different values of epistemic uncertainty.

5. Illustrative example

In this section, the effect of the number of tests is investigated
in two steps. First, the conservative mean of the element strength
is predicted using a single set of tests, after which the average
prediction is estimated with multiple sets of tests.

5.1. The effect of the number of tests with a single set of tests

In this section, estimation of mean element strength is illu-
strated with a single set of coupon and element tests. The test
results were randomly generated from the true distributions
defined in Table 2. The difference between the element mean
and the coupon mean represents error in the failure theory, as
assumed in Eq. (7). Since k3d;calc ¼ 1:0 is assumed in this paper and
k3d;true ¼ μe;true=μc;true is 0.95, the failure theory overestimates the
element strength; that is, the error in the failure theory is
unconservative. Randomly generated test results are given in
Table 3. The coupon test column presents sample mean and
sample standard deviation that will be used to generate coupon
samples, and the element test column orderly presents element
test results. For example, for 10 coupons and 3 elements (10/3), the
mean and standard deviation of coupons were 0.972 and 0.091,
respectively, and the first three data, 0.945, 0.955 and 0.987, are
used as for three element test results. For four element test results,
the first four data, 0.945, 0.955, 0.987 and 0.953 are used. The true
distribution is only used for the purpose of simulating tests.

To estimate the mean of element strength, the prior is con-
structed based on the coupon test results and error bounds as
shown in Eqs. (10) and (11). Table 4 gives the assumed error
bounds be for the mean and ½slower

e ; suppere � for standard deviation.Fig. 8. Distribution of weight penalty due to the variability in tests.

Table 2
True distributions of coupon and element tests.

Test Distribution Parameters

Coupon test Normal μc;true¼1.0, COV 7%
Element test Normal μe;true¼0.95, COV 3%

Table 3
Statistics for coupon and element tests.

No. of coupon tests Coupon test Element test (order by sequence)

10 μc;test¼0.972, sc;test¼0.091 0.945, 0.955, 0.987, 0.953, 0.935 μe;test¼0.955, se;test¼0.0193
50 μc;test¼1.004, sc;test¼0.073 0.896, 0.981, 0.939, 0.998, 0.957 μe;test¼0.954, se;test¼0.039
90 μc;test¼1.001, sc;test¼0.070 0.917, 0.989, 0.954, 0.939, 0.948 μe;test¼0.949, se;test¼0.026

Table 4
Error distributions of element tests.

Error Distribution Bounds

be Uniform 710%

½slower
e ; suppere � Uniform ½0; 0:4�
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Recall that the error bounds represent the current estimate of the
maximum error in the failure theory. Detailed procedure of
numerical calculation is given in Appendix B.

Table 5 summarizes the 5th percentile value (τ0:05) and the
weight penalty after Bayesian update. It is observed that the effect
of element tests is more significant than that of coupon tests. As
the number of element tests increases between ne¼1 and 5,
weight penalty decreases from 4–6% to 1.4–2.3%, and a 5th
percentile strength converges to 0.95 monotonically. However
the effect of the number of coupon tests is ambiguous and no
clear trend is observed. This is because the error in the failure
theory (Table 4) is much larger than the sampling error in
coupons. For the cases of 50 and 90 coupons, ne¼1 estimates
more conservativeness than ne¼0 because the particular element
test results happen to be very conservative, as shown in Table 3
(0.896 and 0.917 from a normal distribution with the mean of 0.95
and the standard deviation of 0.0285).

5.2. The effect of the number of tests averaged over multiple sets of
tests

The results from the previous subsection depend on the
particular samples of coupons and elements. In order to measure
the expected effect of tests, the same process is repeated 100,000
times with randomly generated samples, from which 100,000
weight penalties are generated. The effect of the number of tests
on the weight penalty is analyzed with three measurements, the
mean and 95th percentile of the weight penalty and the prob-
ability of unsafe design (PUD). Two scenarios associated with
epistemic uncertainty in the failure theory are considered.

The first scenario addresses the effect of relatively large
epistemic uncertainty in the failure theory (be¼710%) compared
to that in coupon samples. With 7% COV in material strength, the
uncertainty in the mean coupon strength is small, even with ten
coupons. The second scenario examines the effect of relatively
small epistemic uncertainty in the failure theory (be¼72%). Each
scenario is further divided into two cases: unconservative and
conservative failure theory. The true mean of the element tests
and its error bounds are set to reflect each scenario as shown in
Table 6; the other settings are the same as the previous single set
example.

The effect of the number of tests is related to the level of
uncertainty in the coupon test and the failure theory. Increasing
the number of coupon tests can reduce the uncertainty in the coupon
test, and the uncertainty in the failure theory can be reduced by
increasing the number of element test. Since the uncertainty in
predicting the 5th percentile is the combined uncertainty of these
uncertainties, the contribution of each test is related to the relative
degree of uncertainty. For example, if the uncertainty in the failure
theory is larger than that of the coupon test, increasing the number
of element tests is more efficient to reduce the combined uncertainty
than increasing the number of coupon tests.

When the failure theory has relatively large epistemic uncer-
tainty, the distributions of weight penalties as functions of the
number of tests are shown in Fig. 9 for both conservative and
unconservative failure theories. nc¼50 and ne¼3 are assumed as
the nominal numbers of tests. The effects of the number of
element and coupon tests are shown around the nominal
numbers. It is shown that ne is far more influential than nc for
shifting the distribution to a less conservative region and
narrowing it.

With no element tests, the distribution is narrow, since it repre-
sents only the sampling uncertainty in 50 coupon tests. As the number
of element tests increases, the distribution is first widened for a single
element test, because a single test is quite variable, and then gradually
narrowed. The updated distribution is also shifted closer to 0% weight
penalty. For the unconservative case, Fig. 9(a), the shift is small
because the conservativeness in the design with the unconservative
failure theory is small. It is unusual that no element test distribution
has 0% unsafe design even with un-conservative failure theory. This is
because the prior distribution gives very conservative design allow-
able. As shown in Fig. 5, the prior distribution is similar to the uniform
distribution, and the updated distribution is similar to a bell-shaped
normal distribution. If the prior and the updated distributions have the
same standard deviation, the prior distribution has much conservative
5th percentile than that of the updated distribution, and the design
allowable from the prior is much more conservative than that from
the updated distribution. For example, 5th percentile of the uniform
distribution with standard deviation of 1 is 0.1th percentile of the
standard normal distribution. However, for the conservative case,
Fig. 9(c), the shift is large since the conservative failure theory provides
a very conservative design.

Table 5
Estimates of the conservative element strength and the corresponding weight penalty (compared to infinite number of tests) from a single set of test
results (μe;true¼0.95: Unconservative 5% error in failure theory).

5th percentile Weight penalty

nc ne ne

0 1 3 5 0 1 3 5

10 0.872 0.910 0.936 0.936 10 8.8% 4.3% 1.4% 1.4%
50 0.911 0.893 0.912 0.929 50 4.1% 6.2% 4.0% 2.2%
90 0.910 0.903 0.923 0.927 90 4.3% 5.1% 2.8% 2.3%

Table 6
Four scenarios associated with epistemic uncertainty in failure theory and corresponding example settings (COV of 7% in material strength is assumed).

Magnitude of error in failure theory Failure theory True mean of element test Error bound

Large epistemic uncertainty in failure theory Unconservative μe;true¼0.95 be¼710% (standard deviation of 5.8%)
Conservative μe;true¼1.05

Small epistemic uncertainty in failure theory Unconservative μe;true¼0.99 be¼72% (standard deviation of 1.2%)
Conservative μe;true¼1.01
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Tables 7 and 8 summarize the distributions with three statis-
tics–mean weight penalty, 95th percentile and PUD-in terms of
the number of tests.

We first consider the case of minimal testing with only 10
coupon tests and no element tests. For the case of unconservative
failure theory, shown in Table 7, minimal testing will cost us a 5.2%
weight penalty on average, and a 2% chance that we will end up
with unconservative design. For the case of conservative failure
theory, in Table 8, the weight penalty shoots up to 16.3% and we do
not run the chance of unconservative design. The weight penalties
with the 95th percentiles (corresponding to tests that happen to
be on the conservative side) are about 10% higher.

With a single element test, the weight penalty drops signifi-
cantly to 3.1% for the unconservative failure theory, in Table 7, and
to 4.3% for the conservative case in Table 8. However, with only a
single element test, we have a much higher chance of unconser-
vative design: PUD of 10% and 5%, respectively. This is because the
characteristics of failure theory is reflected on the prior and PUD.
For un-conservative failure theory with 5% error, in Table 7, PUDs
with a single element test are less than 10%, and they converge to
5% as the number of element tests increases. For conservative
failure theory with 5% error, PUDs with a single element test are
5%, which are more conservative than PUDs with un-conservative
failure theory presented in Table 7 as expected. However, the PUD
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Fig. 9. Distributions of weight penalties for comparison between the number of coupon tests and the number of element tests. (a) ne = 0, 1, 3, 5 with nc = 50 (μe;true = 0.95
and be = 710% ), (b) ne = 3 with nc = 10,50,90 (μe;true = 0.95 and be = 710% ), (c) ne = 0,1,3,5 with nc = 50 (μe;true = 1.05 and be = 710% ) and (d) ne = 3 with nc = 10,50,90
(μe;true = 1.05 and be = 710% ).

Table 7
Mean, 95th percentile of weight penalty distribution and probability of unsafe
design (PUD) (μe;true¼0.95: unconservative 5% error in failure theory).

0 1 3 5

Mean (%)
10 5.2 3.1 2.5 2.1
50 4.5 3.1 2.5 2.1
90 4.5 3.1 2.5 2.1

95th Percentile (extreme design weight) (%)
10 9.3 7.1 5.2 4.3
50 6.2 6.1 5.0 4.3
90 5.7 5.9 5.0 4.3

Probability of unsafe design (PUD) (%)
10 2 10 8 7
50 0 9 7 6
90 0 9 7 6

Table 8
Mean, 95th percentile of weight penalty distribution and probability of unsafe
design (PUD) (μe;true¼1.05: Conservative 5% error in failure theory).

0 1 3 5

Mean (%)
10 16.3 4.3 2.7 2.2
50 15.5 4.2 2.6 2.1
90 15.4 4.2 2.6 2.1

95th Percentile (extreme design weight) (%)
10 20.8 9.3 5.8 4.5
50 17.4 9.5 5.7 4.5
90 16.8 9.5 5.7 4.5

Probability of unsafe design (PUD) (%)
10 0 5 6 6
50 0 5 7 6
90 0 5 7 6
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is increased to 7% at 3 elements and then decreased to 6% for
5 elements. This unexpected behavior is related to the prior
distribution with non-Gaussian shape, which is shown in Fig. 5,
but PUDs always converge to 5% as the number of element tests
increases. For no element tests, PUD is very close to zero. This is
because of the difference in the shape of distribution. The 5th
percentile of prior, which resembles a uniform distribution, is
much more conservative than that of posterior distribution
updated once with a single element test, which resembles Gaus-
sian distribution. For example, the 5th percentile of a uniform
distribution with standard deviation of 1 is 0.1th percentile of a
standard normal distribution. The weight penalties continue to
drop substantially and the PUDs converge to 5% with more
element tests. On the other hand, the effect of adding coupon
tests is much smaller, and increasing coupon tests from 50 to 90
hardly make any difference.

The fact that, for this example, element tests are more impor-
tant than coupon tests can be understood by observing the
magnitude of two epistemic uncertainties. The variability in the
coupon strength is 7% (see Table 2), so even with 10 coupon tests,
the standard deviation of the mean coupon strength is only 2.2%,
which is epistemic uncertainty in sampling. On the other hand,
with 710% error bounds, the standard deviation of the epistemic
uncertainty in the failure theory is 5.8%. This is why element tests
were more significant in reducing uncertainty. If, on the other
hand, the failure theory was much more accurate, then element
tests are expected to be less significant. For example, with 72%
error bounds, the magnitude of the epistemic uncertainty in
failure theory is merely 1.2%. With such an accurate failure theory,
it turns out that the number of coupon tests becomes more
influential than the number of element tests.

It turned out that increasing the number of element tests is
more important than increasing the number of coupon tests when
we have the large epistemic uncertainty (710%) in the failure
theory. However, when the epistemic uncertainty is small (72%),
the number of coupon tests becomes more influential than the
number of element tests. In parallel to Fig. 9, Fig. 10 shows a
comparison between the effect of nc and ne on the weight penalty
when the error in the failure theory is small. It is clearly seen that
the effect of the number of coupon tests is more influential than
the number of element tests for decreasing the chance of having
very conservative designs and reducing the variation of design.

Compared to Tables 7 and 8, the increased accuracy of the
failure theory reduces substantially the penalty associated with no

-2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Weight penalty (%) (Nc=50)

P
D

F 
va

lu
e

ne=0
ne=1
ne=3
ne=5

-2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Weight penalty (%) (ne=3)

P
D

F 
va

lu
e

nc=10
nc=50
nc=90

-2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Weight penalty (%) (Nc=50)

P
D

F 
va

lu
e

ne=0
ne=1
ne=3
ne=5

-2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Weight penalty (%) (ne=3)

P
D

F 
va

lu
e

nc=10
nc=50
nc=90

Fig. 10. Distributions of weight penalties for comparison between the number of coupon tests and the number of element tests. (a) ne = 0,1,3,5 with nc = 50 (μe;true = 0.99 and
be = 72% ), (b) ne = 3 with nc = 10,50,90 (μe;true = 0.99 and be = 72% ), (c) ne = 0,1,3,5 with nc = 50 (μe;true = 1.01 and be = 72% ) and (d) ne = 3 with nc = 10,50,90 (μe;true =
1.01 and be = 72% ).

Table 9
Mean, 95th percentile of weight penalty distribution and probability of unsafe
design (PUD) (μe;true¼0.99: unconservative 1% error in failure theory).

0 1 3 5

Mean (%)
10 3.2 3.0 2.4 2.0
50 1.5 1.5 1.4 1.3
90 1.3 1.2 1.2 1.1

95th Percentile (extreme design weight) (%)
10 7.4 6.8 5.4 4.3
50 3.2 3.1 2.9 2.7
90 2.5 2.5 2.4 2.3

Probability of unsafe design (PUD) (%)
10 10 9 8 7
50 7 6 7 7
90 5 5 6 6
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element test. For 10 coupon tests, the weight penalty for no
element test is reduced from 5.2% to 3.2% for unconservative error
(Tables 7 and 9) and from 16.3% to 5.3% for conservative error
(Tables 8 and 10). Also, because the epistemic uncertainties
associated with the failure theory are not comparable to that in
the mean of coupon tests, the contributions of the number of
coupon and element tests become comparable. Increasing element
tests from 1 to 5 for 10 coupon tests reduces the weight penalty
from 3% to 2% (Table 9) and from 4.9% to 2.9% (Table 10). In
comparison, for one element test, increasing the number of
coupon tests from 10 to 90 reduces the weight penalty from 3%
and 4.9% to 1.2% and 3.3%, respectively.

For an un-conservative failure theory with 1% error, shown in
Table 9, PUDs increasingly converges to 5% from 1 to 5 element
tests. For a conservative failure theory with 1% error, Table 10,
PUDs increase as the number of element tests increases, and the
conservative prediction characteristics of failure theory is weaken
as the number of element tests increases, but the characteristics
still remains with 5 element tests.

The above examples illustrate the effect of the number of tests
to predict a design allowable using Bayesian inference. In the
current design practice, the lowest element test result is used as a
design allowable. A comparison between the two approaches is
shown in Appendix C.

5.3. Accuracy of a convolution integral on calculating a conditional
distribution

It has been shown that double-loop MCS can be used to
calculate the distribution in Eqs. (5) and (10) as shown in
Figs. 2 and 4. However, MCS has a computational challenge in
the tail region (low-probability region) as well as sampling error.
For example, a 10�4 level of probability can be hardly estimated
with 10,000 samples. Different from MCS, a convolution integral
can calculate a nearly exact distribution without having sampling
errors. In this section, the accuracy of the convolution integral is
compared with that of MCS.

In order to illustrate the advantage of the convolution integral, the
probability of the product of two random variables, Ẑ ¼ X̂ � Ŷ , are
used. It is assumed that the two independent random variables are
defined as X̂ �Nð1:1;0:0096Þ and Ŷ � Uð0:9;1:1Þ. For MCS, one
million samples are used to evaluate the probability of Z values at
0.955 and 0.975. Since MCS has sampling error, this process is
repeated 1000 times; the mean and standard deviation are listed in
Table 11. For the convolution integral, the entire range is divided by 50
segments, and three-point Gauss quadrature in each segment is
used in integrating Eq. (9) with be¼0.1, μc;test ¼ 1:1, and
sc;test=

ffiffiffiffiffi
nc

p ¼ 0:0096. The results only differ by 0.2% when 400
segments are used. Different from MCS, there is no need for repetition
because convolution integration does not have sampling error.

When the probability is of the order of 10�4, MCS has about a 3.9%
coefficient of variation (COV), while the convolution integral shows a
very little calculation error. When the probability is to the order of
10�7, the MCS with 1 million samples is not meaningful, as reflected
in the COV value of 210%. However, the convolution integral is still
accurate, and the value can be obtained by a one-time calculation.
Note that the estimated error in the mean PF with 1000 repetitions
can be calculated as 4.93�10�7/10000.5¼1.56�10�8.

6. Conclusions

In this paper, the effect of the number of coupon and element
tests on reducing conservativeness and weight penalties due to
the uncertainty in structural element strength was studied. Two
sources of epistemic uncertainties were considered: (a) the sam-
pling uncertainty in measuring material variability and (b) the
uncertainty in the failure theory. A large number of coupons
reduce the uncertainty in measuring material variability, while
element tests reduce the uncertainty in the failure theory. These
uncertainties were combined using the convolution integral,
which is more accurate and robust than MCS. Then, Bayesian
inference was used to update this uncertainty with element test
results. Because test results can vary, a large number of simula-
tions were used to obtain mean performance and distributions.

For a typical case of 710% uncertainty bounds on the failure
theory, 5% actual error, 7% and 3% coefficient of variation in material
strength and element strength, element tests were found to be very
important in reducing weight penalties from about 15% with no
tests, to about 2% with five element tests. The effect of the number
of coupon tests was much smaller because sampling uncertainty
was much smaller than the uncertainty in the failure theory. When
the failure theory was much more accurate (72% confidence
bounds and 1% actual error), the effect of the number of coupons
became comparable to that of element tests. The methodology
developed would thus allow designers to estimate the weight
benefits of tests and improvements in failure predictions.
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Appendix A. Statistical formulation of possible true
distribution of mean and standard deviation of element
strength

The PTD of element mean failure strength can be expressed as

f μe;Ptrueðμe;PtrueÞ ¼
Z 1

�1
f μe;Ptrueðμe;Ptruejμc;PtrueÞf μc;Ptrueðμc;PtrueÞ dμc;Ptrue

ðA1Þ

Table 10
Mean, 95th percentile of weight penalty distribution and probability of unsafe
design (PUD) (μe;true¼1.01: conservative 1% error in failure theory).

0 1 3 5

Mean (%)
10 5.3 4.9 3.8 2.9
50 3.6 3.4 3.0 2.5
90 3.3 3.2 2.8 2.5

95th Percentile (extreme design weight) (%)
10 9.6 8.9 7.3 5.8
50 5.3 5.1 4.6 4.1
90 4.6 4.4 4.1 3.7

Probability of unsafe design (PUD) (%)
10 2 2 2 3
50 1 1 1 2
90 0 0 1 1

Table 11
Probability of Z at two different values (means and COVs were obtained with 1000
repetitions of probability calculation with 1 million samples).

Z value 0.955 0.975

MCS Mean 2.34�10�7 6.77�10�4

COV (%) 210.7 3.9
Convolution integral 2.40�10�7 6.78�10�4
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which is in the form of the convolution integral. The conditional
PDF f μe;Ptrueðμe;Ptruejμc;PtrueÞ corresponds to the distribution of
k̂3d;Ptrue. In the following, the two PDFs in the integrand will be
explained.

In this paper, k3d;calc ¼ 1 is used for simplicity, and it is assumed
that ek;Ptrue follows a uniform distribution with bounds 7be as

f k;Ptrueðek;PtrueÞ ¼
1
2be

if jek;Ptrue jrbe
0 otherwise

(
ðA2Þ

By using Eq. (A2), f μe;Ptrueðμe;PtrueÞ can be obtained from all
possible combinations of random variables generated from
f k;Ptrueðek;PtrueÞ and f μc;Ptrueðμc;PtrueÞ. For a given sample of μc;Ptrue,
the PTD of element failure strength can be regarded as a condi-
tional PDF f μe;Ptrue ðμe;Ptruejμc;PtrueÞ, which is a uniform distribution
with a width of 2be and mean at μc;Ptrue.

f μe;Ptrueðμe;Ptruejμc;PtrueÞ ¼
1

2beμc;Ptrue
if μe;Ptrue

μc;Ptrue
�1

��� ���rbe

0 otherwise

8<
: ðA3Þ

The PDF in Eq. (A3) represents the epistemic uncertainty in failure
theory. The PTD f μe;Ptrueðμe;PtrueÞ can be calculated by considering all
possible values of μc;Ptrue with Eq. (A3).

By using Eq. (A3), PDF of the PTD of μc;Ptrue is calculated from
coupon test results as

f μc;Ptrueðμc;PtrueÞ ¼ φ μc;Ptruejμc;test ;
sc;testffiffiffiffiffi

nc
p

� �
ðA4Þ

where the notation φðxja; bÞ denotes the value of normal PDF with
mean a and standard deviation b at x. Samples of μc;Ptrue are
generated from Eq. (A4), which are then used in Eq. (A3) to
generate samples of μe;Ptrue. Fig A1 illustrates the conditional PDF
of μe;Ptrue for a given sample of μc;Ptrue, which is drawn from
f μc;Ptrueðμc;PtrueÞ based on μc;test . Note that μe;true is given as a unique
value and is covered by the PTD f μe;Ptrueðμe;Ptruejμc;PtrueÞ.

With Eqs. (A3) and (A4), the convolution integral in Eq. (A2)
can be directly integrated as

f μe;Ptrueðμe;PtrueÞ ¼
Z μe;Ptrue

ð1þ be Þ

μe;Ptrue
ð1� be Þ

1
2beμc;Ptrue

ϕ μc;Ptruejμc;test ;
sc;testffiffiffiffiffi

nc
p

� �
dμc;Ptrue

ðA5Þ

The PDF in Eq. (A5) is a prior distribution of mean failure
strength of elements, which includes the effect of uncertainty from
failure theory as well as that of a finite number of samples.

Appendix B. Numerical scheme to obtain the presented results

For the mean element strength, a range of [0.78, 1.22] was
found to be large enough to capture the updated joint probability
distribution, because the initial distribution for the mean element
strength has very little influence on posterior distribution on both
tails. Fig. 5 shows a typical shape of the initial distribution for the
element mean. The standard deviation is bounded in [0, 0.4], as
noted in Table 4. In order to calculate the updated distribution
from Bayesian inference, each range is discretized into 200 equal
intervals, and this discretization generates a 200�200 grid. The
updated joint PDF is calculated at each grid point using Eq. (12).
Then, the prior is updated using a likelihood function with
different numbers of element tests; i.e. ne¼1, 3, and 5.

The marginal updated distributions are obtained using the
updated joint distribution as expressed in Eqs. (15) and (16). For
the updated marginal element mean distribution, conditional PDFs
for a given 201 mean element strength are integrated over 201
points using Gaussian quadrature with 2 points. Fig. B1 shows an
equivalent example that has an 8�8 grid. The abscissa and
ordinate of the grid are mean and standard deviation, respectively.
The superscripts i and j are the horizontal and vertical coordinates
of the grid. For example, μ3e;Ptrue is the value of the mean on the
third vertical line. The marginal distribution of the updated mean
element strength is formed by calculating PDF values on 9 given
mean values. f updμe;Ptrueðμ3e;PtrueÞ is equal to a value obtained by
integrating a conditional PDF of the standard deviation for μe;Ptrue
¼ μ3e;Ptrue over the vertical arrow.

Appendix C. A comparison between current statistical method
and the proposed Bayesian method

In the building-block process, the number of element tests is
usually limited to three, due to the large number of structural
elements to test [7,8]. In the current practice, analytical prediction
of element strength based on failure theory is modified by
applying the lowest ratio between the test results and the
predicted failure stress. This process can be interpreted as applying
an implicit knockdown factor to the average test failure stress to
obtain a design allowable of element strength [7]. If the tests are
repeated with different elements, the predicted failure stress will
be changed as well as the implicit knockdown factor.

In this paper, we propose a way to estimate a design allowable
by adding certain conservativeness on estimated mean element
strength using Bayesian inference. Bayesian inference has a strong
point to combine information from different sources [17]. In the
proposed method, we combine confidence interval information
from analytical prediction (prior) with data from element tests
while the current practice relies on data from element tests.

ee true

c Ptrue c Ptruef

c Ptrue

e Ptrue e Ptrue c Ptruef

c test

Fig. A1. The possible true distribution of mean failures strength of specimens and
the conditional distribution of the element mean failure strength.
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Fig. B1. A 8�8 grid for obtaining a joint PDF and its marginal PDFs.
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To compare the two approaches, the mean weight penalties are
matched, by which we can compare the achieved safety for the
same weight penalty in terms of PUD. For the conventional
method, the lowest element strength out of three is taken as the
conservative element strength so that the probability of being
larger than the true mean is 12.5%.

PrðτlowestZμe;trueÞ ¼ 0:125 ðC1Þ

In the proposed method, since the conservative element
strength is the 5th percentile of the mean element strength,
τ0:05, the probability can be calculated as

PBayes ¼ Prðkτ0:05rμe;trueÞ ðC2Þ

Note that the constant k is used to match their mean weight
penalties. As we do in the previous examples, the weight penalties

for both methods are calculated using MCS with 100,000 samples.

For current method wi;curr ¼
μe;true
τlowest

�1
� �

� 100 ð%Þ ðC3Þ

For the proposed method wi ¼
μe;true
kτi0:05

�1

 !
� 100 ð%Þ ðC4Þ

where i represents the index of samples, and the subscript ‘curr’
represents the current method.

Table C1 presents the mean and 95th percentile of weight
penalty for the proposed and current method. Both methods use
three element tests, Nc¼3. Since the proposed method combines
the information from analytical prediction with data from coupon,
the effect of the number of coupon tests is shown.

Table C1
Probability of unsafe design (PUD), 95th percentile of weight penalties and magnifier.

Case Proposed method Current method

Nc¼10 Nc¼50 Nc¼90

Probability of unsafe design (PUD) (%)
Unconservative 5% error 6.1 6.4 6.4 12.5
Conservative 5% error 6.7 7.3 7.3 12.5
Unconservative 1% error 5.8 0.4 0.0 12.5
Conservative 1% error 7.8 0.6 0.2 12.5

95th Percentile of weight penalty factor (extreme design weight) (%)
Unconservative 5% error 5.4 5.2 5.1 6.8
Conservative 5% error 5.7 5.7 5.7 6.8
Unconservative 1% error 5.6 4.2 3.9 6.8
Conservative 1% error 6.1 4.3 3.9 6.8
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Fig. C1. Distributions of weight penalties for comparison between the proposed method and current method (taking the lowest element strength among three).
(a) Unconservative 5% error (μe;true = 0.95 and be = 710%), (b) conservative 5% error (μe;true = 1.05 and be = 710%), (c) unconservative 5% error (μe;true = 0.99 and be = 72%),
(d) conservative 5% error (μe;true = 1.01 and be = 72%),
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Fig. C1 shows the distributions of weight penalty for the
proposed and current method, and Table C1 characterizes the
distribution with PUD representing safety and 95 percentile of
weight penalty representing extreme cases for both methods. The
proposed method shows better results in both measures. For PUD,
the proposed method has at least 5% less PUD than the current
method; that is, the proposed method is safer than the current
method by at least by 5%. For 95th percentile of weight penalty,
the proposed method is less at least 0.7% and at most 3%. For cases
of 5% errors in prediction, the number of coupon test is very
limited.
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