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Predicting fatigue crack growth under
variable amplitude loadings with usage
monitoring data

Matthew J Pais and Nam H Kim

Abstract
For complex engineering systems, there is an increasing interest in the use of structural health monitoring systems to
estimate the current state of damage (diagnosis) and to predict the behavior of the damage in the future (prognosis). For
fatigue crack growth, one challenge in prognosis is to predict dynamic stress history at the location of damage. In this
article, a method of predicting fatigue crack growth in aircraft panels is proposed under variable amplitude loading. A
simple analytical–numerical method is proposed to calculate dynamic stress history from the usage monitoring data. A
variable amplitude fatigue analysis is then conducted through the use of a fatigue crack growth model with the extended
finite element method. Numerical examples show that the effect of underload and overload is significant in fatigue crack
growth. It is also indicated that the crack growth rate and direction can significantly change under the multi-axial loading
environment.
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Introduction

The current aircraft maintenance procedures are sched-
ule-based. After a number of flights, an aircraft is taken
to a hangar where it is inspected for damage. If damage
is identified, it is repaired and the aircraft continues to
operate until the next scheduled maintenance.
Structural health monitoring aims to reduce the num-
ber of inspections needed during the lifecycle of an air-
craft through the addition of sensors. The data from
these sensors can be used to estimate the size and loca-
tion of damage within a panel. Furthermore, the evolu-
tion of the size and location of the damage can be used
to identify the damage growth behavior of the panel,
and accordingly, the remaining useful life can be esti-
mated. These techniques are still in development and
are not sufficiently developed for wide-spread use.

The estimation of the damage growth behavior and/
or remaining life is often referred to as prognosis.

Prognosis models for fatigue crack growth work under
the assumption that a stress history is available, which
is often not the case. It has been proposed to add strain
gauges at specific locations in a panel in order to esti-
mate stress near the crack location. However, for the
case of aircraft, the location of the crack is not given a
priori, and the addition of sensors will increase the
weight of the structure, which is always a concern. In
this article, a method is introduced to use readily avail-
able service data from an aircraft such as accelerations
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and angle of attack for the estimation of stress history
at a location on an aircraft wing box. The stress history
can then be used in a prognosis model in conjunction
with structural health monitoring data.

In this article, the stress history identified from the
service data is used for a bi-axial, variable amplitude
fatigue crack growth analysis. Due to the non-
proportional bi-axial load history, traditional methods
that group multiple loading cycles into a single finite
element simulation are not applicable, as each cycle has
a unique preferred direction of crack growth. To this
end, a multi-axial rain-flow counting method is pro-
posed that can also preserve the order of load cycles. A
modified version of the Paris model1 which considers
the effects of variable amplitude loading is used to
determine the magnitude of crack growth at each itera-
tion according to the mixed-mode stress intensity fac-
tors identified by an extended finite element method
(XFEM)2–4 analysis. The results of XFEM analysis are
then used in the critical plane approach5 to determine
the preferential crack growth direction, which is cycle-
dependent for non-proportional loading. In order to
reduce the cost associated with the repeated simula-
tions, the XFEM stiffness matrix is factored and
directly modified to account for the small changes to
the stiffness matrix that occur as a result of crack
growth.6

The article is organized as follows: in section
‘‘Summary of usage monitoring data,’’ the usage moni-
toring data that are used in calculating stress history
are summarized. A hybrid analytical and numerical
approach is presented to calculate dynamic stress his-
tory using the usage monitoring data and finite element
analysis in section ‘‘Conversion of usage monitoring
data to stress history.’’ The multi-axial, variable ampli-
tude crack growth model is presented in section ‘‘Crack
growth model’’ with multi-axial rain-flow counting. In
section ‘‘XFEM,’’ the XFEM is used in modeling crack
growth. The numerical results are presented in section
‘‘Numerical results,’’ followed by conclusions and dis-
cussions in section ‘‘Conclusion and future work.’’

Summary of usage monitoring data

Usage monitoring data from an aircraft were provided
by the Air Force Research Laboratory.7 The data pro-
vided were normalized and no particular aircraft which
corresponded to the data was given. Therefore, the
results presented here cannot represent a specific air-
plane; rather, it should be understood as the generic
behavior of airplanes. The data were separated into 19
independent flights, each of which contained normal-
ized data for the following parameters: 6 accelerations
(normal, lateral, longitudinal, roll, pitch, and yaw), 3
angular speeds (roll, pitch, and yaw), airspeed, altitude,

angle of attack, flap angle, fuel quantity, and Mach
number. The total number of data points for the all 19
flights was 180,588. In this article, only the following
data were used in the prediction of a stress history: nor-
mal acceleration, roll acceleration, airspeed, angle of
attack, fuel quantity, and Mach number. The usage
monitoring data were recorded at certain events (e.g.
landing gear up/down) or at the maxima or minima of
an acceleration component. It was assumed that the
effect of the roll acceleration would result in changes in
the banking angle of the airplane. This effect was con-
sidered by scaling the roll acceleration to the banking
angle and using the banking angle to predict the stres-
ses upon the airplane wing.

As the usage monitoring data were normalized, it
was necessary to scale the data according to what could
be expected for a particular airplane. It was chosen to
consider a panel located along the wing box of an air-
plane. The normalized data were scaled linearly
between the maximum and minimum values for a given
parameter x according to the following relationship

xscaledi = xscaledmin +
(xnormi � xnormmin )(xscaledmax � xscaledmin )

xnormmax � xnormmin

ð1Þ

where the maximum and minimum scaled values for x
are xscaledmax and xscaledmin , respectively; the maximum and
minimum normalized values are xnormmax and xnormmin , respec-
tively; the scaled data point is xscaledi ; and the normalized
data point is xnormi . The values for xscaledmax and xscaledmin for
each of the parameters used in the stress analysis are
given in Table 1. The values of xnormi , xnormmax , and xnormmin

are flight dependent and obtained from individual flight
data.

Conversion of usage monitoring data to
stress history

The usage monitoring data for the airplane need to be
converted into a stress history, allowing the stress to be
approximated at any location on the airplane wing
through the use of a finite element model of the wing
box as shown in Figure 1. A commercial finite element
analysis program, ABAQUS, is used. Although a high-
fidelity fluid–structure interaction analysis is required
to calculate the dynamic stress history of the wing box,
it will be computationally too expensive to follow a
complete history of usage data. In addition, such a
high-fidelity simulation may not be necessary because
the objective is to estimate main trends of stress ampli-
tude variation. In this article, a simple method of esti-
mating the stress history is presented using static finite
element analyses and the analytical model of load
distribution.

Three linear elastic analyses were performed on the
finite element model for a pressure distribution P(x, y)
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with a maximum value of 1 corresponding to lift acting
upon the wing. Each of the three analyses corresponded
to a different angle of attack (a=0�, 5�, and 10�) and,
thus, a different P(x, y). To approximate the lift distribu-
tion, 80% of P(x, y) was applied to the top surface of the
wing box while 20% of P(x, y) was applied to the bottom
of the wing box. A fourth analysis was performed which
considered the effect of a uniform drag pressure distribu-
tion which acted upon the leading and trailing edge of
the wing box, again with a maximum value of 1. To
approximate the drag distribution, 80% of the uniform
pressure distribution was applied to the leading edge of
the wing and 20% was applied to the trailing edge.

The pressure distribution P(x, y) is assumed to fol-
low the form

P(x, y)=wopu(u)pw(w) ð2Þ

where wo is the magnitude of P(x, y) at the maximum
location, pu(u) is the normalized chord-wise pressure
distribution with u=x/c being the normalized coordi-
nate in x-direction, and pw(w) is the normalized span-
wise pressure distribution with w= y/s being the nor-
malized coordinate in y-direction. Both pu(u) and pw(w)
are normalized, such that their maximum magnitudes
are one. The chord-wise pressure distribution was rep-
resented as a sixth-order polynomial as

pu(u)= a6u6 + a5u5 + a4u4 + a3u3 + a2u2 + a1u+ a0

ð3Þ

where the location of maximum pressure is a function
of the angle of attack. Unique coefficients in equation
(3) were calculated for each angle of attack. The span-
wise pressure distribution was chosen to follow

pw(w)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2
p

ð4Þ

from the work of Choklovshi,10 Lobert,11 and Pippy.12

The normalized chord-wise and span-wise pressure
distributions are shown in Figure 2. From the finite
element analyses within ABAQUS, the bi-axial stress
components for a location on the top of the wing
(24.32, 7.42)m of the wing box were calculated and
are summarized in Table 2.

In order to consider the intermediate values for the
angle of attack between 0� and 10�, a kriging13–16 sur-
rogate model was fit to the stress values in Table 2 and
used to evaluate the stress component from lift sL

ij for
any angle of attack. This is similar to interpolating the
lift stress using the stress values at three angles of
attack. Since the variation in stress with respect to the
angle of attack is not significant, the error in the surro-
gate model can be negligible. Using the surrogate
model, the stress at a point is

sij =wosL
ij(a)+ qosD

ij ð5Þ

where wo is the maximum value of lift pressure distribu-
tion, qo is the maximum value of drag pressure distribu-
tion, and sL

ij and sD
ij are, respectively, the stress

components corresponding to lift and drag pressure
distributions with unit magnitude. The values of sD

ij

and sL
ij are given in Table 2. The stress components in

Table 2 and equation (5) can be thought of as stress
influence coefficients, corresponding to wo=1 for the
lift and q0=1 for the drag. Therefore, the stress history
can be obtained if wo, q0, and a can be calculated from
the usage monitoring data.

From the analytical model in Pippy,12 the maximum
values of lift and drag pressure distributions are given
as

wo =
CL(mempty +mfuel)anorm

VL cos uB

ð6Þ

Table 1. Ranges for parameters used in the conversion of the normalized data to scaled data.

Parameter Variable Unit Maximum Minimum Reference

Normal acceleration anorm g 1.5 0.75
Roll acceleration uB � 30 0
Airspeed V m/s 851 0 Boeing8

Angle of attack A � 10 0
Fuel quantity mfuel kg 50,000 800 Boeing8 and Wikipedia9

Mach number M N/A 0 0.80 Boeing8

N/A: not available.

Figure 1. Example of a wing box with span s and chord
length c.
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where CL is the lift coefficient, mempty is the empty
weight of the aircraft (86,070 kg8), VL is the volume
under the P(x, y) surface, and uB is the bank angle and

qo =
anormCD(mempty +mfuel) tan uB

uBCLVD

ð7Þ

where CD is the drag coefficient and VD is the volume
under the drag pressure distribution. The lift coefficient
CL is related to the angle of attack17 as

CL = 0:11a+ 0:4 ð8Þ

and the drag coefficient CD is related to the Mach num-
ber18 as

CD =
M

4
+ 0:13 ð9Þ

For the given time history of normal acceleration,
roll acceleration, airspeed, angle of attack, fuel quan-
tity, and Mach number, the time histories of w0 and q0
are calculated, from which the histories of stress com-
ponents are calculated from equation (4). A sample of
the calculated stress history for all 19 flights and the
corresponding 180,588 data points for each bi-axial
stress component is given in Figure 3.

Crack growth model

In this article, fatigue crack growth is predicted using a
fatigue crack growth model which is governed by an
ordinary differential equation.19 The fatigue crack

growth model uses the stress intensity factor range for
a particular cycle as the driving force for fatigue crack
growth. Recall, the normalized flight data were previ-
ously converted into a bi-axial stress history. However,
this stress history is not given in terms of cycles, but
rather is simply a series of data points.

The classical way to convert a stress time history into
a cyclic stress history for use in a fatigue crack growth
model is through the use of the rain-flow counting algo-
rithm.20–22 In this algorithm, the number of cycles that
have the same stress range is counted together and con-
tributed to the damage using a fatigue model. However,
this approach is not directly applicable to this analysis
because there are three stress components to the bi-axial
loading. Performing rain-flow counting on each of the
components would result in different cyclic stress his-
tories. It is likely that the number of cycles as well as
the data points in the history data corresponding to
peaks and valleys for the cycles would not agree, which
is necessary if finite element simulations are used to find
DK for each cycle.

Therefore, the bi-axial stress histories are converted
into an equivalent stress history (e.g. Von Mises
stress23). The rain-flow counting is then performed
upon this equivalent stress. The cycles were ordered by
increasing data point numbers corresponding to the
beginning of a cycle. This helps to retain the ordering
of the applied stresses, which is necessary for the load

Figure 2. Normalized chord-wise and span-wise pressure distributions pu(u) and pw(w).

Table 2. Bi-axial stress components for each wing box analysis
for unit pressure distribution.

Analysis sxx (MPa) syy (MPa) sxy (MPa)

Drag 22.3 233.4 32.2
Lift, a= 0� 134 483 298
Lift, a= 5� 133 484 296
Lift, a= 10� 131 480 291

Figure 3. Bi-axial stress history for a subset of the 180,588
data points corresponding to the 19 flights.
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interactions to be properly considered. Finally, the
cycles identified by the rain-flow analysis are mapped
back onto the individual stress components. This
enables each cycle to be modeled with a finite element
simulation and the cyclic bi-axial stresses to share
locations of maxima and minima. This algorithm is
outlined in Figure 4. In this article, the rain-flow
counting algorithm of Nieslony24 is used, which fol-
lows ASTM E 1049, Standard Practices for Cycle
Counting in Fatigue Analysis. The conversion from
stress history into cyclic stress history reduces the
data from 180,588 points to 37,007 cycles as shown in
Figure 5. As with the stress data, the cyclic stress his-
tory is non-proportional, bi-axial, and has variable
amplitudes in nature.

When modeling crack growth under variable ampli-
tude loading, the critical phenomena to capture are the
interactions between the loading cycles and the effects
of the stress ratio R. The stress ratio R is the ratio of
the minimum to maximum stress during a particular
loading cycle. A maximum in the loading history
increases the crack tip plasticity, which retards future
crack growth, while a minimum in the loading history
decreases the crack tip plasticity, which accelerates
future crack growth. One strategy for capturing this
behavior is to explicitly model the plasticity using either
traditional25 or XFEMs.26,27 However, for fatigue
crack growth, plasticity is highly localized around the
crack tip and it has been shown25–27 that the stress
intensity factors are not significantly different under
the confined plasticity assumption. Therefore, the
choice here was to model the plasticity through the use
of a modified Paris model1 which considers the effects
of the crack tip plasticity on the crack growth rate by

including additional material constants. This helps to
further improve the computational efficiency of fatigue
crack growth analysis for a non-proportional variable
amplitude case where each cycle must be modeled
explicitly. The modified version of the Paris model used
here is given as

da

dN
=C (MRMPDK)m � DKm

th

� �
ð10Þ

where C is the modified Paris model constant for
R=0, m is the modified Paris model exponent for
R=0, MR is a corrector for non-zero R values, MP is
a corrector for the plasticity effect created by load
interactions, DK is the stress intensity factor range, and
DKth is the threshold stress intensity factor range, under
which the crack would not grow.

In equation (10), the parameter MR is defined as

MR =
(1� R)�b1 � 5�R\0

(1� R)�b 0�R\0:5
(1:05� 1:4R+ 0:6R)�b 0:5�R\1

8<
: ð11Þ

where two additional material constants b and b1 are
introduced and used to compensate for non-zero R val-
ues to R=0. This allows for a single value to be used
for C and m regardless of R, which is not the case with
many models. The parameter MP in equation (10) con-
siders the effect of the evolution of the plastic zone at
the crack tip as

MP =
ry

aOL + rOL�ai�rD

� �n

ai + ry\aOL + rOL � rD

1 ai + ry � aOL + rOL � rD

(

ð12Þ

where n is an exponent used to accelerate or retard
crack growth due to load interactions, ry is the plastic
zone radius for the current crack geometry, rOL is the
plastic zone size for the crack when the overload
occurred, and rD is the reduction in rOL due to an

Figure 4. Conversion of bi-axial data into cyclic data for use in
a fatigue crack growth model.

Figure 5. Cyclic stress history identified for a subset of all
stresses through rain-flow counting of an equivalent stress
model.

Pais and Kim 5

 at UNIV OF FLORIDA Smathers Libraries on February 12, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


underload. Further details on the necessary experi-
ments to determine b1, b, and n are available.1 The
plastic zone radii are

ry =ap

Kmax
I

s+
y

 !2

; rOL =ap

KOL
I

s+
y

 !
;

rD =ap

Kmin
I , i�1 � Kmin

I , i

s�y

 !2
ð13Þ

where ap is a plastic zone correction factor, Kmax
I is the

maximum Mode I stress intensity factor for the current
cycle, Kmin

I , i�1 is the minimum Mode I stress intensity fac-
tor for the previous cycle, Kmin

I , i is the minimum Mode I
stress intensity factor for the current cycle, KOL

I is the
Mode I stress intensity factor when the overload
occurred, s+

y is the tensile yield stress, and s�y is the
compressive yield stress. This model has been validated
against sets of experimental data of variable amplitude
fatigue loadings.1

While the modified Paris model in equation (10)
gives the magnitude of the fatigue crack growth at a
particular cycle, it does not specify the direction. While
there are many options available for predicting the
direction of crack growth,28–31 the critical plane
approach5 is used here. The critical plane approach
was developed based on the observation that fatigue
crack growth in many metallic materials did not follow
the direction predicted by maximum tensile stress.
Additional material properties are used which result in
the determination of the crack growth direction along
some critical plane for a given material. The main
advantage of the critical plane approach compared to a
simpler model, such as the maximum circumferential
stress criterion, is that an added emphasis is placed
upon shear-dominated failure while a model such as
the maximum circumferential stress criterion empha-
sizes tensile-dominated failure. The direction of crack
growth predicted by the critical plane approach in the
crack tip coordinate system is

u=f+ g ð14Þ

where f is given by

f=
1

2
arctan

2KII

KI

� �
ð15Þ

Here, KI and KII are the Mode I and II stress inten-
sity factors, respectively, and g follows the relationship

g =
1
2
arccos

�2+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4(1=s2 � 3)(5� 1=s2 � 4s2)

p
2(5� 1=s2 � 4s2)

" #
s� 1

0 s.1

8><
>:

ð16Þ

where the value of s is given as

s=
KII , da=dN

KI , da=dN

ð17Þ

where KI,da/dN and KII,da/dN are the Mode I and II stress
intensity factors corresponding to a particular crack
growth rate da/dN. The mixed-mode stress intensity
factors KI and KII are converted into an equivalent
stress intensity factor range DK according to the work
of Liu and Mahadevan.5

XFEM

The classical finite element method requires the finite
element mesh to conform to the domain of interest.32

In terms of modeling numerous crack growth itera-
tions, the domain of interest is constantly changing due
to crack growth. The need to recreate the mesh, even
locally around the crack tip, is a challenge and leads to
increased computational cost. The XFEM2–4 exploits
the partition of unity finite element method to include
additional functions, often referred to as enrichment
functions, into the displacement approximation.
Enrichment functions allow for the discontinuity in the
domain introduced by a crack to be modeled without
the need to create the finite element mesh as the
discontinuous geometry evolves with time. The displa-
cement approximation associated with the XFEM
becomes

uh(x)=
X
I

NI uI +HaI +
X4

J= 1

FI, JbI, J

 !
ð18Þ

where NI are the traditional finite element shape func-
tions, uI are the traditional nodal degrees of freedom
(DOFs), H is the Heaviside enrichment function, aI are
additional DOFs associated with the Heaviside enrich-
ment function, FI,J are the crack tip enrichment func-
tions, and bI,J are the additional DOFs associated with
the crack tip enrichment functions. It should be noted
that the enrichment functions take values of 0 through-
out much of the domain and the additional DOFs are
located only locally around the discontinuity as shown
in Figure 6, where circles denote nodes enriched with
the Heaviside function and squares denote nodes
enriched with the crack tip enrichment function; filled
circles and squares denote new enriched nodes for the
current iteration while open circles and squares denote
previously enriched nodes.

The traditional Galerkin method may be applied to
the displacement approximation given by equation (18)
to yield a system of equations of the form

Kuu KT
au KT

bu

Kau Kaa KT
ba

Kbu Kba Kbb

2
4

3
5 u

a

b

8<
:

9=
;=

fu
fa
fb

8<
:

9=
; ð19Þ
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where Kuu are the traditional finite element stiffness
components; Kaa are the Heaviside stiffness compo-
nents; Kbb are the crack tip stiffness components; and
Kau, Kbu, and Kba are the stiffness components coupling
the traditional, Heaviside, and crack tip displacement
terms, respectively. In the conventional finite element
method or XFEM, the stiffness matrix needs to be gen-
erated at each crack growth iteration, and the system
of equations is solved for nodal DOF (u, a, and b).
This requires a tremendous amount of computational
resources as the fatigue crack growth often comes with
millions of loading cycles. It should be noted from
Figure 6 that only a small portion of the total stiffness
matrix contains enriched terms; in practice, it is com-
mon for the enriched number of enriched DOFs to be
between 1% and 5% of the total number of DOFs in
the system of equations.

As crack growth occurs, only a small portion of the
global stiffness matrix may be modified; new additions
are made to the Heaviside components Kaa and Kau

and all crack tip components Kbb, Kbu, and Kba will
change as a result of the changing crack tip position. In
practice, it is possible to factor equation (19) using the
Cholesky factorization algorithm. This factorization
can then be modified directly to consider the effects of
the changes to the enriched components of the stiffness
matrix which occur due to crack growth through the
use of row add and row delete operations.6 Numerical
experiments have shown a savings of about 80% in the
assembly of the stiffness matrix and 70% in the factori-
zation and solving of the system of linear equations
through the use of this method.

Due to the non-proportionality of the bi-axial stress
components, two analyses are required for each cycle
which was identified by the rain-flow counting method:
one at the maximum and other at the minimum of each
cycle. This results in the need for twice the number of

simulations as there are loading cycles, or 74,014
XFEM analysis. In practice, the authors’ MATLAB
XFEM code33 was coupled with CHOLMOD34

through the use of a MEX file to enable efficient com-
putation of the 74,014 repeated simulations. In order to
ensure efficiency of the updating algorithm, a fill-
reducing ordering is calculated using the approximate
minimum degree ordering algorithm35 for a matrix
which contains all possible connectivities including
traditional, Heaviside, and crack tip components.
Without this algorithm, it would be challenging to con-
sider the cycle-by-cycle load history for the non-
proportional bi-axial variable amplitude loading his-
tory, which was identified from the usage monitoring
data.

Numerical results

The material properties used in the numerical results
were chosen to represent aluminum 7075-T6 as follows:
Young’s modulus of 70GPa, Poisson’s ratio of 0.3,
yield stress of 520MPa, threshold stress intensity factor
range of 2.2MPa, modified Paris model constant of
6.85E211, modified Paris model exponent of 3.21, neg-
ative R-ratio correction b1 of 0.84, positive R-ratio cor-
rection b of 0.70, and plasticity acceleration/retardation
exponent n of 0.3.1

First, the effect which an overload or underload has
upon fatigue crack growth according to the modified
Paris model1 is studied. A simple block loading spec-
trum is used to illustrate the idea where the block load-
ing is shown in Figure 7. Four cases are considered: no
overload or underload, an overload with no underload,
an underload with no overload, and an overload and an
underload. Recall, that the general effect of an overload
is an increase in plasticity which will retard future crack
growth. Inversely, an underload will accelerate future

Figure 6. XFEM mesh with enriched nodes: (a) initial geometry and (b) after crack growth iteration.
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crack growth. For this example problem, the values for
the stress in the block loading spectrum were defined as
s1=50MPa, s2=150MPa, s3=250MPa, and
s4=350MPa. The stress intensity factor was predicted
for the center crack in an infinite plate model with stress
range Ds and half crack length a as

DK =Ds
ffiffiffiffiffiffi
pa
p

ð20Þ

Crack growth stopped once the characteristic crack
length reached 50mm from an initial crack size of
5mm.

The results of this simple variable amplitude fatigue
analysis are presented in Figure 8. It can be noted that,
as expected, the presence of an overload decreases the
crack growth rate (e.g. increasing number of cycles to
reach a particular crack length) when compared to the
constant amplitude case. For an underload, the
increased crack growth rate occurs due to the reduction
in crack tip plasticity. The combination of an overload
and an underload results in a crack growth rate that is
slower than the constant amplitude case, but faster
than the overload-only case. The differences between
these cases represent the need to consider the crack tip

plasticity when predicting fatigue crack growth under
variable amplitude loading.

The example problem to which the non-proportional
bi-axial stress cycles identified from the usage monitor-
ing data were applied was that of a square plate with
sides of length of 0.1m containing an edge crack of
5mm as shown in Figure 9. The 37,007 bi-axial stress
cycles were modeled as 74,014 XFEM simulations. The
magnitude of crack growth was predicted using the
modified Paris model, and the direction of crack growth
was predicted using a critical plane approach.

A structured XFEM mesh was used where the aver-
age element size was 1/200m. After performing an
analysis for several hundred cycles, it was noted that
the cyclic stresses did not create sufficiently large stress
intensity factor ranges to exceed the threshold stress
intensity range. To encourage crack growth to occur,
all stresses were magnified by a factor of 10, which cre-
ated periodic crack growth. This resulted in crack
growth occurring in about 2500 of the 37,007 cycles.
The resulting crack growth as a function of cycle num-
ber is given in Figure 10 and the predicted growth path
is shown in Figure 12.

One of the observations from Figure 10 is that most
of the crack growth occurs early in the cyclic loading
history for the wing panel. In Figure 11, the stress inten-
sity factor range as a function of cycle number is given,
along with the threshold stress intensity factor range.
Note that the equivalent DK in Figure 11 rarely exceeds
the threshold stress intensity factor range. This can be
explained by the artificial stress scaling which was done
to promote fatigue crack growth. It should also be
noted that early in the life of the plate (in particular
before 10,000 cycles), there is a high concentration of
DK which exceeds DKth. This results in increased crack
growth in Figure 10 early in the life of the plate, com-
pared to later when DK rarely exceeds DKth.

The path of crack growth is shown in Figure 12,
which corresponds to the crack growth and DK curves

Figure 7. Block loading spectrum used to examine effects of
overload and underload upon crack growth curve.

Figure 8. Comparisons of the crack growth rate for constant
amplitude and variable amplitude loading under a block loading
spectrum.

Figure 9. Simplified plate geometry used for the fatigue
analysis from service data.
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of Figures 10 and 11. The location of the crack tip at
discrete cycle number is given where the crack tip loca-
tion is denoted with small data points. As we would
expect, most of the crack growth occurs before reach-
ing the cycle number 10,000. It can be noted from
Figure 5 that, in general, the stress components can be
ordered in decreasing magnitude as syy, sxy, and sxx.
Therefore, it could be expected that the general trend
of crack growth would be horizontal, with some devia-
tion according to the values of sxy and sxx, which is
the behavior shown in Figure 12.

Conclusion and future work

In this article, usage monitoring data from an aircraft
were converted into a stress history through the use of

simple analysis to predict the magnitude of the lift and
drag pressure distributions upon a wing box. A combi-
nation of finite element analysis for the wing box and
surrogate models was used to convert the magnitudes
of the lift and drag pressure distributions into bi-axial
stress histories for a point of interest along the wing
box.

A fatigue crack growth analysis was then performed
using a modified Paris model to consider the effects of
variable amplitude loading and the critical plane
approach to determine the crack growth direction. For
calculation, XFEM was implemented where the
changes in the stiffness matrix are handled by direct
modification of an existing factorization to handle the
large number of required simulations. It would be chal-
lenging for a classical finite element approach to handle
the number of simulations and the corresponding evo-
lution of the finite element mesh.

This work should be viewed as a means to (a)
approximate the service stress history from usage moni-
toring data and (b) estimate the remaining life of a
structure according to a service history. The service
stress history could also be used as the input into a
prognosis method, which often assumes that a service
stress history, or at least an estimate of the service
stress history, is available. In the future, the combina-
tion of prognosis methods with estimates of the future
crack growth provided by numerical simulations for
the service stress history may lead to a more robust pre-
diction of the remaining useful life.

Figure 10. Comparison of the crack size as a function of the cycle number.

Figure 11. Stress intensity factor range as a function of the cycle number.

Figure 12. Predicted crack path under non-proportional
bi-axial variable amplitude loading.
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31. Sukumar N and Prèvost JH. Modeling quasi-static crack

growth with the extended finite element method. Part I:

computer implementation. Int J Solids Struct 2003; 40:

7513–7537.
32. Maligno AR, Rajaratnam S, Leen SB, et al. A three-

dimensional (3D) numerical study of fatigue crack growth

using remeshing techniques. Eng Fract Mech 2010; 77:

94–111.

33. Pais M. 2D MATLAB XFEM codes, 2010, http://

www.matthewpais.com/2Dcodes

10 Advances in Mechanical Engineering

 at UNIV OF FLORIDA Smathers Libraries on February 12, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


34. Chen Y, Davis TA, Hager WW, et al. Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization
and update/downdate. ACM T Math Software 2009; 35:
1–14.

35. Amestoy P, Davis TA and Duff IS. Algorithm 837:
AMD, an approximate minimum degree ordering algo-
rithm. ACM T Math Software 2004; 30: 381–388.

Appendix 1

Notation

ai characteristic crack length at current cycle
aOL characteristic crack length at point when

overload occurs
C modified Paris model constant
CD drag coefficient
CL lift coefficient
KI Mode I stress intensity factor
Kmax

I Mode I stress intensity factor at maximum
load

Kmin
I , i Mode I stress intensity factor at minimum

load for current cycle
Kmin

I , i�1 Mode I stress intensity factor at minimum
load for previous cycle

KOL
I Mode I stress intensity factor at overload

KII Mode II stress intensity factor
m modified Paris model exponent
mempty mass of empty airplane
mfuel mass of fuel
M Mach number
MP Paris model correction for crack tip

plasticity
MR Paris model correction for non-zero stress

ratio
p(u) normalized chord-wise pressure

distribution
p(y) normalized span-wise pressure

distribution
P(x, y) scaled pressure distribution

qo pressure distribution scaling factor from
drag pressure distribution

rOL plastic zone radius at overload
ry plastic zone radius
rD reduction in plastic zone radius for

overload followed by underload
R stress ratio due to cyclic loading

(minimum to maximum load)
s span length
u normalized chord-wise coordinate
VD volume under drag pressure distribution
VL volume under lift pressure distribution
wo pressure distribution scaling factor from

lift pressure distribution
xnormi current normalized service data value
xscaledi current scaled service data value
xnormmax maximum normalized service data value
xscaledmax maximum scaled service data value
xnormmin minimum normalized service data value
xscaledmin minimum scaled service data value
y span-wise coordinate

a angle of attack
aP correction factor for plasticity
b stress ratio correction exponent for

positive R
b1 stress ratio correction exponent for

negative R
DK stress intensity factor range
DKth threshold stress intensity factor range
u angle of crack growth
uB airplane bank angle
sij stress component
sD

ij stress component from drag pressure
distribution

sL
ij(a) stress component from lift pressure

distribution and a given angle of attack
s+

y yield stress in tension
s�y yield stress in compression

Pais and Kim 11

 at UNIV OF FLORIDA Smathers Libraries on February 12, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/

