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The focus of this paper is a strategy for making a prediction at a point where a function
cannot be evaluated. The key idea is to take advantage of the fact that prediction is
needed at one point and not in the entire domain. This paper explores the possibility of
predicting a multidimensional function using multiple one-dimensional lines converging
on the inaccessible point. The multidimensional approximation is thus transformed into
several one-dimensional approximations, which provide multiple estimates at the inac-
cessible point. The Kriging model is adopted in this paper for the one-dimensional
approximation, estimating not only the function value but also the uncertainty of the
estimate at the inaccessible point. Bayesian inference is then used to combine multiple
predictions along lines. We evaluated the numerical performance of the proposed
approach using eight-dimensional and 100-dimensional functions in order to illustrate
the usefulness of the method for mitigating the curse of dimensionality in surrogate-based
predictions. Finally, we applied the method of converging lines to approximate a two-
dimensional drag coefficient function. The method of converging lines proved to be more
accurate, robust, and reliable than a multidimensional Kriging surrogate for single-point
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1 Introduction

In surrogate modeling, it is common to sample a function at
scattered points and fit the samples with an explicit function to
approximate function values at unsampled points [1,2]. The
estimation procedure is called interpolation when target points
are inside the convex hull of sampled points, while it is termed
extrapolation [3,4] otherwise, as shown in Fig. 1. For one-
dimensional samples, for example, the convex hull is set by the
lower and upper bounds of samples. Surrogate models are rou-
tinely used as interpolation schemes and may be inadequate for
extrapolation, which is commonly encountered while approximat-
ing high-dimensional functions [5]. A surrogate is especially use-
ful to estimate function value when the point of interest cannot be
sampled via simulation or experiment due to extreme conditions,
lack of data, limitations of simulation software, or an experiment
that is too dangerous to perform. For example, 16 out of the
500 simulations were reported to have failed for an aeroelastic
helicopter blade simulation in Glaz et al. [6] during design
optimization.

Several valuable efforts have been initiated toward reliable esti-
mation at inaccessible points. Neural networks, an advanced
framework, have been reported to be misleading for extrapolation
beyond the region of samples [4] and are therefore mostly used
for interpolation. Balabanov et al. [7] and Hooker and Rosset [8]
demonstrated that regularization methods can improve extrapola-
tion accuracy beyond sample range even if they compromise
interpolation accuracy. Wilson and Adams [9] proposed a Gaus-
sian process kernel function for better uncovering data patterns
and leading to improved prediction accuracy of forecasting.
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Richardson extrapolation has been commonly adopted to predict
the response to finite element analysis toward extremely refined
mesh that is unaffordable [10,11]. A specific polynomial form was
used for Richardson extrapolation to incorporate physical knowl-
edge about convergence order. Hooker [12] proposed an empirical
trend function when predicting toward inaccessible point. In prog-
nosis for remaining life of mechanical systems, application of
Gaussian process surrogate and neural network model has been
discussed based on a heuristic study [13]. Besides, numerous
papers can be found on forecasting one-dimensional time series
data at inaccessible points (i.e., future) in financial fields and
weather forecasting, e.g., see Refs. [14,15].

Based on this literature, it is challenging to estimate prediction
accuracy at inaccessible points. Surrogate predictions, in particu-
lar, risk increasing uncertainty when prediction points are far from
samples [7,16,17]. This motivated us to estimate a function value
by creating multiple independent predictions from different data
sets. Introducing multiple predictions may reduce the uncertainty
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Fig. 1 Illlustration of interpolating and extrapolating regions in

design of experiments: (a) interpolating inaccessible region
and (b) extrapolating inaccessible region
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of blind predictions. A new sampling pattern, called the method of
converging lines, is proposed in this work. As a first step toward
improving the prediction capability for long-distance prediction
using surrogate model, we explore the possibility of predicting a
multidimensional function using multiple one-dimensional lines.
The main idea is to select samples along lines toward the inacces-
sible point. One-dimensional surrogates are then constructed
based on the samples along each line in order to predict the func-
tion value at the inaccessible point. The method of converging
lines transforms multidimensional function prediction into a series
of one-dimensional predictions, which provide multiple estimates
at the inaccessible point. Combining multiple predictions based
on Bayesian inference is proposed to enhance the prediction
accuracy.

The paper is organized as follows: In Sec. 2, we present the
concept and technical details for the method of converging lines.
In Sec. 3, we examine numerical properties of proposed approach
using two algebraic functions. In Sec. 4, we apply the method of
converging lines to approximate a two-dimensional drag coeffi-
cient function to demonstrate potential application. One-
dimensional surrogate prediction is performed using ordinary
Kriging due to its excellence for interpolating noise-free function.

2 Method of Converging Lines

2.1 Principal Idea. The procedure to select locations where
the function is to be sampled is called the design of experiments
(DOE). For fitting a surrogate, it is common to select space-filling
DOEs (e.g., Latin hypercube sampling (LHS) [18]), which are
geared to provide a good representation of the design domain. The
method of converging lines, in contrast, serves the prediction at a
single target point, Xgrget- This method locates sampling points
along several lines all intersecting at the target point.

The difference between LHS and the sampling scheme of the
method of converging lines in two- and three-dimensional space
is illustrated in Fig. 2. In the figure, the target point, Xgarget, iS at
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Fig. 2 lllustration of (a) space-filling sampling (LHS) and (b)

method of converging lines using 15 samples when the target
point is at the origin and the domain at distance of less than 0.5
from the origin is inaccessible
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the origin, and the domain within a normalized distance of 0.5
from X¢arget is set to be inaccessible. Three converging lines are
shown in Fig. 2(b). The orientations of the line /; may vary with
applications in order to generate a good estimate. Along a given
line, local coordinate xﬁ’))cal of jth sample point xV) is the Euclidean
distance between x¥) and Xtarget S

St = 16— Xiarge| M
where xl((’))cal is a non-negative scalar and zero when xU) = Xtarget-
The local coordinate of the sample, x(/), is first normalized to be
within [0,1] along each dimension to eliminate the effect of differ-
ent scales.

The method of converging lines is expected to be ideal in cer-
tain conditions, where sampling domain is relatively convenient
to access in terms of cost and feasibility, and sampling the target
point is impossible or exponentially more challenging. In this
paper, we focused on long-distance prediction, namely, the length
over inaccessible domain equals to that from the accessible
domain. Under these two expected scenarios, it might be desirable
to perform pointwise prediction using multiple lines.

2.2 One-Dimensional Function Estimation Using Ordinary
Kriging. The underlying assumption for prediction is that the
function behaves similarly in the accessible domain and inaccessi-
ble domain. Therefore, surrogate models providing acceptable
accuracy in sampling domain would be appropriate to estimate the
function at inaccessible points within a certain distance from sam-
ples. When this assumption fails, the surrogate prediction is likely
to fail, whether we use a multidimensional surrogate or the
method of converging lines.

Ordinary Kriging based on correlation kernel is adopted for
one-dimensional modeling due to its superior performance for
approximating noise-free data. Surrogate prediction based on ordi-
nary Kriging is reported to avoid large errors at inaccessible
points [19]. Kriging assumes that the distance between sample
points reflects a spatial correlation. The value of the function at a
point is correlated to the values at neighboring points based on
their separation. The correlation is strong to nearby points and
weak with far away points, but strength does not change based on
location. This unique assumption provides a measure of uncer-
tainty of the prediction. We adopt the Gaussian model to approxi-
mate the correlation between point x and point s as

CF).£(5),0) = [ ] exp (~0itxs — %) @
i=1

where n is the dimensionality of variable x and s, 0; is the hyper-

parameter along ith direction [20]. n is 1 for applying one-

dimensional prediction using the method of converging lines.
Prediction at an untested point x is formulated as

y(x) =i+ p'r

rj = exp <—i9k(5£i) - Xk)2> @
=

where s denotes ith sample point, and ji is the mean of samples.
The hyperparameters 0 and B are obtained by maximizing the like-
lihood that the data come from a Gaussian process. Ordinary Krig-
ing is implemented using the surrogate toolbox of Viana and Goel
[21].

The prediction of ordinary Kriging and the corresponding
uncertainty are expressed as a conditional probability density
function (PDF) for a given data set y as p(y(x)|y), which follows
a student’s t-distribution [22]. A student’s t-distribution is well
approximated by a normal distribution and converges to a normal
distribution as the number of samples increases. In this paper, the
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surrogate prediction with uncertainty is expressed using a normal
distribution for computational efficiency. The conditional PDF of
a prediction is defined as a normal distribution N(§(x), (x)?),
where y(x) is the Kriging predictor and ¢(x) is the standard devia-
tion at x.

2.3 Combination of Prediction From Multiple Lines. For
making a prediction in n-dimensional space, one-dimensional sur-
rogate allows higher accuracy than using an n-dimensional surro-
gate with the same number of samples. The method of converging
lines proposes to combine multiple predictions at the inaccessible
point with independently built multiple one-dimensional surro-
gates toward the point to reduce the chance of large error. The
true response y(Xearget) is predicted with multiple one-dimensional
Kriging surrogates, and the prediction of the ith surrogate and the
corresponding prediction uncertainty are defined through a condi-
tional PDF for the given ith data set as p(y;(Xtarget)|y;), Which is a
normal distribution having a mean of the Kriging predictor
Vi (Xtarget) and a variance of the prediction variance at the target
point X¢arget-

The multiple predictions can be combined to obtain a single
most probable estimate. Various combination schemes are avail-
able to combine multiple predictions [23,24]. Here, we adopt
Bayesian inference [25,26] to combine Kriging predictions. In the
Bayesian inference, the conditional PDF of the true response from
the Kriging based on ith data set can be interpreted as likelihood
functions as p(y(Xtarget)|¥;) o< 1(y(Xtarget)|y;). By assuming inde-
pendence of prediction uncertainties between lines, the posterior
distribution of the true response is obtained by multiplying the
likelihood functions. With m one-dimensional predictions, the
posterior distribution is expressed as

U y[_) X H l(y(X[arget) |yi) (4)
i=1

i=1

P <y (Xtarget)

The posterior distribution in Eq. (4) can be further derived based
on the approximation using normal distributions as

m m
in> X Hp (y(xtarget) |)A’f(xtarget)7 O'i(xtarget)z)
i=1 i=1

x ﬁ exp |: <y(Xtarget) - yi(Xtarget))2:|

20[ (Xtarget )2

~ 2
— exp {_ (ytarget - y(xtarget)) } (5)

26(Xtarget ) 2

P <y(xtarget)

where p(y(Xtarget) |V (Xtarget ) 0i (xmge,)z) is a PDF of a normal dis-
tribution at y(X¢arget) for the given mean of y;(X¢arget) and standard
deviation of o;(Xtarget). Y (Xtarget) and 0(X¢arget) are the combined
prediction and the standard deviation representing the prediction
uncertainty as

“ )A’ i (Xtarget)
R —7 0i(Xtarget) 2
Y(Xtarget) = %341
i—1 g (Xtarget ) 2 (6)

G(Xtarget) = "

1

i—1 4 (xtarget ) 2

Based on Eqs. (4) and (5), the posterior distribution
P(y(Xtarget)| Ui, ¥;) follows a normal distribution, N(J (X¢arget)s

a(xtarget)z). From the expression of ¢(X¢arget) in Eq. (6), it can be
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expected that surrogate prediction from the line with minimum
prediction variance will be most influential on the posterior distri-
bution because the combined prediction is a weighted average of
the predictions based on the prediction variances.

Compared with multidimensional approximation, the method
of converging lines is essentially a set of predictions from one-
dimensional (1D) surrogates. The 1D surrogate is likely to be more
robust than multidimensional approximation for two reasons: (a)
The number of hyperparameters to be estimated for building a one-
dimensional surrogate is one, while n hyperparameters have to be
estimated for an n-dimensional surrogate. Therefore, the cost of
evaluating samples to make a reasonable prediction is affordable
regardless dimensionality while that to build n-dimensional surro-
gate increases excessively (the curse of dimensionality). (b) The 1D
surrogate can be easily visualized reducing the chance that failure
of the surrogate fitting will go unnoticed.

One important feature of the method of converging lines is that
lines may have diverse performance. Some lines may be friendly
for mathematical modeling, namely, enabling small and reliable
prediction variance. These good lines will dominate combined
prediction based on Bayesian method. By potentially improving
the quality of surrogate models and combining multiple lines,
the method of converging lines is expected to be more reliable
regarding pointwise estimation. Another bonus feature is that the
number of sampling points required along lines for accurate pre-
diction may not depend on the dimensionality of the function. For
example, if we were in 20-dimensional space, prediction with a
standard LHS may require hundreds of points, while it is possible
that three lines with 20 points may still suffice for prediction with
the method of converging lines. The effect of dimensionality will
be discussed in Sec. 3.

Several conditions may lead to large prediction errors even
under the valid assumption that the inaccessible domain had a
similar trend as that of the accessible domain:

(1) Long-distance prediction usually risks large errors. Lacking
samples near inaccessible domain would make it challeng-
ing to determine surrogate parameters and interpret good-
ness-of-fit.

(2) Different surrogate models or parameter settings is a major
source of uncertainty. It is more challenging to select
appropriate models for predictions toward inaccessible
points especially when no prior information for noise is
available.

(3) Some lines may not be trusted due to physical complexity
or inappropriate modeling. Outlier prediction could be
identified and excluded when most lines have similar pre-
dictions, but one line is significantly different. Outlier pre-
diction comes from the surrogate model with misleading
estimation and prediction variance.

Note, however, that these difficulties are likely to be even more
acute if the same prediction is attempted with a multidimensional sur-
rogate, especially that only a single estimate is obtained.

3 Numerical Properties of Method of
Converging Lines

Even though it is tough to determine what function could be
approximated and how to predict toward inaccessible points, we
tried to identify and discuss several important factors based on
numerical test functions. We examined the effect of lines regard-
ing prediction accuracy, compared prediction from multiple lines
with that from multidimensional approximation, and effect of
high-dimensionality.

Extrapolation has been reported to be more challenging than
interpolation in general [19]. Therefore, the following analysis
distinguishes between these two scenarios. We adopt ordinary
Kriging for prediction considering it could avoid huge error
regarding prediction toward inaccessible points [19].
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Table 1 Target point, variable range, and inaccessible domain
of 8D Dette function

Target point X¢arger  Variable range  Inaccessible domain

Extrapolation
Interpolation

X[:l
Xi =0.5

X € [05 l]

[0,1]
0,1  x €[0.25,0.75]

X; €
xie[v]

Table 2 Target point, variable range, and inaccessible domain
of 100D Styblinski-Tang function

Target point Xearger  Variable range Inaccessible domain

Extrapolation Xp=

X € [—
Interpolation xi=1 [

Xi €

3.1 Algebraic Illustration Functions. This section examines
properties of the method of converging lines based on two alge-
braic functions, Dette function and Styblinski-Tang function,
from a virtual library of simulation experiments [27]. Dette func-
tion given in Eq. (7) is an 8D algebraic function proposed by
Dette and Pepelyshev [28]. This function is highly curved in some
variables and less in others. The function is evaluated on the
hypercube x; € [0, 1] foralli=1,..., 8

F(x) =4(x —2+8x — 83)* + (3 — 4n,)

8 i
+16y/x + 125 — 17+ In[ 1+ x )
i=4 j=3

For extrapolation, the target point for prediction was selected to
be the vertex where all the eight variables were at their upper
value, x;, =1,7=1,2,...,8, as provided in Table 1. The inaccessi-
ble domain was set to have the same length as the accessible
domain along all the variable directions. For interpolation, the tar-
get point was set to be x; = 0.5 for i =1,..., 8, which is the center
of variable space. The inaccessible domain was set to be the
hypercube centered at the target point with a width of 0.5. There-
fore, the inaccessible domain had the same length as the accessi-
ble domain.

The second test function is the Styblinski-Tang function, which
is a popular multimodal function for testing optimization algo-
rithms with user-defined dimensionality as shown in Eq. (8). The
dimensionality d is set to be 100 to study the effect of high-
dimensionality on prediction. The function is evaluated on the
hypercube x; € [—1,3] for all i=1,..., d. Approximating this test

function directly is challenging for classical surrogate models con-
sidering its dimensionality

N —

d
f) =5 [ =167 + 5x,] ®)
i=1

For extrapolation, the target point for prediction was selected
again to be the vertex, where all the variables were at their upper
bounds, x; = 3 as provided in Table 2. The inaccessible domain
was set to be a hypercube cornered at the target point and had
same length as the accessible domain along all the variable direc-
tions. For interpolation, the target point was set to be x; =1,
which was the center of variable space. The inaccessible domain
was set to be the hypercube centered at the target point with a
width of 1. Therefore, the inaccessible domain had the same
length as the accessible domain.

3.2 Method of Converging Lines Versus Multidimensional
Approximation. We first compared the proposed approach with
multidimensional approximation based on Dette function for
extrapolation and interpolation, respectively.

3.2.1 Extrapolation. For the method of converging lines,
three lines were selected toward the target point. The other ends
of the lines were randomly selected from the rest of the 2° vertices
of the domain. We selected 100 sets of lines randomly to compen-
sate for the effect of line selection. Six samples were evenly
spaced in the accessible domain. A typical set of extrapolation
results based on ordinary Kriging was shown in Fig. 3. The func-
tion along line 1 in Fig. 3(a) is unimodal like a bowl. Figure 3(b)
showed line 2 which is wavy. Line 3 in Fig. 3(¢) was close-to-
linear and most friendly for approximation. In the case in Fig. 3,
combined prediction was close to line 3, which had a much
smaller prediction variance. Note that even without knowledge of
the true function, the ability to visualize the data and predictions
shown in Fig. 3 is useful for spotting which surrogate is likely to
be trusted.

For a multidimensional approximation, 18 samples were
selected using LHS with 5000 iterations with the MATLAB function
lhsdesign. Sampling domain was restricted to be the same as
that to generate multiple lines. The inaccessible domain was a
hypercube cornered at the target point.

One hundred sets of predictions were generated using multiple
lines and multiple LHS designs. Prediction accuracy was quanti-
fied using absolute percent error and is summarized using boxplot
in Fig. 4. Prediction from multiple lines had the error median to
be 0.018%, and 75% predictions were less than 0.1%. In contrast,
the minimum error of multidimensional approximation was 25%.

Line 1 i Line 3
80 100 Line 2 80
N 95% C.I.
758 ® samples 80,
R R true function 75
70 O target 60
= surrogaate prediction
v 65 w— 40 v 70
60 20
65
55 0
50 -20 60
0 0.5 1 1.5 2 0 1 2 3 0 0.5 1 1.5 2
Xlocal local local
(a) (b) (c)

Fig. 3 A typical set of extrapolation results from 8D Dette function. The three lines are from randomly selected vertices

to the target vertex.
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Fig. 4 Summary of extrapolation results from multiple lines
and 8D Kriging based on Dette function

3.2.2 Interpolation. For the method of converging lines,
three lines were selected to intersect at the target point. The
ends of lines were randomly selected from all the vertices. A
typical set of interpolation results using Kriging is shown in
Fig. 5. All the lines had a bowl shape with different minima.
All the Kriging models had a similar level of prediction variance
and overestimated function value at the target point slightly.
Again, we note that even without knowing the exact function,
figures such as Fig. 5 provide some protection against the failure
of the fitting process.

For a multidimensional approximation, 18 samples were
generated using LHS in the accessible domain. One hundred sets
of prediction were generated to estimate randomness and summar-
ized in Fig. 6. Prediction using multiple lines had the error median
to be 3.24% and maximum error to be 3.31%. In contrast, predic-
tion using 8D Kriging had the error median to be 22.8% and mini-
mum error to be 19.7%. Multiple lines generated more accurate
predictions compared to 8D Kriging for this test function.

3.3 Applicability to Very High-Dimensionality. We adopted
Styblinski—-Tang function with 100 dimensions to illustrate applic-
ability to high-dimensionality. The dimension is too high to
be approximated by any regular surrogate models with a reasona-
ble number of samples. Therefore, the method of converging lines
might be the only option for a function with such a high
dimension.

For extrapolation, three lines were randomly selected from the
rest of the 2'% vertices. Six sampling points were evenly spaced

25t T 1
20t - 1
S
© 15} 1
=
8
£10| 1
o
5_
¥ .

1D(100 sets) 8D(100 sets)
Fig. 6 Summary of interpolation results from multiple lines
and 8D Kriging based on Dette function

in the accessible domain along each line. A typical set of extrapo-
lation results is given in Fig. 7. The test function along all the
three lines was multimodal. Prediction error was small at domain
close to samples and increased with prediction distance in the
extrapolation domain. This example illustrates the difficulty in
extrapolating long distance. Not only the prediction can deterio-
rate with distance, but for a function that changes its behavior,
even the uncertainty estimate may be flawed.

One hundred sets of random lines were generated toward same
target point to compensate for variability. The error of 100 predic-
tions is summarized in Fig. 8. The prediction error ranged around
28%. In this case, 100-dimensional surrogates are not possible,
the performance of the proposed method of converging lines
was not compared with multidimensional surrogates, but the
prediction error would be huge if 18 samples were able to fit a
100-dimensional surrogate.

For interpolation, three lines are selected toward the target
point. The other end of lines is randomly selected from all the ver-
tices. A typical set of interpolation results is shown in Fig. 9. All
the lines have a bowl shape, and the Kriging models overesti-
mated function value at the target point. One hundred sets of pre-
diction are generated to compensate for randomness and
summarized in Fig. 10. Prediction using multiple lines had the
error between 7.4% and 9.3%. Based on the tests using the 100D
Styblinski-Tang function, the method of lines enables estimation
of the high-dimensional function at one point using multiple lines.
Such estimation is practically impossible with a small number of
samples using a multidimensional surrogate. In particular, it is

Line 1 i Line 3
80 80 Line 2 80
I 95% C.I.
® samples
L - true function 70 70
O target
60%| = surrogaate prediction 60 60
Y— — Y—
50 50 50
40 40 40
30 30 30
0 1 2 3 0 1 2 3 0 1 2 3
XIocal Xloca[ XIocal
(a) (b) (c)

Fig.5 A typical set of interpolation results from 8D Dette function
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Fig. 7 A typical set of extrapolation results from 100D Styblinski-Tang function
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Fig. 8 One hundred sets of extrapolation results from multiple
lines based on 100D Styblinski-Tang function. The target point
was at x;= 3 with the function value to be —2400. One hundred
sets of converging lines were randomly selected among the ver-
tices excluding the target point.

impossible to fit a Kriging surrogate with 18 points in 100-
dimensional space.

4 Long-Distance Extrapolation and Interpolation
of a 2D Drag Coefficient

A drag coefficient model of a spherical particle [29] is pre-
sented in this section to demonstrate long-distance function

estimation at an inaccessible point using the method of converg-
ing lines.

4.1 Introduction to the Drag Coefficient Function. The
drag coefficient is a dimensionless quantity that measures the
quasi-steady drag coefficient of a spherical particle in compressi-
ble flow. For a given particle, the drag coefficient, Cp, is a func-
tion of Mach number, M, and Reynolds number, Re. The range of
applicability for Cp in this paper is limited to the supersonic
(1 <M < 1.75) domain to avoid the physical discontinuity at
M= 1. The Reynolds number is limited to Re < 2 x 10° to avoid
turbulence of the attached boundary layer. It is considered that the
governing physics is consistent within these limits. The analytical
expression for Cp is given in Cp = f(Re,M) in the Appendix.
The dependence of the drag coefficient on Reynolds number and
Mach number is shown in Fig. 11, which shows that the behavior
can be made smoother by transforming Re to logarithmic coordi-
nates. The target point, variable range for analysis, and inaccessi-
ble domain of the drag coefficient function are summarized in
Table 3 and plotted in Fig. 12. For extrapolation, prediction
domain is a square located on the upper right corner as shown in
Fig. 12(a). For interpolation, prediction domain is set to be a
square in the center of variable range as shown in Fig. 12(b). The
length of sampling domain and prediction domain is the same
along each line for both cases.

4.2 Extrapolation Results

4.2.1 Extrapolation of Drag Coefficient Function Using the
Method of Converging Lines. Instead of sampling entire range of
sampling domain, six uniform samples were selected from half of
the sampling domain as shown in Fig. 12(a). This was because the
prediction variance decreased noticeably when samples were

Line 1 Line 2 Line 3
0 0 0
-500 500 -500
w 1000 o -1000 _ -1000
I 95% C.l. 'Y
-1500 ® samples -1500 -1500
"""" true function
O target
=000 surrogaate prediction -2000 -2000
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
X
local xlocal xlOCal

(a)

(b)

Fig.9 A typical set of interpolation results from 100D Styblinski-Tang function
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Fig. 10 One hundred sets of interpolation results from multi-
ple lines based on 100D Styblinski-Tang function. The target
point was at x;=1 with the function value to be —500. One hun-
dred sets of converging lines were randomly selected among
the vertices excluding the target point.

closer to the target point. When the inaccessible domain is in the
interpolation region, the sampling scheme in Fig. 12(b) can be
used, which will be considered in Sec. 4.3. Table 4 summarizes
statistics of the surrogate predictions. Predictions of function
value along variable M with constant Re (line 3) had the smallest
prediction variance as shown in Table 4 and Fig. 13(c), indicating
better accuracy along this line.

By substituting extrapolation results of each line from
Table 4 into Eq. (7), most probable estimation can be obtained as
p()’target‘yl (Xtarget)7 Y2 (Xtarget)7y3 (Xtarget)) ~ N(O'97557 0'00032)-
Note that the posterior distribution was dominated bg the predic-
tion along line 3 because the prediction variance (¢°) was much
smaller than for the other lines. The small prediction variance
denotes high reliability of extrapolation. Comparing with true
function value 0.9766, absolute error is 0.001 and relative error is
0.1%. Note also that the less accurate lines (lines 1 and 2) provide
a reasonable warning of their lack of accuracy in their prediction
uncertainties, o;.

(a)

Fig. 11
log10 coordinate

4.2.2 Comparison of 1D and 2D Surrogates. One interesting
question is how sensitive the prediction is to the location of lines.
The sensitivity to the selection of lines was tested by varying the
angle of lines. In Fig. 12, the angle between lines and the horizon-
tal axis with constant M=1.75 was set to be o, o, and a3,
respectively, where o; = Odeg, ap = 45deg, andoaz = 90deg in
the figure. In order to test the effect of lines, o varied from Odeg
to 5 deg, o, from 40 deg to 50 deg, and o3 from 85 deg to 90 deg in
the increment of 1deg. Three hundred and ninety six sets of three
lines were generated based on different combinations of oy, a5,
and o3. Extrapolation results based on each set of lines were plot-
ted using boxplot in Fig. 14(b). All the extrapolation results con-
centrated near the true function value, 0.9766, varying from
0.9751 to 0.9756.

In order to examine the performance of multidimensional
extrapolation, two-dimensional (2D) Kriging is adopted. Eighteen
samples are selected in the reduced sampling domain using LHS
(5000 iterations maximizing minimum distance) as shown in Fig.
14(a). As converging lines benefitted from the reduced domain,
2D Kriging also benefited from it based on our tests. Two-
dimensional extrapolation is repeated 20 times to compensate for
the randomness of sampling pattern. For a typical 2D extrapola-
tion out of the 20 cases, i.e., corresponding to the case with
median absolute error, the prediction was N(0.9869,0.0313%). In
Fig. 14(b), we can see that boxplot of 2D Kriging prediction has a
median equal to 0.9799 and standard deviation to be 0.0261. Two-
dimensional Kriging generated larger variation and bias than con-
verging lines even with 20 sets of data. The method of converging
lines proved to be more reliable and robust for one-point extrapo-
lation of drag coefficient function.

4.3 Interpolation Results

4.3.1 Interpolation of Drag Coefficient Function Using the
Method of Converging Lines. Interpolation using method of con-
verging lines was performed similarly as shown in Fig. 12(b). We
selected samples in the half of sampling domain to reduce predic-
tion variance. Interpolation results are plotted in Fig. 15 from
three lines. Predictions at target point are provided in Table 5.

As in the case of extrapolation, the prediction variance on line
3 is by far the smallest. By substituting prediction results of each
line from Table 5 into Eq. (7), most probable estimation can be

Re(log10) M

(b)

Dependence of drag coefficient on Re and M: (a) natural coordinate and (b)

Table 3 Target point, variable range, and inaccessible domain of drag coefficient function

Target point Xearget

Variable range

Inaccessible domain

Extrapolation
Interpolation

log 10(Re) = 5.301 M = 1.75
log 10(Re) = 3.6505 M = 1.375

log 10(Re) € [2,5.301]M € [1,1.75]
log 10(Re) € [2,5.301]M € [1,1.75]

log 10(Re) € [3.65,5.301]M € [1.375,1.75]
log 10(Re) € [2.8253,4.4757]M € [1.1875, 1.5625)]
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Fig. 12 Lines and samples selection for extrapolating and interpolation of drag coefficient
function. The solid dots denote the location of samples. (a) Extrapolation and (b) interpolation.

Table 4 Mean value of prediction and its uncertainty given by
standard deviation for extrapolation along three lines shown in

obtained as: p(ytarget |y1 (Xtarget) Y2 (Xtarget) )3 (Xtarget)) NN(0-92237
0.000005?), essentially identical to the result of line 3. Comparing

Fig. 12(a) with true function value, 0.9224, absolute error is 0.0001 and rela-
Line 1 Line 2 Line 3 tive error is 0.01%.
'g{ (1)8%1; 6 88;;? 8(9)882 4.3.2  Comparison of 1D and 2D Surrogates. We have more
! ) ) i freedom to select lines for interpolation while fixing intersection
Line 1 Line 2 Line 3
1.8 1.6 1
N 95% confidence range
161 ® Samples 1.4
"""""" True function
14 Extrapolation 1.2 0.95
3 ’ O Target point 3 . 3
w w w
1
0.9
0.8
0.6
0 0.5 1 0 05 1 1.5 085 05 1
Xlocal XIoca! Xlocal
(a) (b) (c)

Fig. 13 Extrapolation results of drag coefficient function using samples from reduced sampling domain, as shown in

Fig. 14: (a) line 1, (b) line 2, and (¢) line 3
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Extrapolation of F _, using 2D and 1D Kriging
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Fig. 14 Extrapolation results of drag coefficient function using samples from reduced sampling domain, as

shown in Fig. 12: (a) line 1, (b) line 2, and (c) line 3
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Fig. 15 Interpolation results of drag coefficient function: (a) line 1, (b) line 2, and (c) line 3
Table 5 Interpolation results along three lines 5 Conclusion
Line 1 Line 2 Line 3 Th.1s paper presents a rpethod for improving thg accuracy of
function estimation at an inaccessible point by taking advantage
" 0.9408 0.9943 0.9223  of the fact that prediction is needed at only one ppint instead of
o; 0.0146 0.0742 5% 10°¢ everywhere. The proposed method of converging lines transforms

angle between lines. Therefore, the intersection angle between
lines 1, 2, and 3 were fixed to be 45 deg successively. Three lines
rotated counterclockwise gradually from Odeg to 45deg in 20
steps. Twenty sets of 1D interpolation results were then obtained
accordingly. For 2D Kriging, 18 samples are selected in the
sample domain using LHS (5000 iterations maximizing minimum
distance for the following analysis as shown in Fig. 16(a). For a
typical 2D interpolation out of the 20 cases, i.e., corresponding to
the case with median absolute error, the prediction was
N(0.9317,0.0012%). It is not only less accurate than the method of
converging lines but also has a substantial underestimate of the
uncertainty in the prediction in the prediction variance.

Predictions of 1D and 2D Kriging were summarized in
Fig. 16(b). One-dimensional Kriging predictions varied from
0.9223 to 0.9232. Two-dimensional Kriging prediction generated
a median to be 0.9255 and standard deviation equal to 0.0195.
The box plot shows that for some DOEs, the 2D prediction was
grossly inaccurate.

2D Samples(18)

1.8
161 + . 0
+‘|‘ Border
s 147 ++ 0 i
S Target Poirt
120 + Ly 1
+ T +
1 L 1 1 1 L
2 3 4 5
Re(log10)
(a)
Fig. 16

2D and 1D interpolation

Journal of Mechanical Design

a multidimensional prediction into a series of 1D predictions.
Most probable estimation is obtained by combining consistent
predictions from different lines using Bayesian inference while
assuming all the lines are independent.

The one-dimensional prediction was performed using Kriging
surrogate model. Function prediction is only feasible under the
assumption that the function behaves similarly in the sampling
domain and prediction domain. We illustrated its applicability to
high-dimensional functions with two algebraic examples, 8D
Dette function and 100D Styblinski—Tang function. The proposed
approach proved to be more accurate and reliable than multidi-
mensional approximation for 8D Dette function. The proposed
approach enabled moderately accurate estimation of 100D
Styblinski-Tang function with 18 samples. The two examples
also illustrated another advantage of the method, which is an
easy visualization of the fitted surrogate. Finally, the examples
illustrated that combining multiple predictions using Bayesian
inference could increase the chance of obtaining valid estimation.

Next, the method was illustrated for a physical example, extrap-
olation and interpolation of a two-dimensional drag coefficient.
For this example, as well, the method of converging lines proved
to be much more reliable and accurate than 2D Kriging.

Interpolation of ch using 2D and 1D Kriging

H
+ true value=0.9224
0.96 |
0.94 —
Ee)
&
0921
I
I
09} '
i
2D(20 sets) 1D(20 sets)

(b)

Interpolation results using 2D and 1D Kriging: (a) 2D samples and (b) comparison of
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In this paper, we assume that predictions from multiple lines
are independent to apply Bayesian methods. The correlation
among lines exists to some extent especially at the domain close
to the converged target point. Introducing correlation among lines
will be an interesting topic for future work.
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Appendix: Analytical Expressions for Drag Coefficient

The analytic expression for drag coefficient function was cited
from Ref. [29]. The range of applicability for f. is Re < 2 x 10°,
M < 1.75, and Kn < 0.01, where Kn denotes Knudsen number.
Re = 2 x 10 is the subcritical Reynolds number above which the
attached boundary layer becomes turbulent. Attention is limited to
continuum flows, namely, Kn < 0.01. Cp is given in Eq. (A1) for
subcritical (M < M = 0.6), supersonic (1 <M < 1.75), and
intermediate (M., < M < 1) Mach number regimes

CD(RG,M)

M .
[Cpu, (Re) = Cpsa(Re)] o EM <M,

cr

CD,sld (Re) +

CD,sub (RC,M)
CD,sup (RC,M)

if Moy <M< 1.0
if1.0<M<1.75

(AD)
where
—1
24 42500
Cp.sa(Re) = R (14 0.15Re*%%7) 4 0.42 (1 + W) (A2)
or
24 084 483 \ '

Cpu, (Re) = : Z(140.15Re™®) +0.513( 1 + —5 R0

(A3)

= CD,M:I (Re)
+ [Cpm=1.75(Re)

CD,sup (Rev M)
- CDAM:I (Re)} Cfsup (M7 Re)

(Ad)
24 3550 \
Cop=1(Re) = 2 (1 +0.118Re" ™) +0.69 (1 + W)
(A5)
24 861 \
Com=175(Re) = =~ (1 +0.107Re"*) + 0.646 (1 + W)
(A6)
logRe — Cj
ésuP M RB Zﬁ sup . 4Ci_sup — C.Isu P (A7)
/751 : Jsup
j=1
fisup(M) = —2.963 + 4.392M — 1.169M* — 0.027M°
—0.233exp[(1 — M)/0.011] (A8)
Froup(M) = —6.617 + 12.11M — 6.501M> + 1.182M°
—0.174exp [(1 — M)/0.01] (A9)
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Frsup(M) = —5.866 + 11.57TM — 6.665M* + 1.312M>
—0.350exp [(1 — M)/0.012] (A10)
Crap = 6.48;  Cagp =8.93; Cigp = 12.21 (AL1)

CD,sub (Re: M) = CD‘Mu- (Re)

+ [Cp =1 (Re) — Cpuy, (Re)] g (M, Re)

(A12)
10g Re — C; sub
M Re) l D8 B”LE T Ljsub Al3
ésub e wab ey Ci,sub - Cj,sub ( )
j=1

fisn(M) = —1.884 + 8.422M — 13.70M*+8.162M°  (A14)
Frsun(M) = —2.228 4+ 10.35M — 16.96M* + 9.840M°>  (A15)
Frsub(M) = 4.362 — 16.91M + 19.84M* — 6.296M°  (A16)
Clsub = 648, C2,sub = 9287 C3,sub =1221 (A17)
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