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Abstract

A shape design sensitivity analysis (DSA) and the optimization of a three-dimensional (3-D) contact problem is

proposed using a material derivative approach. A penalty-regularized contact variational equation is differentiated with

respect to the shape design parameter. A die shape DSA is also carried out by defining a design velocity field at rigid-

body geometry. The material derivative that is consistent with the frictional return-mapping scheme is derived by using

nonassociative plasticity. A linearized design sensitivity equation is solved without iteration by using a meshfree method

at each converged load step. In order to improve the convergence behavior of the contact problem, a C2-continuous
contact surface is constructed from the scattered set of particles. The accuracy and efficiency of the proposed method is

shown using two-dimensional and 3-D design examples of the DSA and optimization process. � 2002 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Although many engineering applications include contact constraints, slow progress has been made in
design sensitivity analysis (DSA) and optimization, especially as compared to the fast growth in structural
DSA of noncontact problem. This is partly due to the complicated kinematics involved in contact analysis,
and the theoretical depth required in variational inequality. The effect of contact constraint on structural
performance must be taken into account in designing structural components that make contact with other
parts. In the sheet metal stamping process, for example, a die shape design is critical to control workpiece
shape after spring-back, to reduce wrinkling effects, and to remove the phenomena of necking. A die shape
design parameter exerts its influence on structural performance through the contact constraint. In this
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paper, three-dimensional (3-D) contact DSA and optimization are developed by extending previous two-
dimensional (2-D) research results (Kim et al., 2000).
The DSA of a contact problem has been approached from the mathematical perspective, in which the

variational inequality is differentiated to obtain design sensitivity variational inequality. By understanding
the variational inequality as a projection, Mignot (1976) proved that the projection onto the convex cone
(constraint set) is directionally differentiable. Sokolowski and Zolesio (1991) derived a shape sensitivity
formulation for the variational inequality from Mignot’s result. They conclude that the solution to the
variational inequality is directionally differentiable, and its shape sensitivity is a solution to another vari-
ational inequality, which is a projection onto a common convex set of tangential and orthogonal subspaces.
Because there is no mathematical proof for the existence of design sensitivity for nonlinear problems, the

approximated variational equation or finite element matrix equation has been differentiated to accom-
modate many engineering applications. Spivey and Tortorelli (1994) presented a sensitivity formulation of
the nonlinear frictionless contact problem for a beam, and optimized the geometry of the rigid surface.
Antunez and Kleiber (1996) derived a sensitivity formulation of the contact problem using a flow approach
to analyze the structure. Pollock and Noor (1996) developed a nonlinear dynamic sensitivity formulation
using the discrete DSA method by differentiating the finite element matrix equation. Maniatty and Chen
(1996) developed a design sensitivity formulation for the steady state metal-forming process using a semi-
analytical adjoint variable method. Zhao et al. (1997) solved an unconstrained optimization problem to
minimize the difference between the shape of the stamped workpiece and the desired shape. Their sensitivity
equation requires an additional tangent stiffness matrix that is different from the one used in response
analysis. Chung and Hwang (1998) proposed a method for transient forming process optimization. Since a
semi-analytical method is used to compute the sensitivity coefficient, accuracy depends on the size of the
design perturbation. Recently, Zabaras et al. (2000) applied die shape DSA to the 2-D metal-forming
process. However, a general 3-D contact DSA method that includes a large deformation in the elastoplastic
material and complicated frictional behavior is not reported in the literature. In this paper, shape DSA of a
3-D contact problem is developed using the material derivative approach. Instead of the variational in-
equality, a penalty-regularized variational equation is differentiated with respect to the structural shape and
die shape design parameters. The material derivative that is consistent with the frictional return-mapping
scheme is derived.
Discretization of the nonlinear equation and the design sensitivity equation is carried out using the

meshfree method (Liu et al., 1995; Chen et al., 1996), where the structural domain is represented by a set of
particles. The meshfree shape function is obtained from a set of supporting particles around an integration
point to satisfy a reproducing condition, which exactly represents a certain order of polynomials. In
contrast to finite element analysis, the construction of a shape function is independent of the mesh geometry
in the meshfree method. Thus, this method is attractive for both a large deformation problem and a large
shape-changing design problem, in which initially regular mesh can be significantly distorted during
nonlinear analysis and during the shape optimization process. However, since the proposed approach is
based on the continuum method, other discretization methods are easily applicable using the minimum
implementation effort.
A piecewise-linear contact surface causes a significant amount of difficulty in the Newton-type iterative

method because it lacks continuity across the surface boundary. From a computational point of view, a C2-
continuous surface is required to guarantee a continuous contact force across the boundary. A piecewise C3-
continuity is additionally required to provide a valid tangent stiffness matrix at each surface. In the finite
element-based method, however, it is difficult to generate such regular surface patches. In this paper, a
meshfree technique is used to produce a smooth surface from a set of scattered particles whose connectivity
information is not provided in advance (Wang, 2000).
The frictional mechanism is modeled using a nonassociative plasticity (Michalowski and Mroz, 1978).

Since the friction force and the contact location at the previous load step are required to calculate friction
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force at the current load step, the design sensitivity equation is path dependent. The computational cost of
DSA, however, is still very low compared to nonlinear contact analysis where an iterative solution process
is required. Moreover, DSA uses the same tangent stiffness matrix as response analysis, which is already
decomposed during contact analysis; all that is required is a substitution process using different right-hand
side vectors. The computational cost of DSA is about 5–10% that of response analysis, which is shown
using the numerical example of a rubber gasket and metal extrusion problem.
The composition of this paper is as follows. In Section 2, a brief review of nonlinear contact analysis is

presented. Since the purpose is to develop DSA, contact analysis explanations are kept to a minimum. A
design sensitivity formulation is presented in Section 3 using material derivative approach. The contact
sensitivity formulation is further extended in Section 4 when friction exists between contact surfaces. A
smooth contact surface is generated using a meshfree interpolation method in Section 5 to improve con-
vergence behavior of the contact problem. Numerical examples and design optimization results are shown
in Section 6. Accuracy of the proposed sensitivity computation is compared to that using the finite dif-
ference method.

2. Review of the contact analysis

In this section, contact analysis is described in the continuum formulation for a large deformation
problem. The contact problem is defined as a variational inequality, which is equivalent to the minimization
problem with constraints in contact kinematics. For further information on the numerical treatment of
contact constraints, the mathematical programming method (Klarbring, 1986; Kwak, 1991), active set
strategies (Luenberger, 1984), and the sequential quadratic programming method (Barthold and Bischoff,
1988) are available. The active set strategy can be applied in combination with the Lagrange multiplier
method or the penalty method. In this paper, the penalty regularization method is used to approximate the
contact variational inequality.

2.1. Contact kinematics

A brief review of contact analysis is presented to introduce notations that appear in the following DSA
section. Throughout this paper, X represents the undeformed configuration, while x represents the current
configuration. Fig. 1 shows the contact situation between two bodies, represented by X1

x and X2
x . X

1
x is called

a slave body, while X2
x is a master body, although such a distinction is inconsequential in continuum

formulation. Likewise, a part of the boundary C1x in X1
x is called a slave surface, and a part of the boundary

C2x in X2
x is called a master surface. The counterparts of C1x and C2x at the undeformed configuration will be

denoted as C1X and C2X , respectively. Contact constraints are imposed such that the points on C1x cannot
penetrate into C2x . Let the master surface C2x be represented by the two parameters n1 and n2 such that a
surface point xc 2 C2x can be expressed as x

cðn1; n2).
As will be explained in Section 5, it is assumed that the master surface is smooth enough for all required

derivatives to be computed in the parametric domain. Two tangential vectors in the parametric direction on
the master surface are defined as

ea ¼ xc;a; a ¼ 1; 2 ð1Þ

where the subscribed comma denotes a partial derivative with respect to the parametric coordinate, i.e.,
x;a ¼ ox=ona, a ¼ 1, 2. In this paper, Greek letters are used for the index in the direction of the parametric
coordinates. In the case of a 2-D contact problem, a ¼ 1. Note that e1 and e2 are not necessarily orthogonal
to each other, but are tangent to the contact surface. The unit outward normal vector on the master surface
can be obtained using Eq. (1) as
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n ¼ e1 � e2
ke1 � e2k

ð2Þ

One of the most important steps in contact analysis process is locating the contact point in an accurate
and efficient way. The contact point xc 2 C2x corresponding to the slave point x 2 C1x can be found from the
following consistency condition:

ea � ðx� xcÞ ¼ 0; a ¼ 1; 2 ð3Þ
which provides the closest projection point xc of x, and the corresponding parametric coordinates at the
contact point are denoted by ðnc1; n

c
2Þ. For general surface C2x , no explicit form of the solution to Eq. (3) is

available. Finding contact point xc efficiently is very important for a large deformation problem. A local
Newton method can be used to solve nonlinear equation (3) with a close initial estimate.
The gap function is defined by the distance between two contact points as

g ¼ n � ðx� xcÞP 0 ð4Þ
where the inequality constraint represents the impenetrability condition: the slave point cannot penetrate
the slave surface. The violated region of constraint Eq. (4) will be penalized as shown in the following
section.

2.2. Variational formulation and penalty method

The weak formulation of the contact variational inequality (see Kikuchi and Oden (1988)) is to find
displacement field z 2 V , such that

aXðz;w� zÞP ‘Xðw� zÞ 8w 2 V ð5Þ
where aXðz;wÞ is the structural energy form, and ‘XðwÞ is the load linear form. In Eq. (5), V is the constraint
set that satisfies the impenetrability condition in Eq. (4). It is shown by Kikuchi and Oden (1988) that the
inequality in Eq. (5) is equivalent to the constrained minimization problem, which can be approximated
using the Lagrange multiplier or penalty method. In this paper, the penalty method is chosen to approx-
imate Eq. (5), without introducing additional unknowns into the variational equation.
If a region called CcX ð
 C1X Þ exists that violates the impenetrability condition of Eq. (4), then this region

is penalized using a penalty function defined as

Fig. 1. Contact kinematics and design velocities of two bodies.
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P ðx; xcÞ ¼ 1
2
xN

Z
CcX

g2 dC ð6Þ

where xN is the penalty parameter. Let the symbol ‘‘over-bar’’ denote a variation of the quantity such that �zz
represents the displacement variation. The variation of the penalty function in Eq. (6) contains the variation
of the gap function, which can be obtained from its definition as

�gg ¼ n � ð�zz� �zzcÞ � n � �̂zz�zz ð7Þ

where the notations ẑz ¼ z� zc and �̂zz�zz ¼ �zz� �zzc are used for the relative displacement between two contact
points. Note that the variation of the normal vector vanishes because of the orthogonal condition with
vector (z� zc). The variation of the penalty function in Eq. (6) leads to the contact form, defined as

�PP � bN ðz;�zzÞ ¼ xN

Z
CX c

gn � �̂zz�zzdC ð8Þ

From a virtual work point of view, the contact form in Eq. (8) can be understood as the work done by
contact force xNgn during the virtual displacement �zz� �zzc.
By combining Eq. (8) with Eq. (5), the approximated variational equation for penalized contact con-

dition becomes

aXðz;�zzÞ þ bN ðz;�zzÞ ¼ ‘Xð�zzÞ 8�zz 2 Z ð9Þ

Note that, even if a linear constitutive model is used, Eq. (9) is nonlinear because the inequality constraint is
imposed through the penalty method on the deformation field. In Eq. (9),

Z ¼ z 2 ½H 1ðXÞ�3jzðxÞ
n

¼ 0; x 2 Cg

o
ð10Þ

is the space of kinematically admissible displacements, H 1ðXÞ is first-order Sobolev space, and Cg is the
essential boundary where the displacement is prescribed.
Since the purpose of this paper is to develop a contact DSA method, references will be provided for more

detailed discussions of structural aspects. In this paper, an elastoplastic material with a combined isotropic
and kinematic hardening model is used. In order to handle a finite deformation problem, it is assumed that
the deformation gradient is constructed by multiplying elastic and plastic parts (Simo, 1992). Fig. 2
summarizes the structural energy and applied load forms. Since Kirchhoff stress rij is used for the stress
measure, the integration domain of the structural energy form is the undeformed configuration. For
simplicity, only a conservative load is considered in which the applied load is independent of the dis-
placement.

Fig. 2. Structural analysis with elastoplastic constitutive model.
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2.3. Linearization

The nonlinear variational equation (9) can be solved using a Newton iterative method through linea-
rization. The exact tangent operator plays an important role in the convergence rate. Linearization of the
structural energy form depends on the constitutive model, which can be found in the literature (Hughes,
1987; Simo, 1992). Let the linearization of a function f ðxÞ in the direction of Dz be denoted as

L½f � � d

de
f ðxþ eDzÞ

����
e¼0

¼ of
ox

Dz ð11Þ

then, the linearization of aXðz;�zzÞ and bN ðz;�zzÞ becomes

L½aXðz;�zzÞ� ¼ a�Xðz;Dz;�zzÞ ð12Þ

L½bN ðz;�zzÞ� ¼ b�N ðz;Dz;�zzÞ ð13Þ

where Dz is the displacement increment and a�Xðz; �; �Þ is symmetric in its arguments. In case of an elas-
toplastic material, the expression of a�Xðz;Dz;�zzÞ is given in Fig. 2. The expression of b�Nðz;Dz;�zzÞ can be
found in Laursen and Simo (1993), which will be derived in the next section for DSA.
The linearization of the contact variational form in Eq. (13) is combined with that of the structural

energy form in Eq. (12) to set up an incremental system of equations. Let the left superscript n denote the
current configuration time tn, and let the right superscript k denote the current iteration counter. The
linearized incremental equation is

a�Xð
n
zk;Dzkþ1;�zzÞ þ b�N ð

n
zk;Dzkþ1;�zzÞ ¼ ‘Xð�zzÞ � aXðnzk;�zzÞ � bN ðnzk;�zzÞ 8�zz 2 Z ð14Þ

For a given load step, Eq. (14) is solved iteratively until the right side, residual force, vanishes. After
convergence, the decomposed tangent stiffness operator is stored to be used during DSA.

3. Design sensitivity analysis of a contact problem

In this section, a shape sensitivity formulation is developed for the contact variational equation using the
material derivative approach. Even if a structure deforms during the nonlinear response analysis, the
material derivative is always taken at the undeformed configuration. This is the reason to use the total
Lagrangian formulation over the updated Lagrangian formulation in which the current configuration is
considered as a reference frame. The basic formulas for material derivatives in nonlinear analysis can be
found in Choi (1993). In the contact problem, the transformation to the undeformed configuration is
simple, using the relation x ¼ X þ z where x and X are spatial and material coordinates, respectively.

3.1. Material derivative formulas

In shape DSA, a material point X is moved to a new point Xsð¼X þ sVÞ because of design perturbation.
A design velocity field VðXÞ represents the direction of the design perturbation, and s is a scalar parameter
to control the perturbation size (see Fig. 1). Since the contact constraint is related to the current coordinate
of a material point, the following derivatives are required. The material derivative of the structural point
x 2 Xx at the current configuration becomes

d

ds
ðxsÞ

s¼0

���� � d

ds
ðXs þ zsÞ

����
s¼0

¼ VðXÞ þ _zzðXÞ ð15Þ
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The superposed dot (for example, _zz) will be used to denote the material derivative of a function throughout
this paper. On the other hand, the perturbation of the contact point xc on the master surface Ccx can be
obtained by using the chain rule and by perturbing the natural coordinate corresponding to the contact
point in the tangential direction as

d

ds
ðxcsÞ

����
s¼0

¼ Vc þ _zzc þ ea
_nna ð16Þ

where a summation rule is used for the repeated indices. The contact point is perturbed by satisfying the
contact consistency condition, in addition to satisfying its own design velocity fields and displacement
sensitivity.
The material derivatives of the structural energy and applied load forms depend on the constitutive

model used. For a general nonlinear material model that includes elastoplasticity, the material derivative of
the structural energy form can be expressed (Kim et al., 2001) as

d

ds
½aXðzs;�zzsÞ�

����
s¼0

¼ a�Xðz; _zz;�zzÞ þ a0Vðz;�zzÞ ð17Þ

where a�Xðz; _zz;�zzÞ is the same form as the linearized structural energy form defined in Eq. (12) by substituting
Dz into _zz. As its expression is given in Fig. 3, a0Vðz;�zzÞ is called the structural fictitious load form, which is
linear in V and contains all known terms from response analysis and DSA up to the previous load step. The
material derivative of the applied load form is independent of the displacement, when conservative load is
considered, as

d

ds
½‘Xð�zzsÞ�

����
s¼0

¼ ‘0Vð�zzÞ ð18Þ

Fig. 3. Structural DSA formulas (Kim et al., 2001).
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Note that the structural fictitious load form a0Vðz;�zzÞ is path independent for elastic material such that
a0Vðz;�zzÞ requires the results of response analysis at the current load step, and design velocity information at
the undeformed configuration. However, for elastoplastic material, a0Vðz;�zzÞ also requires the sensitivity
results of the plastic variables at the previous load step, which makes DSA path dependent.

3.2. Design sensitivity analysis of a contact problem

Instead of differentiating the variational inequality for contact DSA, the penalty-approximated varia-
tional equation is differentiated with respect to the shape design parameter. In case of the flexible-rigid
contact problem, the shape change of the master surface is equivalent to the die shape design problem.
Thus, a unified design sensitivity formulation can be derived for structural shape and die shape design
problems.
To begin, let the contact surface CcX change its shape due to design perturbation. The contact form of Eq.

(8) depends on the design in two ways: explicitly through the contact surface change and implicitly through
the response z. The material derivative of the contact form can be obtained as

d

ds
½bN ðzs;�zzsÞ�

����
s¼0

¼ xn

Z
CcX

½ _gg�gg þ g _�gg�gg þ g�ggjVn�dC ð19Þ

where j is the curvature of the master surface, and Vn is the normal component of the design velocity. The
purpose of the following derivations is to express _gg and _�gg�gg in terms of _zz and V, and the implicit term _zz is then
obtained in terms of the explicit term V.
From its definition in Eq. (4), the material derivative of the gap function can be obtained as

_gg ¼ n � ð _̂zz_zzþ V̂VÞ ð20Þ
where V̂V ¼ V � Vc. Note that _gg only has a normal component of the variation. The material derivative of �gg,
however, is not straightforward. The outline of the derivation is provided as follows. From its definition in
Eq. (7), it is necessary to differentiate the unit normal vector in Eq. (2) as

d

ds
ns

����
s¼0

¼ �ðn � _eeaÞea ð21Þ

where ea is the dual basis of ea and has the following relation:

ea � eb ¼ dab

ea ¼ m�1
ab eb

ð22Þ

with mab ¼ ea � eb. In Eq. (21),

_eea �
d

ds
ðxc;aÞ

����
s¼0

¼ _zzc;a þ Vc
;a þ xc;ab

_nnb ð23Þ

By using Eqs. (21) and (23), the material derivative of �gg can be expressed as

_�gg�gg ¼ d

ds
½ð�zz� �zzcÞ � n�

����
s¼0

¼ �n � �zzc;a _nna � n � _eea
�nna þ gðn � _eebÞm�1

ab ðn � �eeaÞ ð24Þ

Thus, it is only necessary to calculate the expression of _nna in terms of _zz and V. The expression of _nna can be
obtained by differentiating the consistency condition in Eq. (3) as

d

ds
½ðx� xcÞ � ea�

����
s¼0

¼ 0; a ¼ 1; 2 ð25Þ
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After rearrangement, _nna is expressed in terms of _zz and V as

_nna ¼ A�1
ab ½ _̂zz_zz � eb þ gn � _zzc;b� þ A�1

ab ½V̂V � eb þ gn � Vc
;b� � nað _zzÞ þ naðVÞ ð26Þ

with

Aab ¼ mab � gn � xc;ab ð27Þ

Note that Aab is also the coefficient matrix that appears in the Newton iteration to find the closest contact
point in Eq. (3).
By substituting Eq. (26) into Eq. (24), and by using the expression of Eq. (20), the material derivative of

the contact form can be expressed in terms of _zz and V. Since the objective of DSA is to solve the implicitly
dependent parts in terms of the explicitly dependent parts, the material derivative of the contact form in
Eq. (19) is separated into two parts as

d

ds
½bN ðzs;�zzsÞ�

����
s¼0

� b�N ðz; _zz;�zzÞ þ b0N ðz;�zzÞ ð28Þ

where

b�N ðz; _zz;�zzÞ ¼ xN

Z
CcX

�̂zz�zz � nn � _̂zz_zzdC � xN

Z
CcX

g½n � �zzc;anað _zzÞ þ n � _zzc;a �nna þ n � xc;ab
�nnanbð _zzÞ�dC

þ xN

Z
CcX

g2½ðn � eað _zzÞÞm�1
ab ðn � �eebÞ�dC ð29Þ

is the same as the linearized contact bilinear form used in Eq. (13) by substituting _zz into Dz, and the contact
fictitious load b0Nðz;�zzÞ is defined as

b0N ðz;�zzÞ � b�N ðz;V ;�zzÞ þ xN

Z
CcX

jg�̂zz�zz � nVn dC ð30Þ

Since form b�N ðz; �; �Þ is computed during response analysis, the same process can be used for DSA with
different arguments.
The shape design sensitivity equation is obtained by taking the material derivative of Eq. (9) and by

using the relation in Eqs. (17), (18), and (28) as

a�Xðz; _zz;�zzÞ þ b�N ðz; _zz;�zzÞ ¼ ‘0Vð�zzÞ � a0Vðz;�zzÞ � b0N ðz;�zzÞ 8�zz 2 Z ð31Þ

Note that design sensitivity equation (31) is linear and symmetric with respect to its arguments, and is
solved per each design parameter at a given load step. Each design parameter has a different design velocity
field V. The same system of equations is solved with different right sides. Since the left side of Eq. (31) is the
same as that of Eq. (14) in response analysis, it is very efficient to solve a linear system of equations using an
already factorized matrix. In case of elastic material, the fictitious load on the right side of Eq. (31) depends
on the design velocity V and on the response analysis result z at the last load step. Thus, the design sen-
sitivity equation is solved only at the last converged load step to obtain _zz and very significant efficiency can
be expected in the amount of computational time as compared to incremental nonlinear response analysis.
For the elastoplastic problem, however, such efficiency cannot be expected since the structural fictitious
load is path dependent.
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4. Frictional contact design sensitivity analysis

When friction exists on the contact surface, the structure experiences a tangential traction force, in
addition to the normal contact force in Eq. (8). Since the frictional behavior is complicated, many ideal-
izations have been made. The Coulomb friction law is one of the frequently used methods to describe
frictional behavior. However, this method presents numerical difficulties because of a discontinuity in the
frictional force. A more advanced friction theory assumes that the frictional force elastically increases until
it reaches the limit value, and then the macroscopic slip occurs along the contact surface. This theory
corresponds to the nonassociative flow rule in elastoplasticity. Thus, a similar return-mapping algorithm
can be used to determine the frictional force. In this section, a design sensitivity formulation of this fric-
tional model is developed.

4.1. Friction model

The frictional force appears parallel to the contact surface and is expressed as

f ¼ fae
a ð32Þ

The friction form of the contact problem can then be defined by multiplying the frictional force by the
virtual relative slip (Laursen and Simo, 1993) as

bT ðz;�zzÞ ¼
Z

CcX

fa
�nna dC ð33Þ

The expression of �nna can be obtained by taking the variation of consistency condition in Eq. (3) as

Aab
�nna ¼ �̂zz�zz � eb � gn � �zzc;b ð34Þ

From its definition in Eq. (27), the coefficient matrix Aab contains the second-order derivative of the contact
surface. Thus, the contact surface has to be C2-continuous in order to have a continuous friction force. The
regularity requirement of the contact surface will be discussed in detail in Section 5.
In the regularized frictional model, frictional force fa is calculated by using a return-mapping algorithm

like in elastoplasticity, as shown in Fig. 4. In Fig. 4, the right superscript ‘‘tr’’ denotes the elastic trial status,
and ‘‘n� 1’’ denotes the previous configuration time tn�1. In addition,Mab ¼ Ea � Eb and Ea is the tangential
vector at the undeformed configuration. Initially, the frictional force increases in proportion to the relative
slip amount. This trial frictional force is then compared with the limit value lxNg. If the trial force is
smaller than the limit value, then the trial force becomes the frictional force (stick condition). If the trial
force is greater than the limit value, then the limit value is used for the frictional force (slip condition). Note
that the direction of the frictional force is parallel to the trial force.

Fig. 4. Return-mapping algorithm for the frictional force.
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As with the frictionless contact problem, the nonlinear friction form in Eq. (33) has to be linearized as
part of the implicit solution process. The linearized friction form is denoted by b�T ðz;Dz;�zzÞ, an expression
that is developed in the following section. If the following definitions are made,

bCðz;�zzÞ ¼ bNðz;�zzÞ þ bT ðz;�zzÞ
b�Cðz;Dz;�zzÞ ¼ b�Nðz;Dz;�zzÞ þ b�T ðz;Dz;�zzÞ

ð35Þ

then linearized incremental equation (14) can be extended to the frictional contact problem as

a�Xð
nzk;Dzkþ1;�zzÞ þ b�Cð

nzk;Dzkþ1;�zzÞ ¼ ‘Xð�zzÞ � aXðnzk;�zzÞ � bCðnzk;�zzÞ 8�zz 2 Z ð36Þ
It is shown in the next section that the same left side of Eq. (36) can be used in DSA.

4.2. Design sensitivity formulation of friction form

Unlike the frictionless contact form in Eq. (8), the friction form depends on analysis results at the
previous load step because of the updating algorithm of the frictional force, as explained in Fig. 4. Thus, the
sensitivity equation constitutes three parts: implicitly dependent terms, explicitly dependent terms, and
path-dependent terms. The material derivative of the friction form can be obtained from Eq. (33) as

d

ds
½bT ðz;�zzÞ�

����
s¼0

¼
Z

CcX

ð _ffa
�nna þ fa

_�nn�nna þ jfa
�nnaVnÞdC ð37Þ

As explained in Section 3.2, the last term in Eq. (37) can be calculated from analysis results and design
velocity information. The expression of _�nn�nn can be obtained by differentiating Eq. (34) with respect to the
design parameter as

Aab
_�nn�nna ¼ �ea � �̂zz�zz;b _nnb � ea � ð _̂zz_zz;b þ V̂V;bÞ�nnb � ðea � xc;bc � gn � xc;abcÞ�nnb

_nnc � �nnbeb � _eea � _nnbeb � �eea

þ gn � �̂zz�zz;ab
_nnb þ gn � ð _̂zz_zz;ab þ V̂V;abÞ�nnb þ �̂zz�zz � _eea þ ð _̂zz_zzþ V̂VÞ � �eea ð38Þ

Note that Eq. (38) includes the implicitly dependent ( _zz) and the explicitly dependent term (V). No path-
dependent term exists, and the expression is the same for both stick and slip conditions. Also, note that the
coefficient of the implicit and explicit term is the same, which will be convenient in the sensitivity imple-
mentation stage.
With the stick condition, the traction force increases in proportional to the amount of relative slip

between two contact surfaces. This increase corresponds to the elastic status of elastoplasticity. The ma-
terial derivative of the frictional force contains three contributions as

_ffa ¼ xTUabnbð _zzÞ : implicit
þxTUabnbðVÞ : explicit

þ _ff n�1
a þ xTMabn

n�1
b ð _zzÞ : path-dependent

ð39Þ

where Uab ¼ Mab þMac;bðnc � nn�1
c Þ. Thus, the material derivative of the frictional force depends on sen-

sitivity results at the previous load step, which makes the sensitivity equation path dependent. Again, note
that the expressions of implicit and explicit terms are the same if _zz is replaced by V.
By substituting Eqs. (38) and (39) into Eq. (37), the material derivative of the friction form is explicitly

obtained in terms of, _zz, V, and the path-dependent terms, as

d

ds
½bT ðz;�zzÞ�

����
s¼0

� b�T ðz; _zz;�zzÞ þ b0T ðz;�zzÞ ð40Þ
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where the linearized friction form is defined by collecting all terms that include _zz as

b�T ðz; _zz;�zzÞ ¼
Z

CcX

xTUab
�nnanbð _zzÞ

n
þ fcA�1

ac ½ � ea � �̂zz�zz;bnbð _zzÞ � ea � _̂zz_zz;b �nnb � ðea � xc;bf � gn � xc;abfÞ�nnbnfð _zzÞ

� �nnbeb � eað _zzÞ � nbð _zzÞeb � �eea þ gn � �̂zz�zz;abnbð _zzÞ þ gn � _̂zz_zz;ab
�nnb þ m�1

bf ð�̂zz�zz � ebef � _̂zz_zz;a þ _̂zz_zz � ebef � �̂zz�zz;aÞ

þ �̂zz�zz � nn � eað _zzÞ þ �eea � nn � _̂zz_zz�
o
dC ð41Þ

and the friction fictitious load is obtained by collecting those explicitly dependent terms and path-depen-
dent terms as

b0T ðz;�zzÞ ¼ b�T ðz;V ;�zzÞ þ
Z

CcX

jfa
�nnaVn dC þ

Z
CcX

ð _ff n�1
a

�nna þ xTMab
�nna
_nnn�1
b ÞdC ð42Þ

Note that the last integral represents those path-dependent terms that are obtained from the design sen-
sitivity results at the previous load step tn�1.
With the slip condition, the magnitude of the frictional force is determined from the normal contact

force, while the applied direction is still parallel to the trial force. From the return-mapping algorithm in
Fig. 4, the material derivative of the frictional force for the slip condition can be obtained as

_ffa ¼ lxNpan � ð _̂zz_zzþ V̂VÞ þ lxNg
kf trk ½

_ff tra � papb _ff trb � f tra pap � _eeb� ð43Þ

where _ff tra is exactly the same as in Eq. (39) for the stick condition. By substituting Eqs. (38) and (43) into
Eq. (37), the material derivative of the friction form is obtained. If the implicitly dependent terms are
combined, then the following linearized friction form is defined:

b�T ðz; _zz;�zzÞ ¼ lxN

Z
CcX

n � _̂zz_zzpa
�nna

h
� xT gðdb

a � papbÞUbc
�nnancð _zzÞ=kf trk

i
dC

þ lxN

Z
CcX

gpapb �nnað _̂zz_zz;a � p� xc;ab � pnbð _zzÞÞdC þ
Z

CcX

fcA�1
ac ½�ea � �̂zz�zz;bnbð _zzÞ

� ea � _̂zz_zz;b �nnb � ðea � xc;bf � gn � xc;abfÞ�nnbnfð _zzÞ � �nnbeb � eað _zzÞ � nbð _zzÞeb � �eea þ gn � �̂zz�zz;abnbð _zzÞ
þ gn � _̂zz_zz;ab

�nnb þ m�1
bf ð�̂zz�zz � ebef � _̂zz_zz;a þ _̂zz_zz � ebef � �̂zz�zz;aÞ þ �̂zz�zz � nn � eað _zzÞ þ �eea � nn � _̂zz_zz�dC ð44Þ

In a similar way, the explicitly dependent terms and path-dependent terms are combined to define the
friction fictitious load as

b0T ðz;�zzÞ ¼ b�T ðz;V ;�zzÞ þ
Z

CcX

jfa
�nnaVn dC þ lxN

Z
CcX

g�nnb

kf trk ðd
b
a � papbÞð _ff n�1

a þ xTMac
_nnn�1
c ÞdC ð45Þ

The last integral in Eq. (45) represents the path-dependent terms. It is interesting to note that the form
b�T ðz; _zz;�zzÞ from the stick condition in Eq. (41) is symmetric with respect to its arguments, while b�T ðz; _zz;�zzÞ
from the slip condition in Eq. (44) is not symmetric. This is due to the nonassociative plastic return-
mapping algorithm.
By adding Eqs. (30) and (42) for the stick condition, or Eqs. (30) and (45) for the slip condition, the

following form can be defined:

b0Vðz;�zzÞ ¼ b0N ðz;�zzÞ þ b0T ðz;�zzÞ ð46Þ

Eq. (46) represents the explicitly dependent and the path-dependent terms of the contact condition. As
mentioned before, since the explicitly dependent terms have the same form as the implicitly dependent ones,
b0Vðz;�zzÞ uses the same contact stiffness matrix from contact analysis. Only path-dependent terms need to be
calculated separately.
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By adding the material derivative of the friction form in Eq. (40) to Eq. (31), the design sensitivity
equation for the frictional contact problem is obtained as

a�Xðz; _zz;�zzÞ þ b�Cðz; _zz;�zzÞ ¼ ‘0Vð�zzÞ � a0Vðz;�zzÞ � b0Vðz;�zzÞ 8�zz 2 Z ð47Þ

This design sensitivity equation solves for the material derivative _zz for each design variable. Since the left
side of Eq. (47) is same as the left side of Eq. (36), the design sensitivity equation uses the same stiffness
matrix as response analysis that already has a factorized form. After solving for _zz at load step tn, the path-
dependent terms have to be updated for the next time step. Since path dependency comes from the frictional
force update, the material derivative _ffa in Eq. (39) or in (43) has to be stored. It is unnecessary to store the
material derivative _nna, because Eq. (26) can be used from the calculated _zz. In addition to the frictional effect,
the plastic variables of elastoplasticity are path dependent, and their material derivatives have to be up-
dated accordingly (see Kim et al. (2001)).

5. Smooth contact surface

In the development of continuum-based contact analysis and design sensitivity formulation, it can easily
be seen that the expression of the contact force in Eq. (33) contains the second-order derivative of the
master surface, while the linearized contact form in Eqs. (41) and (44) contains the third-order derivative of
the master surface. Thus, in order to have a continuous contact force as well as a stable Newton method,
the master surface should have at least C2-continuity. If a conventional finite element-based contact surface
representation method is used, discontinuity may occur because it is difficult to impose a C2-continuity
across the element boundary. One remedy for this difficulty is to generate a C2-continuous spline surface
using finite element nodes as control points (Hanssen and Klarbring, 1990). However, this approach re-
quires an n� m regular array of nodes and meshes in order to apply to the 3-D contact surface. Wang
(2000) proposed a method to generate a smooth surface from a scattered set of particles without requiring
mesh connectivity.
In this paper, a smooth master surface is generated by using a meshfree interpolation function. Since

the design sensitivity equation (47) is developed based on the continuum geometry, the same formula-
tion can apply for either a piecewise linear surface or a smooth surface without any modification. The
sensitivity formulation only requires information that is already available from contact analysis. How-
ever, if a discrete design sensitivity formulation is used, then the differentiation of the surface generation
process has to be taken into account, which is not only complicated but strongly depends on the analysis
code.
Fig. 5 shows the process of constructing a smooth surface from a set of scattered particles using a

meshfree shape functionW(n1; n2). At a given slave particle x, an NP number of master particles close to the
slave particle is selected to construct a local surface. These master particles are then projected onto a
parametric plane by using the least-squares method. In the parametric plane, a meshfree interpolation is
carried out using those projected particles. Let ðnI

1; n
I
2Þ, I ¼ 1; . . . ;NP, be the parametric coordinates of

the projected particles. The meshfree shape function can be obtained by imposing the reproducing con-
dition as

WIðn1; n2Þ ¼ HTð0; 0ÞM�1ðn1; n2ÞHðn1 � nI
1; n2 � nI

2ÞUaðn1 � nI
1; n2 � nI

2Þ ð48Þ
where Hðn1; n2Þ is the monomial basis vector and is determined by the order of consistency condition. In
case of the second-order consistency condition, it becomes

Hðn1; n2Þ ¼ ½ 1 n1 n2 n21 n1n2 n22 �
T ð49Þ
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The moment matrix Mðn1; n2Þ in Eq. (48) is defined as

Mðn1; n2Þ ¼
XNP
I¼1

Hðn1 � nI
1; n2 � nI

2ÞH
Tðn1 � nI

1; n2 � nI
2ÞUaðn1 � nI

1; n2 � nI
2Þ ð50Þ

Since matrix inversion is involved in Eq. (48), it is important to note that NP has to be large enough so that
the matrix M�1 is not singular. Finally, the kernel function Uaðn1; n2Þ determines the smoothness of the
shape function Wðn1; n2Þ. Since a minimum of C2-continuity is required for the master surface, the kernel
function can be selected from the C2 cubic B-spline function or from the C1 Gaussian function.
After generating the meshfree shape function in the parametric domain, the physical coordinate and the

tangential vectors of the master surface can be interpolated using

xðn1; n2Þ ¼
XNP
I¼1

WIðn1; n2ÞxI ð51Þ

x;aðn1; n2Þ ¼
XNP
I¼1

dWIðn1; n2Þ
dna

xI ð52Þ

Thus, all geometric variables that appear in previous chapters can be calculated.

6. Numerical examples

In order to show the applicability of the proposed contact analysis and DSA methods, 2-D and 3-D
numerical examples are provided.

6.1. Design optimization of a rubber gasket

An engine gasket is used to prevent oil leakage. The purpose of the design is to determine the shape of
the gasket so that open areas are minimized after installation. Although open areas can be minimized by
increasing the gasket size or by applying a large amount of installation force, such methods can cause stress
concentration, and thus, a short service life.
Fig. 6 shows the initial gasket geometry before installation. Since the engine block is much stiffer than

the rubber gasket, only the gasket is modeled, using a meshfree method with 325 particles; it is assumed
that all other parts are rigid. A Mooney–Rivlin hyperelastic material (Chen et al., 1998) is used with

Fig. 5. Construction of a smooth surface from a set of scattered particles.
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C01 ¼ 80 kPa, C10 ¼ 20 kPa, and bulk modulus k ¼ 104. A constant frictional coefficient l ¼ 0:05 is used
for all contact interfaces. Parametric spline curves are used to represent the gasket boundary, and the
shapes of these curves are defined as design parameters. Nine shape design parameters are defined, as
shown in Fig. 6. In order to maintain the symmetrical shape, four design parameters are linked. A Newton
iterative method is used to solve the nonlinear structural equation with 100 load steps. If the incremental
time step size is determined based on deformation, then the variation of the time step size affects the
sensitivity result, which is important in the explicit time integration method. Since the implicit method is
used in this paper, the time step size is fixed and the effect of time step size does not appear in the sensitivity
expression. DSA is carried out at each converged load step to solve the displacement sensitivity. After it is
solved, the sensitivities of various performance measures are calculated using the chain rule of differenti-
ation. Fig. 7 shows the deformed geometry and the hydrostatic pressure plot of the gasket after installation.
As the gasket deforms, a self-contact occurs in the corner region, where a severe material distortion is
observed. As can be seen in Fig. 7, the open area after installation is denoted by d, which will be minimized
during the design optimization process.
Design optimization of the engine gasket-sealing problem is solved to minimize the open gap after in-

stallation. Since the performance of the gasket is determined by the contact force (FC) and the contact
region between interfaces, design constraints are applied to maintain a minimum of contact force and
contact area. Since the contact region cannot be defined before analysis, a possible contact region is initially

Fig. 7. Meshfree analysis result at the initial design.

Fig. 6. Design parameterization of the gasket.
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defined, and the square sum of the gap (
P
gap2) along the region is then measured as a constraint. In

addition, the maximum value of the von Mises stress (rVM) is considered as a constraint. The design op-
timization problem is defined by

minimize d

subject to jFCjP 300 kNP
gap26 1:0 mm

rVM6 1700 kPa

�0:56 ui 6 0:5

ð53Þ

where the objective function d is the open gap as shown in Fig. 7, and ui, i ¼ 1; . . . ; 9, is the shape design
parameters as shown in Fig. 6.
The analysis results from the initial design are used to determine the reference values of constraints. The

design optimization problem in Eq. (53) is solved using a sequential quadratic programming method in
design optimization tool (Vanderplaats, 1997), and the optimization problem is converged after 13 itera-
tions. Fig. 8 shows the optimum geometry and pressure plots. The open gap in the initial design is sig-
nificantly reduced at the optimum design. It is interesting to note that the initial circular region of the gasket
top changes to an H-shape at the optimum design in order to reduce the concentration of stress, while
increasing the contact region. Fig. 9 shows the history of the cost function. A majority of the open gap is
reduced within four iterations, and the remainder is used to improve constraint violations. Such fast
convergence of the optimization algorithm can be explained by the accurate design sensitivity information.

6.2. Design sensitivity analysis of a metal punch problem

2-D DSA is further extended to a 3-D elastoplastic contact problem, as shown in Fig. 10. In this
problem, the plate thickness and radius of a circular rigid surface are chosen as design parameters. A total
of 558 particles are used in the discretization of the plate, and a total of 308 particles are used to represent
rigid surfaces. The plate is assumed to be an elastoplastic material with the following material properties:
E ¼ 207 GPa, m ¼ 0:29, rY ¼ 167 MPa, H ¼ 772 MPa. A nonlinear meshfree analysis is carried out with 50
load steps, accompanied by DSA. As illustrated in Fig. 11, the whole structure is within the plastic range.
The computational cost of DSA per design parameter is about 8.3% of the response analysis cost, which is
very efficient compared to the finite difference method. The vertical displacement sensitivity results are

Fig. 8. Meshfree analysis result at the optimum design.
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Fig. 9. Cost function history of the gasket problem.

Fig. 10. Analysis model of metal punch problem.

Fig. 11. Deformed shape and plastic strain plot of the punch problem.
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compared with the finite difference results in Table 1, with excellent agreements. In Table 1, column w is the
value of the performance measure (vertical displacement), column Dw is the finite difference result with the
perturbation size Ds ¼ 10�6, w0 Ds is the first-order approximation using the proposed sensitivity results,
and the last column is the ratio between the finite difference and the proposed method.

6.3. Design of an extrusion problem

A design optimization of the extrusion problem is considered in order to improve the product quality
and to reduce the processing cost. Product quality is related to the final product shape and the regularity of
the product’s mechanical properties. The processing cost is related to the process control force, deformation
work, or deformation efficiency. In addition, process limits have to be considered in the design stage, such
as the maximum contact stress level that will result in die failure and punch buckling.
In this example, a forward solid extrusion problem, as illustrated in Fig. 12, is considered. In dis-

placement-driven nonlinear analysis, the vertical displacement of the billet’s upper surface is controlled to
push it down. Then, the reaction force on the billet’s top surface is measured as the process control force.
Because of the symmetry, a quarter model is used with the symmetric boundary conditions. The ratio of the
area reduction is 2.65, and the initial die angle is 30�. The whole die surface is modeled with a 612 number

Table 1

Accuracy of design sensitivity results

Design Performance w Dw w0 Ds Dw=w0 Ds � 100
u1 z344 �7.66403 �8.74269E� 7 �8.74284E� 7 100.00

z331 �7.11372 �8.70281E� 7 �8.70297E� 7 100.00

z319 �6.46946 �8.41994E� 7 �8.42008E� 7 100.00

z307 �5.78084 �7.79330E� 7 �7.79347E� 7 100.00

z295 �5.07427 �6.83249E� 7 �6.83270E� 7 100.00

z283 �4.36168 �5.64229E� 7 �5.64249E� 7 100.00

z271 �3.64779 �4.38470E� 7 �4.38491E� 7 100.00

z259 �2.93541 �3.23620E� 7 �3.23641E� 7 99.99

z286 �4.33574 �5.13241E� 7 �5.13267E� 7 100.00

z312 �5.77780 �7.17279E� 7 �7.17305E� 7 100.00

u2 z344 �7.66403 1.01763E� 6 1.01722E� 6 100.04

z331 �7.11372 9.93909E� 7 9.93374E� 7 100.05

z319 �6.46946 9.34760E� 7 9.34128E� 7 100.07

z307 �5.78084 8.48858E� 7 8.48161E� 7 100.08

z295 �5.07427 7.46921E� 7 7.46197E� 7 100.10

z283 �4.36168 6.36105E� 7 6.35389E� 7 100.11

z271 �3.64779 5.21189E� 7 5.20510E� 7 100.13

z259 �2.93541 4.05932E� 7 4.05317E� 7 100.15

z286 �4.33574 6.24759E� 7 6.23955E� 7 100.13

z312 �5.77780 8.39500E� 7 8.38630E� 7 100.10

u3 z344 �7.66403 �1.73855E� 7 �1.73653E� 7 100.12

z331 �7.11372 �3.13213E� 7 �3.12915E� 7 100.10

z319 �6.46946 �5.02555E� 7 �5.02153E� 7 100.08

z307 �5.78084 �7.15329E� 7 �7.14828E� 7 100.07

z295 �5.07427 �9.30001E� 7 �9.29415E� 7 100.06

z283 �4.36168 �1.13062E� 6 �1.12997E� 6 100.06

z271 �3.64779 �1.30268E� 6 �1.30198E� 6 100.05

z259 �2.93541 �1.43077E� 6 �1.43006E� 6 100.05

z286 �4.33574 �1.46946E� 6 �1.46873E� 6 100.05

z312 �5.77780 �1.28150E� 6 �1.28086E� 6 100.05
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of particles, and a smooth contact surface is locally generated based on the meshfree approximation
method in Eq. (51). A contact constraint is imposed between the billet’s outer surface and the extrusion die
surface with the frictional coefficient of l ¼ 0:05.
Fig. 13 shows the deformation history and the effective plastic strain at the final configuration. The

maximum effective plastic strain appears at the outer surface of the billet with the magnitude of 2.68. The
initial billet length of 0.6 m is extended to 1.6583 m at the final configuration, which corresponds to 276%
extension. This extension ratio conforms to the area reduction ratio 2.65 and the maximum plastic strain
2.68.
Since the extrusion process generates the desired final shape from a circular billet, design parameters are

mostly limited to the extrusion die shape and the material property. The material property design pa-
rameter can be considered since it is possible to adjust the material property by changing the process
temperature. In addition, the frictional coefficient can be considered as a design parameter. In this example,
the die shape represents the die depth, the die angle, and dead zone fillet radius. As illustrated in Fig. 12,
three design parameters are defined on the circular die. As explained in Section 3, the design velocity field
that corresponds to the design parameter must be defined on the extrusion die surface. Fig. 14 shows the
vector plots of three design parameters. As design changes, particle points on the die surface will move in
the direction of the design velocity vector.
DSA is carried out using the design velocity fields defined in Fig. 14. The process work and the maximum

plastic strain are chosen as performance measures. The computational cost of DSA is about 10% of the
response analysis cost per design parameter. Table 2 shows the design sensitivity of the process force and
the maximum effective plastic strain. The design parameter u1 contributes to the process force the most
significantly, while the design parameters u2 and u3 contribute to the effective plastic strain.
Since the design parameter u1 (the die angle) contributes the most to the process work, a new updated

design is generated by reducing the die angle to 27�, which is a 10% reduction from the initial design. Fig. 15

Fig. 12. Design parameters for the circular–circular extrusion problem.
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Fig. 14. Design velocity fields: (a) u1, (b) u2, (c) u3.

Fig. 13. Deformation history and effective plastic strain of the extrusion problem.

Table 2

Relative design sensitivity results for the extrusion problem

Design parameter Process work sensitivity Plastic strain sensitivity

u1 �5.50E� 3 �5.32E� 2
u2 6.60E� 4 �6.24E� 3
u3 �6.65E� 5 �1.10E� 4
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shows the normalized extrusion process forces at the initial and new designs. The area covered by the
process force is the process work. As expected from the design sensitivity results, the process work is re-
duced by 4.5% for the new design.

7. Conclusion

A DSA and optimization procedure for the contact problem is proposed using the material derivative
approach. Since the explicitly dependent terms have the same expression that appears in the linearization
process, the matrix information from contact analysis is readily used for the design sensitivity purposes.
However, the path-dependent terms must be derived separately when the friction exists between contact
interfaces. Since the continuum-based formulation is used, the differentiation of the complicated smooth
surface construction process was unnecessary, and virtually any surface construction method is applicable
without modification of the formulation. The accuracy and efficiency of sensitivity information is compared
with finite difference results with excellent agreement.
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