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Sensitivity-Based Parameter
Calibration and Model
Validation Under Model Error
In calibrating model parameters, it is important to include the model discrepancy term in
order to capture missing physics in simulation, which can result from numerical, mea-
surement, and modeling errors. Ignoring the discrepancy may lead to biased calibration
parameters and predictions, even with an increasing number of observations. In this
paper, a simple yet efficient calibration method is proposed based on sensitivity informa-
tion when the simulation model has a model error and/or numerical error but only a
small number of observations are available. The sensitivity-based calibration method
captures the trend of observation data by matching the slope of simulation predictions
and observations at different designs and then utilizing a constant value to compensate
for the model discrepancy. The sensitivity-based calibration is compared with the conven-
tional least squares calibration method and Bayesian calibration method in terms of
parameter estimation and model prediction accuracies. A cantilever beam example, as
well as a honeycomb tube crush example, is used to illustrate the calibration process of
these three methods. It turned out that the sensitivity-based method has a similar
performance with the Bayesian calibration method and performs much better than the
conventional method in parameter estimation and prediction accuracy.
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1 Introduction

In engineering simulation, parameter calibration and model val-
idation have been extensively studied to achieve an accurate
parameter and prediction of computational models. In particular,
when the model parameters cannot be measured directly, simula-
tion models are used to calibrate model parameters by comparing
with experimental observations. For conventional calibration
method using least squares, model parameters were determined by
minimizing the error between simulation results and experimental
observations, which is still widely used in engineering applica-
tions. In this regard, optimization methods, such as genetic algo-
rithms [1,2], particle swarm optimization [3], sensitivity method
[4], and tabu search method [5], were used for the purpose of cali-
bration, where the goal was to match model predictions with
measurements.

However, when the simulation has a model error and/or numer-
ical error, matching experimental data with simulation results may

lead to biased calibration parameters and predictions. That is,
when the simulation is not accurate, calibration may lead to wrong
parameters during the matching process. Based on this biased
parameters, the simulation results may agree well with the experi-
mental data at the training points, but may have large errors at the
validation points. Loeppky et al. [6] pointed out that the accurate
value of the parameters could only be obtained when the model
discrepancy is included in the calibration process. For this reason,
a discrepancy term needs to be introduced to capture the missing
physics in the simulation model and obtain the accurate calibra-
tion parameters.

Many studies [7] focused only on improving the prediction
capability, but not on the accuracy of the identified model parame-
ters. However, it is important to accurately identify the model
parameters for many reasons [8]: (1) the calibrated parameters
may need to be applied to other simulations or higher level (sys-
tem-level) simulations; (2) the calibrated parameters can be used
as an important design criterion but they cannot be measured
directly; and (3) the accurate parameters can help to improve the
prediction capability over a broad range of design. Therefore, in
this paper, both prediction accuracy and parameter estimation
accuracy are evaluated as two important performances for calibra-
tion methods.
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The current state-of-the-art calibration and validation proce-
dures are mostly based on statistical approaches using the Bayes-
ian method. For example, Kennedy and O’Hagan [7] proposed a
Bayesian calibration framework to include various sources of
uncertainty and demonstrated that the bias and overfitting in the
estimation of physical parameters can be avoided or mitigated by
introducing a discrepancy function. However, in this framework,
the Markov chain Monte Carlo was commonly used to obtain the
posterior distributions and requires a significant amount of itera-
tions. Han et al. [9] introduced a statistical methodology simulta-
neously to determine both tuning and calibration parameters
based on the Bayesian method. Higdon et al. [10] developed a full
Bayesian calibration method for the model with multivariate out-
puts. Mahadevan et al. [11,12] discussed the effect of different
model discrepancies in the Bayesian method and demonstrated
the effectiveness of a discrepancy function on the calibration
results. However, statistical methods require insightful under-
standings of the statistical theory and intensive computer imple-
mentation, which is not an easy task for industrial practitioners.
Besides, these methods often demand a large number of test/
simulation data to evaluate statistical distributions.

In this paper, we propose a sensitivity-based calibration
method, which is simple enough for industrial practitioners.
Instead of using the statistical concept, sensitivity information
was utilized to calibrate the parameters, and a simple form of dis-
crepancy function is used to compensate for measurement error,
model error, and/or numerical error. When a limited number of
observations are available, a constant discrepancy function was
utilized to represent the missing physics between the simulation
predictions and observations. Even if the assumption of a constant
discrepancy might be limited, the performance is much better than
the conventional method and it might be the only choice when the
number of test data is small. The calibrated parameters and model
predictions obtained from the proposed sensitivity-based method
were compared with that of the conventional calibration method
using least squares and the Bayesian calibration method by using
an analytical cantilever beam example and a honeycomb crushing
example.

The remainder of this paper is organized as follows: Section 2
introduces the three calibration approaches: the conventional least
squares, sensitivity-based and Bayesian calibration approaches.
An analytical cantilever beam example is used in Sec. 3 to
compare the performance of three methods along with the detailed
characteristics of the proposed sensitivity-based calibration
method. Section 4 applies the proposed method to engineering
application on crush simulation of honeycomb tube, followed by
conclusions in Sec. 5.

2 Calibration Methods Under Model Error

In the following discussions, two types of variables will be
used, namely, design variable and calibration parameter. Design
variables are user-controllable variables of the model, such as
thickness, width, and length. Their values can be easily changed
for optimizing the performance of a structure/system. In other
words, they can be “designed.” Both the model response and
experimental data depend on them. The calibration parameters are
the parameters that are used in the simulation but cannot be meas-
ured easily or directly in the physical tests. For the honeycomb
crush example discussed in Sec. 4, the cell size c and thickness t
are the design variables d that need to be optimized to improve
the crashworthiness of honeycomb structures. When these two
variables change, both the test results and simulation results will
change. The yield stress is an unknown material parameter that
only presents in the simulation model and needs to be calibrated.
In this case, the yield stress is the calibration parameters. The user
wants to determine the calibration parameters such that the model
prediction is consistent with experimental data.

As shown in Fig. 1, for a design problem with design variables
d and calibration parameters h, the numerical response is

represented as ypre(d, h) and the experimental observation as
ytest(d). Only one design variable case was shown in Fig. 1; thus,
vector d can be represented by d. The simulation results can vary
with different calibration parameters h (such as material proper-
ties, boundary condition, etc.). The experimental observations
were divided into two groups (see Fig. 1): training points for cali-
brating parameters and validation points for checking the predic-
tion accuracy of the calibrated models. In addition, the
relationship between simulation results and corresponding experi-
mental results can be established as

ytrueðdÞ ¼ ytestðdÞ þ etest ¼ ypreðd; hÞ þ emodel þ enum (1)

where etest, emodel, and enum are the measurement error, modeling
error, and numerical error, respectively. In this study, only the
biased part for the above-mentioned errors are considered by
introducing a discrepancy function. The proposed method ignores
the random part of measurement error, whose effect can be
reduced by taking an average of multiple measurements.

The objectives for the conventional least squares, sensitivity-
based and Bayesian calibration methods are different and the
details are described in Secs. 2.1–2.3.

2.1 Conventional Calibration Method Using Least
Squares. The conventional calibration method obtained the cali-
bration parameter h by directly matching the simulation predic-
tions with the observations without considering the discrepancy
(etest, emodel, and enum) between them, which can be formulated by

ytestðdÞ ¼ ypreðd; hÞ þ e (2)

where e is the residual between the calibrated simulation results
ypre and the experimental observations ytest. The residual may
include the model error, measurement bias, and numerical error.
When two or more observations were used, the parameters were
calibrated by minimizing the sum of squared errors [13], given as

min
XN

i¼1

wi½ytest;iðdÞ � ypre;iðd; hÞ�2 (3)

where wi denotes the weight for ith experimental observation,
which can be chosen based on the quality of or the importance
level of the experimental data. In this study, we assume an equal
weight for all observations. N is the number of observations used
as training points.

After solving for the optimal parameter h� from Eq. (3), it can
be used to predict the results at untested designs ypre(d, h�). How-
ever, the parameter h� may cause a large error (as shown in
Fig. 1) at other designs, such as at d2. It should be noted that when
the simulation has a model error, using many data may not

Fig. 1 Schematic of model calibration and model validation
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improve the calibration accuracy, which will be shown in the
numerical example section.

2.2 Sensitivity-Based Calibration Method. The sensitivity-
based calibration method starts from the fact that the simulation
model has an error due to the modeling error and/or numerical
error. In general, we do not know the form of model error, but the
results show that at least we need to consider its presence in the
calibration process, even if it is in the simplest form of constant
function. Indeed, we consider the bias part of the numerical error,
modeling error, and measurement error by using a constant dis-
crepancy function, namely, the sum of emodel, enum, and �etest.
Even if the true model error is not constant, the assumption of
constant model error in the proposed method yields better calibra-
tion results than the conventional method as illustrated by the fol-
lowing two examples. Therefore, Eq. (1) can be rewritten as

ytestðdÞ ¼ ypreðd; h�Þ þ emodel þ enum � etest ¼ ypreðd; h�Þ þ d (4)

However, when more test observations are available, the con-
stant assumption can be removed by introducing a linear or high-
order discrepancy function as

dðdÞ ¼ C0 þ C1d1 þ C2d2 þ � � � (5)

where Ci is the ith order coefficient for the discrepancy function.
When a high-order polynomial function is selected as the discrep-
ancy function, there are more coefficients to be estimated in the
calibration process, which needs more observations. However,
this study focuses on the case with limited (2–3) observations,
which is much common in real-life engineering application, so the
complex discrepancy function may lead to overfitting and is
beyond the scope of this study.

As shown in Eq. (6), the effect of the model error is removed in
the proposed calibration process. Once the calibration parameters
are found, the effect of model error in the form of discrepancy on
model predictions can be considered based on Eq. (7). Instead of
directly matching with experiment, the sensitivity-based calibra-
tion method tries to match the slope (i.e., sensitivity) between the
nearby two observation data. As shown in Fig. 2, the parameter h1

from the conventional method can match the experimental value
at d1, but it failed to capture the trend and obtained a biased
parameter and prediction at other design values, such as d2. On
the other hand, parameter h� from the sensitivity-based calibration
method failed to match the experimental value, but it captured the
trend of the true function and was considered as the calibrated
parameters.

The objective of sensitivity-based calibration method is to mini-
mize the difference between the slope of test data and simulation
model data, given as

min
h

XN

i¼1

½fytest;iðdÞ � ytest;iþ1ðdÞg � fypre;iðd; hÞ � ypre;iþ1ðd; hÞg�2

(6)

This method requires at least two data points and assumes that
the constant value is utilized to consider the discrepancy. When
the true discrepancy is not constant, this method can average
out the effect of the discrepancy, which still can mitigate the error
due to the discrepancy. In the analytical example, it will be shown
that the constant discrepancy assumption significantly improves
the parameter calibration as well as model prediction.

After calibrating parameters h� by solving Eq. (6), the discrep-
ancy term d is determined by minimizing the error between test
data and model prediction with discrepancy as

min
d

XN

i¼1

½ytest;iðdÞ � ypre;iðd; h�Þ � d�2 (7)

When many data are available, it is possible to use a more com-
plicated form of discrepancy in Eq. (7). However, requiring more
data is against the main purpose of this paper. The advantage of
the proposed method is to improve the estimation of model
parameters and predictions at untested points with a small number
of test data.

2.3 Bayesian Calibration Framework. Most widely used
Bayesian calibration framework was introduced by Kennedy and
O’Hagan [7]. The Bayesian calibration framework predicts the
true behavior based on experiment data while it calibrates parame-
ters to make the prediction most likely to represent experiment
results.

Bayesian calibration makes prediction through a Gaussian pro-
cess (GP) model of the true behavior based on two GP models—
simulation model and discrepancy function GP models—as

ytrueðdÞ ¼ ypreðd; hÞ þ dðdÞ (8)

The simulation GP, ypreðd; hÞ, is to model simulation behavior
in terms of design d and unknown calibration parameters h; and
the discrepancy GP, dðdÞ, models the error in the calibrated simu-
lation behavior. ytrueðdÞ is a GP model of the true response.

The Bayesian framework makes a prediction by updating the
true response GP with simulation and experiment data sets. The
mean of the posterior distribution is commonly used as a predic-
tor, which is expressed as

ŷtrueðdÞ ¼ E½ytrueðdÞjytest; ypre� (9)

The variance of the posterior distribution is the prediction
uncertainty measure of the Bayesian calibration. However, it is
impractical for finding the calibration parameter and hyperpara-
meters simultaneously. This is because this Bayesian calibration
framework [7] calibrates parameters by maximizing the likelihood
of simulation with other hyperparameters. Therefore, the correla-
tion between parameters can lead to inaccurate calibration.
Detailed description about the Bayesian calibration framework is
given in Appendix.

3 Cantilever Beam Example

In this section, the proposed calibration methods will be dem-
onstrated using a cantilever beam example. It is assumed that
the Timoshenko beam model represents the true model, while the
Euler beam model is the outcome of the simulation. From the
assumption of zero measurement error, the experimental observa-
tion is the same as the true model.

In this example, the tip deflection of the beam is selected as the
quantity of interest and the height of beam h as the designFig. 2 Illustration of sensitivity-based calibration method
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variable. As shown in Fig. 3, the length L and width b of the beam
are 20 mm and 2 mm, respectively. The concentrated force F
loaded at the tip is 600 N. The beam also has the Poisson’s ratio
t¼ 0.36 and Young’s modulus E0¼ 68,000 MPa. The Young’s
modulus E is considered as a calibration parameter in the simula-
tion model. That means the test data are generated by using the
true Young’s modulus from the Timoshenko beam theory. The
objective is to find the true Young’s modulus and the tip deflec-
tion at different designs using the Euler beam model.

According to the Euler–Bernoulli theory, the tip deflection
obtained from the simulation ypre(h,E) can be given as [14]

ypre h;Eð Þ ¼ 4FL3

Ebh3
(10)

On the other hand, the Timoshenko beam theory takes into
account both shear and bending effects, thus making it more accu-
rate than the Euler–Bernoulli theory. The true model results are
generated using the Timoshenko beam model as [15,16]

ytest hð Þ ¼ 4FL3

Ebh3
þ FL 4þ 5tð Þ

2Ebh
(11)

By comparing the two models, one can see that the second term
in Eq. (11) corresponds to the discrepancy, which varies as a func-
tion of h. Therefore, the model error is proportional to the inverse
of design, while we will use a constant model error in the pro-
posed calibration process.

Figure 4 compares the results of the true model (black solid
curve) and the simulation model (blue dashed dot curve).

3.1 Case I: Conventional Least Squares Calibration Based
on One Data Point (h1 5 8). For the purpose of comparison, the
conventional calibration methods with least squares using one
experimental data point are performed at design h¼ 8.0 mm. In

the conventional calibration method, the parameter can be identi-
fied by matching the model prediction with experimental data at
the point, as

ytestðhÞ ¼ ypreðh;EÞ (12)

With a training point given at h¼ 8.0 mm, Young’s modulus
is calculated as E¼ 60,932 MPa. Therefore, the relative error
between the calibrated and true parameter is 10.4%. Figure 4
shows the prediction of the model with the calibrated parameter.
As expected, the prediction is accurate at the training point
(h¼ 8.0 mm), but the error gradually increases as the distance
increases from the current design. This happens because the
model includes a model error in addition to unidentified calibra-
tion parameter.

3.2 Case II: Calibration Based on Two Data Points
(h1 5 8, h2 5 10)

3.2.1 Conventional Calibration Methods Using Least
Squares. When two data points (h¼ 8 and 10 mm) are available,
it may be impossible to match predictions and test data simultane-
ously at these two points unless the model form is perfect. In this
case, the residuals between predictions and test data are mini-
mized using optimization as

min
X2

i¼1

½ytestðhiÞ � ypreðhi;EÞ�2 (13)

When two data points are used, the optimum parameter turns
out to be E¼ 60,200 MPa, which is about 11.5% relative error.
Therefore, using two data points did not improve the calibration
results.

3.2.2 Sensitivity-Based Calibration Method. In the case of the
sensitivity-based calibration method, the unknown parameter is
determined by matching the difference between two data points,
followed by identifying the constant value of discrepancy term.

By utilizing Eq. (6) at h1¼ 8 and h2 ¼10 mm, the parameter is
calibrated as E¼ 64,914 MPa, which corresponds to 4.5% relative
error. Then, the constant discrepancy d was obtained by substitut-
ing the E¼ 64,914 into Eq. (7), to yield d¼ 0.0189.

As can be seen from Eq. (11), the discrepancy function is not
constant. The error in parameter calibration is due to the assump-
tion that the discrepancy is constant. If an accurate form of the
discrepancy is used, it is possible that the sensitivity-based cali-
bration method can identify the exact Young’s modulus, but in
general, it is impossible to know the form of discrepancy function.
However, the relative error of 4.5% in the calibration parameter is
much better than 11.5% of the conventional least squares method.

Figure 5 compares the performance of sensitivity-based calibra-
tion method with that of the conventional least squares method. It
was observed that the sensitivity-based method can capture the
trend of the model accurately before introducing the discrepancy
term (blue dashed curve). With the constant discrepancy term, this
method can predict the true model more accurately than the con-
ventional least squares method (red dashed curve).

3.2.3 Bayesian Calibration Method. The process of the
Bayesian calibration method is composed of hyperparameter and
calibration parameter estimations and it is achieved by three steps:

(1) Estimate hyperparameters of ypreðh; hÞ. Instead of directly
using the simulation model in Eq. (10), Bayesian calibra-
tion method builds an approximation function using the GP
model to represent the simulation responses [17] in terms
of design variable h and calibration parameter h. In this
case, a quadratic trend function was used for the simulation
model with 24 sampling points in the design space

Fig. 4 Comparison of the results of the true model and the
conventional calibration methods using least squares based on
one training point

Fig. 3 Cantilever beam model
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58;000 � h � 68;000 and 7 � h � 13 by utilizing Latin
hypercube sampling method.

(2) Estimate hyperparameters of discrepancy function d(h). A
constant trend function is used for the discrepancy function
GP model. Since two test data are available, the difference
between simulation responses and test results are used as
the samples to fit the discrepancy function model.

(3) Estimate calibration parameter h. The calibration parameter
h of E ¼ 64,911 MPa is estimated based on the previously
estimated hyperparameters.

Note that the relative error in the calibration parameter is about
4.5%, which is similar to that of the sensitivity-based method. As
shown in Fig. 6, the prediction result from the Bayesian method
(red cross marks) was also similar to that from the sensitivity-
based method. It is interesting to notice that the Bayesian method
can estimate comparatively accurate parameters with several
hyperparameters in the Gaussian model even with two observa-
tions. This may be because that these hyperparameters are corre-
lated with each other. It indicated that if the calibration
parameters are correlated with each other, it is still possible to
estimate their values even when the number of observations is less
than the number of calibration parameters.

3.3 Case III: Calibration Based on More Than Two Data
Points. An important observation in calibration under model error
is that adding more data may not improve the calibration and

prediction accuracy. This is related to the lack of knowledge of
the model. To study the effect of the number of data on the cali-
bration and validation accuracy, the same procedure in Sec. 3.2
can be applied when three (h1¼ 8, h2¼ 10, h3¼ 12), four
(h1¼ 8, h2¼ 9, h3¼ 10, h4¼ 12), and five (h1¼ 8, h2¼ 9,
h3¼ 10, h4¼ 11, h5¼ 12) training points are available. Figure 7
shows the results for all the methods. It was observed that for
the conventional and sensitivity-based methods, using more data
cannot improve much of the parameter and prediction accuracy
because a constant discrepancy function is used. This can be fur-
ther improved if a better knowledge of model error is available.
Of course, the discrepancy that is more complicated requires more
test data. For example, if a true discrepancy form is used, it could
calibrate to the exact E¼ 68,000 MPa with a perfect prediction.
For the Bayesian calibration method, however, the calibration
and validation results can be slightly improved by using more
observation data.

3.4 Case VI: Calibration Two Parameters Based on Three
Observations. To demonstrate the performance of sensitivity-
based calibration when multiple parameters need to be calibrated,
the cantilever beam example is extended to two calibration param-
eter cases (h¼ {E, L}). In this case, three observations were used
as the training points (h¼ 8, 10, 12 mm) and one observation as
the validation point (h¼ 13 mm). As shown in Table 1, it was
observed that sensitivity-based calibration method generally out-
performs the conventional least-square calibration method and has
a similar accuracy with the Bayesian method.

4 Honeycomb Tube Example

4.1 Problem Description. The honeycomb structure is one of
the commonly used cellular structures in engineering applications.
For the purpose of lightweight in automotive applications, a very
thin plate is often used, which is difficult to measure the accurate
material parameters from specimen tests. In this study, the quasi-
static crush experiments of aluminum honeycomb tubes were used
to calibrate its material properties.

Three cylindrical honeycomb tubes are used in this paper with
different combinations of cell sizes c and thicknesses t (see
Fig. 9). As shown in Fig. 8, C3T8 represents the tube with a cell
size of 3 mm and thickness of 0.08 mm. The other two cross-
sectional configurations are C3T7 (c¼ 3 mm, t¼ 0.07 mm) and
C6T5 (c¼ 6 mm, t¼ 0.05 mm). The cross-sectional diameters of
these tubes are 57.35 mm and their lengths are 150 mm. Under the
assumption that the discrepancy between test result and simulation
result is independent of design variable, it should be noted that
sensitivity-based method could be applied to a high-dimension

Fig. 6 Comparison of the results of sensitivity-based and
Bayesian calibration methods based on two training points

Fig. 7 Comparison of the calibration and validation error
based on more observation data

Fig. 5 Comparison of the results of true model, conventional
least squares and sensitivity-based calibration methods based
on two training points
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design problem. To calibrate parameters, at least two test data are
needed even for the high-dimension problem.

4.2 Finite Element Modeling. The crushing behavior of the
above-mentioned honeycomb tubes was simulated by the com-
mercial finite element analysis code LS-DYNA. As shown in
Fig. 9, the finite element model is composed of the honeycomb
tubes with different cross-sectional configurations, the striker, and
the base. The striker with a mass of 600 kg moves down from the
top of the tube with a constant velocity of v¼ 1 m/s to simulate
the quasi-static load. The base fully constrains the bottom end of
the tube. The Belytschko-Lin-Tsay shell elements with five inte-
gration points through the thick were used to model the honey-
comb tubes. To avoid volumetric locking, the reduced integration
technique was utilized with hourglass control to suppress spurious
zero-energy deformation modes. Based on a mesh convergence
study, the mesh size of 0.5 mm was selected for the tube. The
interfaces between the tube and striker as well as between the tube
and rigid base were simulated with “automatic node to surface”

algorithm. To avoid interpenetration during crushing, “automatic
single surface” contact was employed to simulate the contacts
between the tubes. The friction coefficient of 0.15 was selected
for the Coulomb friction model for all the contact surfaces [18].

An elastoplastic material model (MAT3) in LS-DYNA
was used for Aluminum 3003-H18 as the honeycomb tubes go
through high plasticity [19]. The mechanical properties are:
density¼ 2700 kg/m3, Poisson’s ratio¼ 0.33, Young’s modulus
¼ 68 GPa, and initial yield stress ry¼ 185 MPa [20–22]. Since the
yield stress has a significant effect on the energy absorption capa-
bility, it was selected as the calibration parameter.

4.3 Axial Crush Tests for Honeycomb Tubes. As shown in
Fig. 10(a), nine honeycomb tubes (repeating three times for each
design point C6T5, C3T7 and C3T8) were prepared for the crush-
ing test. The wire cut using electrical discharge machining process
was utilized to cut the honeycomb block into a cylinder tube with
a precision of 20 lm. The material of the specimens was the same
as the simulation model, namely, Aluminum 3003-H18. The
specimens also have the same geometry of the simulation model.

Table 1 Calibration and validation results for two calibration parameters case with three observations

Calibration parameters Validation (h¼ 13)

E (MPa) Relative error (%) L (mm) Relative error (%) Vtip (mm) Relative error (%)

True value 68,000 20 0.08394
Conventional method 53,770 20.93 19.31 3.46 0.07313 12.88
Sensitivity-based method 66,667 1.96 18.62 6.92 0.08504 �1.31
Bayesian calibration 66,691 1.92 20.19 �0.95 0.08495 �1.20

Fig. 9 Honeycomb tube structure under axial load

Fig. 8 Cross-sectional configurations of honeycomb tubes

Fig. 10 Experiment of the honeycomb tubes: (a) specimen and
(b) test machine
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The axial quasi-static test for the three honeycomb tubes was
conducted by using the MTS 322 testing machine with 100 kN
capacity (Fig. 10(b)). Figure 11 plots the load–displacement
curves for three honeycomb designs. It was observed that the reac-
tion force increases with the increase of thickness and decreases
with the increase of cell length. All of the honeycomb tubes
deformed in a stable progressive buckling mode. The force
increases rapidly in the initial stage and then oscillates during the
crush. The energy absorption capacity is mainly affected by the
oscillating region, which is closely related to the average force
(Favg). Therefore, the average force is selected as the performance

criterion to evaluate the crashworthiness performance of the hon-
eycomb tubes.

4.4 Calibration and Validation Results Analysis and
Discussion. In this study, C6T5 and C3T8 were used as the train-
ing points, while C3T7 as the validation point as shown in Fig. 8.
The objective is to calibrate the yield stress and predict Favg accu-
rately at the validation point. In order to find calibration parame-
ter, 12 uniformly distributed samples ranging from 100 MPa
� ry � 200 MPa were used to build the surrogate model. Linear
polynomial response surface was employed to approximate Favg

for each honeycomb tube for conventional least squares and
sensitivity-based calibration method. Five random validation
points were generated to evaluate the fitting accuracy of the linear
polynomial response surface surrogate model. The relative errors
between the surrogate model and the simulation results at these
validation points were less than 5%. It was observed that the sur-
rogate model can provide the acceptable approximation for per-
forming the following calibration and validation process. On the
other hand, Bayesian calibration method used GP model to repre-
sent the simulation responses.

The calibrated parameters and validation results are plotted in
Fig. 12. The yield stress obtained from sensitivity method is
177 MPa, which is the closest to the true value of 185 MPa. The
yield stress of 176 MPa from the Bayesian method is also similar
to the sensitivity result and outperforms the conventional least
squares method (167 MPa) for parameter calibration. For this
example, the prediction accuracies in both validation point and
training points were evaluated by the error sum of the prediction
errors, which indicated that sensitivity-based could achieve better
accuracy in whole design range than the conventional method.

The relative errors of validation and calibration results are
depicted in Fig. 13. In order to exclude the effect of selecting a
validation point, all three possible combinations of the test results
were used to obtain the calibration and validation results (see
Fig. 13). For example, when C6D5 and C3D7 were selected as the
training points, the C3D8 will be used as the validation point, and
vice versa. The calibration errors are the relative errors of the esti-
mated calibration parameter compared to the true yield stress
[20–22]. The validation errors are the sum of the relative errors of
both training points and validation point. It was observed that the
sensitivity-based and Bayesian method could obtain compara-
tively accurate calibration parameters and good prediction capa-
bility for the whole design range for all combination cases. It was
observed that sensitivity-based calibration method performed
generally well for all combination cases, while the Bayesian

Fig. 11 Comparison of three aluminum honeycomb tubes with
different parameters: (a) C6T5, (b) C3T7, and (c) C3T8

Fig. 12 Comparison of the calibration and validation results
for honeycomb structures
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calibration yielded a poor validation when using C3T7 and C3T8
as training points. This might be related to difficulty in finding the
maximum likelihood in a high dimension.

5 Conclusions

This study aimed to apply the sensitivity-based approaches to
solve the engineering problem with model error and numerical
error but with a limited number of observation data. This method
uses a constant discrepancy to consider the model error, numerical
error, and/or measurement error when the performance is mildly
nonlinear in the design space, even if it is highly nonlinear in the
physical domain, like crash problems as shown in Sec. 3.4. In this
regard, the sensitivity-based calibration method tries to match the
sensitivity of simulation predictions with that of observations to
estimate the calibration parameters, and then to find out the
constant value to compensate for the discrepancy between the pre-
dictions and the observations. A cantilever beam model and a hon-
eycomb tube example were used to demonstrate the benefits of the
proposed method.

For the cantilever beam example, the Timoshenko beam model
was regarded as the true model, and the Euler beam model was
considered as the simulation model. Three calibration methods,
i.e., the conventional calibration methods using least squares, the
sensitivity-based calibration method, and the Bayesian calibration
method, were used for comparison. It was found that both the
sensitivity-based and the Bayesian calibration methods perform
well for two data cases. However, the Bayesian calibration
method requires building a GP model based on many simulation
samples. It was also observed that when a model error is present,
having more data would not improve the accuracy of calibration
and prediction. The accuracy would depend on the correctness of
discrepancy function, which requires a knowledge of the model
error.

In the second example, the yield stress of the aluminum hon-
eycomb structure was calibrated based on the crushing test
results on two training design points, and the prediction results
were evaluated at a validation point. This is a real engineering
two-dimension design problem. It was observed that the cali-
bration and validation results obtained from the sensitivity-
based method and Bayesian method were also similar to each
other. The estimated parameters from these two methods were
more accurate than that of the conventional method. Their pre-
diction accuracies at both calibration and validation points
were much better than that of the conventional method using
least squares, which indicated that sensitivity-based and

Bayesian calibration have good prediction capability at the
whole design range.

Overall, the sensitivity-based and Bayesian calibration model
generally perform better than the conventional least squares
method for parameter estimation and model validation. However,
the Bayesian calibration method requires many simulations to
build the GP model. Furthermore, it is important to include the
model discrepancy (due to model error or numerical error in simu-
lation) to have accurate calibration and prediction. It should be
noted that sensitivity-based calibration method can be applied to a
high-dimension design problem; all it needed is at least two test
observations. It is also acknowledged that when more data are
available and when more knowledge on model error is available,
it is possible to include a complicated form of discrepancy func-
tion to improve prediction accuracy.
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Appendix

Most widely used Bayesian calibration framework was intro-
duced by Kennedy and O’Hagan. The Bayesian calibration frame-
work predicts the true behavior based on experiment data while it
calibrates parameters to make the prediction most likely to repre-
sent experiment results. To reduce computational cost, instead of
running a simulation directly, Bayesian calibration uses a GP
model of the true behavior based on two GP models—simulation
behavior and discrepancy function GP models—as

ytrueðdÞ ¼ ypreðd; hÞ þ dðdÞ (A1)

The simulation GP, ypreðd; hÞ, is to model simulation behavior
in terms of design d and unknown calibration parameters h and its
prediction uncertainty with a Gaussian distribution as

ypreðd; hÞ ¼ Xmðd; hÞbm þ Zmðd; hÞ (A2)

where Xmðd; hÞ is a vector of trend function with rows of basis
function values and bm is a coefficient vector. Zmðd; hÞ is a GP
model defined with a zero mean vector and covariance matrix
defined as

Zmððd; hÞ; ðd0; h0ÞÞ � Nð0;Rmððd; hÞ; ðd0; h0ÞÞÞ (A3)

where Rmððd; hÞ; ðd0; h0ÞÞ is a covariance matrix defined with a
covariance of cmððd; hÞ; ðd0; h0ÞÞ. Note that variance of the GP
model at given points ðd0; h0Þ is the prediction uncertainty mea-
surement of the simulation model. The covariance function is
defined as

cmððd; hÞ; ðd0; h0ÞÞ
¼ r2

m exp ð�kmðd� d0ÞTðd� d0ÞÞexp ð�khðh� h0ÞTðh� h0ÞÞ
(A4)

where wm ¼ fbm;rm; km; khg are the hyperparameters of the sim-
ulation GP model. bm and rm denote a coefficient vector and a
process standard deviation. km and kh are the roughness parame-
ters for design variable d and calibration parameter h. It should be
noted that when the calibration parameters are obtained as h�, the

Fig. 13 Comparison of the relative error of calibration and vali-
dation result for different methods
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response of a calibrated simulation, ymodelðd; h�Þ, is only a func-
tion of d while the un-calibrated model ymodelðd; hÞ is a function
of d and h.

Similarly, the discrepancy function is expressed as

dðdÞ ¼ XdðdÞbd þ ZdðdÞ (A5)

where XdðdÞ, bd, and ZdðdÞ are a discrepancy trend function
matrix, its coefficient vector, and a discrepancy GP model, respec-
tively. The discrepancy GP model is defined as

Zdðd; d0Þ � Nð0;Rdðd; d0ÞÞ (A6)

The covariance of the covariance matrix Rdðd; d0Þ is modeled
with the Gaussian kernel as with the covariance function of the
simulation process, as

cdðd; d0Þ ¼ r2
d exp ð�ðd� d0ÞTkdðd� d0ÞÞ (A7)

where wd ¼ fbd;rd; kdg is the hyperparameter vector of the simu-
lation GP model.

The maximum likelihood method is often used to estimate the
parameters of GP models, where the likelihood function is
obtained using the combined GP model in the form of a multivari-
ate normal distribution.

When the data set of simulation ypre is given at data
points D1¼ {(x1, h1),…,(xn, hn)} and test data set y test at
D2¼ {x1,…, xm}, the GP model for the given datasets is expressed
as

ytest

ypre

( )
� N

XmðD2ðhÞÞbm þ XdðD2Þbd

XmðD1Þbm

( )

	 RmðD2ðhÞÞ þ RdðD2Þ CðD2ðhÞ;D1ÞT

CðD2ðhÞ;D1Þ RmðD1Þ

" #
0
BBBBB@

1
CCCCCA

(A8)

It is noted that many simulations are required to build the GP
model. In general, it is assumed that relatively large data are gen-
erated from simulations, while a small number of data are used
from test; that is n
 m.

In the Bayesian framework, the value of probability density
function for given hyperparameters and calibration parameters,
pðytest; yprejh;wm;wdÞ, is used as a likelihood function value as

Lðh;wm;wdjytest; ypreÞ / pðytest; yprejh;wm;wdÞ (A9)

The model parameters are found by maximizing the likelihood
function. However, it is impractical for finding the calibration
parameter and hyperparameters simultaneously for most
problems because of too many unknowns. Kennedy and O’Hagan
[7] introduced a sequential parameter estimation approach. In this

framework, however, the calibrated parameter h may not be physi-
cal. This is because this Bayesian calibration framework calibrates
parameters by maximizing the likelihood of simulation with other
hyperparameters. Therefore, the correlation between parameters
can lead to inaccurate calibration.
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