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2. Polynomial Response Surfaces 
 
2.1.  Introduction 

Most optimization algorithms that are in use for solving analytical engineering optimization problems are 
sequential in nature. That is, the objective function and constraints are evaluated at one point at a time, 
and the values at that point, as well as previous design points, contribute to a decision on where in the 
design space to move to for the next evaluation. 
 When the objective functions and (or) the constraints are evaluated by experiments rather than by 
analytical/computational evaluations, there is usually an incentive to perform the experiments in batches 
rather than sequentially. One reason for batching the experiments is that most require setup time, 
advanced planning and reservations of experimental facilities or technicians. Another reason is that 
experimental errors make it difficult to interpret the results of a single experiment. When a batch of 
experiments is performed, errors in one or two experiments tend to stand out. Duplicating experiments for 
identically nominal conditions permits us to estimate the magnitude of experimental scatter due to errors 
and variability in the properties of the tested designs. Finally, some of the experimental scatter can be 
averaged out by performing a large number of experiments. 
 Because of these advantages of running experiments in batches, experimental optimization has 
followed a different route than analytical optimization. The standard approach is to use an optimization 
strategy that is based on the results of a batch of experiments. On the basis of the experiments, we 
construct approximations to objective functions and/or constraints and perform optimization based on 
these approximations. In most cases, the optimum obtained is then tested, and if satisfactory results are 
obtained the design procedure is terminated. In some cases, the optimum is used as the central design 
point for a new batch of experiments, and the process is repeated once or twice. This process is sometimes 
called sequential approximate optimization. However, because of the cost and time associated with 
conducting experiments, it is rare that the process is iterated to convergence. 
 When analytical calculations were mostly based on closed-form solutions or numerical models that 
required minimal modeling and computations, the difference between analysis and experiments was very 
clear. However, today numerical evaluations of objective functions and constraints often share many of 
the properties of experimental evaluations. First, numerical models such as finite element structural 
models require a substantial investment of time to set up and debug. Furthermore, the evaluation of such 
models may require large computational resources, so that the cost of numerical simulation may be 
comparable to the cost of experiments. Second, with analytical simulations based on complex numerical 
models, many sources of noise are often found in the results of numerical simulations. These include 
round-off errors as well as errors due to incomplete convergence of iterative processes. Additionally, 
numerical simulations are usually based on the discretization of continua, and the accuracy of this 
discretization depends on the shape of the domains being discretized. For example, when stress analysis is 
performed in an elastic body using finite element discretization, the discretization error does not change 
smoothly with the shape of the body, because the number of finite elements can vary only in integer 
increments. 
 These growing similarities between analytical simulations and experiments create incentives to run 
analytical simulations in batches and use sequential approximate optimization. Additionally, the growing 
availability of parallel computers also provides incentives for running analytical simulations in batches. 
Finally, numerical simulations are often run with software packages that are difficult to connect directly to 
optimization programs. Approximate sequential optimization provides a mechanism for running these 
software packages in a stand-alone mode and connecting the optimization programs to the approximation. 
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 The polynomial response surface (PRS) is the oldest form of a surrogate model where it approximates 
discrete experimental data (output) with different test parameters (input) using simple polynomials. PRS 
was invented in the 1920s to characterize crop yields in terms of inputs such as water and fertilizer. It was 
called the response surface approximation. The algebraic function to fit data is called surrogate, 
metamodel, or approximation. The term “surrogate” captures the purpose of the fit: using it instead of 
experiments for prediction. It is often important when data is expensive and noisy, especially for 
optimization and uncertainty quantification. 
 The process of identifying the relationship between the input parameters and output quantity of 
interest (QoI) is statistically referred to as regression. The term comes from the paper by Galton [10], 
where regression was used that happened to be about a phenomenon called regression towards the mean. 
He found that children of tall parents tended to be shorter than their parents, while children of short 
parents tended to be taller than their parents. 
 Through regression, a seemingly complicated behavior of QoI is approximated by simple functions. 
Normally linear or quadratic polynomials are used for approximation because the main goal is to find the 
trend of the QoI as test parameters change [4]. Since most experimental data include measurement noise, 
the PRS surrogate is designed to compensate for the noise. Therefore, the PRS surrogate normally does 
not pass through the data points. Instead, the differences between PRS predictions and measure data are 
assumed to be randomly distributed. In fact, the differences between PRS predictions and measured data 
are used to estimate the level of noise in the measurement.  
 In the modern form of PRS, the surrogate approximates the trend of data using a linear combination 
of polynomials. In this form, each monomial term is referred to as ‘basis’, and the constants that are 
multiplied with the bases are called unknown coefficients. The major process of building a PRS surrogate 
is to find the unknown coefficients by minimizing errors between the data and the surrogate predictions at 
the data points. In statistics, this is called linear regression, where the output QoI is a linear function of 
unknown coefficients—the basis functions can be nonlinear. In particular, when a single QoI is modeled 
as a linear combination of basis functions, it is called simple linear regression, compared to multiple linear 
regression where multiple QoIs are modeled simultaneously [11]. This is different from multivariate 
linear regression, where multiple ‘correlated’ QoIs are predicted, rather than a single QoI [12]. In the 
following discussion, we will only consider simple regression. 
 In the regression process, it is assumed that the numbers and orders of basis functions are 
predetermined, and only the unknown coefficients are to be determined. Therefore, the following 
questions naturally arise: (a) how to determine the numbers and orders of basis functions, (b) how to 
determine the unknown coefficients, and (c) how many data are required to build the surrogate model.  
 The second question of how to determine the unknown coefficients is the easiest part of surrogate 
modeling, which will be discussed in Section 2.2 in detail. In general, the unknown coefficients are 
determined by minimizing errors between the given data and surrogate predictions. It is obvious that the 
outcome will be different depending on how to define the errors and how to minimize them. Section 2.3 
will discuss how to estimate the unknown coefficients using linear regression. 
 The first question of how to determine the numbers and orders of basis functions is subjective and 
requires domain knowledge of the specific application. Since the success of PRS surrogate modeling 
depends on the selection of basis functions, this step is critically important, and yet, it is hard to choose an 
appropriate set of basis functions. For example, when real physics behaves like a sinusoidal function, it 
would be hard to approximate the function using a set of polynomials. If the domain of input variables is 
not too wide, the Taylor series expansion can be used to justify the polynomial-based approximation. In 
general, when the model form of PRS is unknown, stepwise regression can be used, which will be 
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discussed in Section 2.5. This method starts with enough numbers and orders of basis functions, and 
gradually removes those basis functions that are not important or significant for the approximation.  
 The last question of how many data are required is related to the complexity of the surrogate model 
and the accuracy of prediction. Since the main usage of samples is to determine the unknown coefficients, 
the number of samples should be larger than that of unknown coefficients. Theoretically, 𝑚 numbers of 
samples should be good enough to determine 𝑚 numbers of coefficients. However, this corresponds to 
solving a linear system of 𝑚 equations, not regression. In general, the required number of samples is at 
least two or three folds of that of the unknown coefficients. Not only the number of samples but also the 
location of samples is important in building a good surrogate model. It is always good that the sample 
locations are populated in the entire input space while maintaining a small distance between them. 
However, as shown in Figure 1-5, it is difficult to cover the entire input space with a small number of 
samples, and it is inevitable to deal with a large extrapolation region, which is indeed the major challenge 
in surrogate modeling. Since selecting samples is an important topic, Chapter 3 is dedicated to the design 
of experiments. Therefore, in this chapter, only the first two questions will be addressed. 
 
2.2. Curve fitting 

Before discussing the details of PRS, it would be beneficial to discuss curve fitting first since it is the 
simplest version of PRS. Consider that experimental data 𝑦௜ are measured at different values of parameter 
𝑥௜. Then we want to fit a curve that matches the data best in some sense. When we fit a curve to data, it is 
necessary to ask the following questions: (a) what is the error metric for the best fit? and (b) what is more 
accurate, the data or the fit? Although the answer to the first question is a matter of choice, the second one 
is subtle and needs to be understood thoroughly. In the following example, we start with the following 
assumptions: (a) data are noisy, (b) the functional form of the true function is known, and (c) data are 
dense enough to allow us to filter noise in data. 
 In order to explain the accuracy between the data and the fit, let us generate samples from a linear 
function 𝑦 ൌ 𝑥 at 𝑥 ൌ 1, 2, ⋯ , 30. In order to make the data noisy, we can add random noise from a 
normal distribution ~𝑁ሺ0, 1ଶሻ to the data. Using the randomized data, we can fit a linear polynomial 
using the polyfit function of Matlab, which determines the unknown regression coefficients. Once the 
polyfit function calculates the unknown coefficients, p, they can be used in the polyval function to 
evaluate the surrogate at any prediction point, x. The following Matlab script generates samples, fit the 
samples with a linear polynomial, and calculate the root-mean-square error of the data and that of the fit. 

noise=randn(1,30);  

x=1:1:30; y=x+noise; 

[p,s]=polyfit(x,y,1);  

yfit=polyval(p,x);  

plot(x,y,'+',x,x,'r',x,yfit,'b');  

legend('Data','True function','Fitted function'); 

RMS_data=sqrt(sum((x-y).^2)/30) 

RMS_fit=sqrt(sum((x-yfit).^2)/30)  

mean(noise) 

 Due to the randomness of noise, the above Matlab code yields different results at different trials. In 
this particular case, the fitted polynomial function turned out to be 𝑦ොሺ𝑥ሻ ൌ െ0.2954 ൅ 0.9997𝑥. Figure 
2-1 shows the data (plus markers), fitted function (blue line), and the true function (red line). By visual 
inspection of the figure, the fitted function seems more accurate than the data. This can be checked 
numerically by calculating the errors of the fit at the data points using either the root-mean-squared 
(RMS) error or the maximum error. The following equation is used for the RMS error: 
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 (2.1)

where 𝑦ሺ𝑥௜ሻ is the value of the true function at 𝑥௜, and 𝑦ොሺ𝑥௜ሻ is that of the fitted function. The RMS error 
of data can be calculated by replacing 𝑦ොሺ𝑥௜ሻ with 𝑦௜ . For the given example, 𝑒ோெௌ of data was 0.9367, 
which is close to the standard deviation of noise 𝜎௡௢௜௦௘ ൌ 1. On the other hand, 𝑒ோெௌ of the fitted function 
was 0.3006. Therefore, the fitted function is more accurate than the data. This happened because the 
fitting process is based on minimizing the RMS error between the data and the fitted function. When the 
functional form is accurate, regression serves to filter out noise with dense data. 
 

    
Figure 2-1: Fitting noisy data with a linear polynomial function.  
 
 Since the synthetic data are generated by adding a random noise ~𝑁ሺ0, 1ଶሻ to the true function, it is 
questionable why the fitted function is not exact if regression is supposed to filter out noise. This can be 
explained by the imperfection of the noise samples. Even if the noise samples are randomly generated 
from the population distribution, 𝑁ሺ0, 1ଶሻ, the actual samples may not follow it. In fact, the mean of noise 
samples was 𝜇௡௢௜௦௘ ൌ െ0.3005. This is the culprit of 𝑒ோெௌ ൌ 0.3006 of the fitted function. That is, the 
fitted function passes through the mean of the noise. If the same fitting process is repeated with the zero-
mean noise, noise = noise – mean(noise), 𝑒ோெௌ of data is close to the standard deviation of 
the samples and 𝑒ோெௌ of the fitted function is close to zero. Since the distribution of samples converges to 
that of the population as the number of samples increases, it is expected that the fitted function becomes 
accurate as the number of samples increases. 
 In this elementary example, it is assumed that the true function 𝑦 ൌ 𝑥 is knowns and synthetic data 
are generated by adding random noise. In reality, however, the true function is unknown and only data are 
given without knowing the distribution of noise. Therefore, the RMS error of the data and that of the 
fitted function are not available. The only available information is the error between the data and the fitted 
function. For the given samples, 𝑒ோெௌ between the data and the fitted function was 0.8872, which is the 
combined effect of the noise and the error in the fitted function. This happened to be smaller than 𝑒ோெௌ of 
data because the mean of noise was negative. This discrepancy would be reduced as the mean of noise 
converges to zero, which can happen as the number of samples increases. 
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 The fact that the fitted function converges to the true function and 𝑒ோெௌ converges to the standard 
deviation of the noise is true only when the functional form of the fitted function is the same as that of the 
true function. The difference in the functional form between the true function and the fitted function is 
called the model-form error. When a model-form error is present, the fitting process treats the model-form 
error as if it is noise because there is no way to distinguish the model-form error from the noise. 
Therefore, it is critically important to choose a proper model form for successful curve fitting. 
 In order to investigate the effect of model-form error, 31 equally-spaced samples are generated in 𝑥 ∈
ሾ0, 3ሿ from a true function of 𝑦ሺ𝑥ሻ ൌ 𝑥ଶ. The measurement environment is simulated by adding normally 
distributed noise ~𝑁ሺ0,0.3ଶሻ to the samples. The bias in the noise samples is removed by making the 
mean of noise samples to be zero. These samples are fitted using a linear PRS with two unknown 
coefficients, 𝑦ොሺ𝑥ሻ ൌ 𝑎଴ ൅ 𝑎ଵ𝑥 using polyfit function in Matlab. In this particular case, the fitted 
function turned out to be 𝑦ොሺ𝑥ሻ ൌ െ1.4131 ൅ 2.9754𝑥. Figure 2-2 compares the data samples (plus 
markers), the true function (red curve), and the fitted function (blue curve). It is clear that the regression 
process determines its coefficients such that the fitted linear function approximates the quadratic trend the 
best. Under the presence of model-form error, however, the error metrics can be difficult to explain. For 
example, 𝑒ோெௌ of data is 0.2932, which is close to the standard deviation of noise, 𝜎௡௢௜௦௘ ൌ 0.3. However, 
𝑒ோெௌ of the fitted function is 0.7148. Therefore, under the presence of model-form error, it is possible that 
the data can be more accurate than the fit. Without knowing the true function, 𝑒ோெௌ between the data and 
the fitted function is 0.7963, which is a combined effect of model-form error and noise in data. 

noise=0.3*randn(1,31); noise=noise-mean(noise); 

x=linspace(0,3,31); ytrue=x.^2; y=ytrue+noise; 

[p,s]=polyfit(x,y,1);  

yfit=polyval(p,x);  

plot(x,y,'+',x,ytrue,'r',x,yfit,'b');  

legend('Data','True function','Fitted function'); 

RMS_data=sqrt(sum((ytrue - y).^2)/31) 

noise_std=std(noise) 

RMS_fit=sqrt(sum((ytrue - yfit).^2)/31)  

RMS_disc=sqrt(sum((y - yfit).^2)/31)  

 

 
Figure 2-2: Fitting data with model-form error.  
 
 Even if it is difficult to identify the model-form error without knowing the true function, there is still a 
way to understand the presence of model-form error. Since the nature of the noise is random, the errors 
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between the samples and the fitted function are supposed to be randomly distributed. In Figure 2-2, for 
example, the errors between the data and the true function are indeed randomly distributed. Some errors 
are positive, while others are negative, and their locations are well-mixed. On the other hand, however, 
the errors between the data and the fitted function are grouped. That is, most errors are positive when 𝑥 ൑
0.5 or 𝑥 ൒ 2.5, while they are mostly negative when 0.5 ൑ 𝑥 ൑ 2.5. This indicates that the fitted function 
underestimates the data in the ranges of 𝑥 ൑ 0.5 and 𝑥 ൒ 2.5, while overestimate in the range of 0.5 ൑
𝑥 ൑ 2.5. Therefore, when a cluster of errors is in the same sign, it is a good indicator that there is a 
model-form error in the fitted function. 
 The major source of error in the fitted function in Figure 2-2 is due to the fact that a lower-order 
polynomial is used for the fitted function. However, increasing the degree of the polynomial fit using 
polyfit does not always result in a better fit. This is because high-order polynomials can be oscillatory 
between the sample points, leading to a poorer prediction capability between samples. A good example 
was shown in Figure 1-11, where a quadratic polynomial fits better than a quintic polynomial even if both 
models pass through all samples. If the level of error is similar, a lower-order polynomial is considered 
better because it tends to be smoother between samples.  
 One interesting question would be that if a higher-order polynomial includes the lower-order 
polynomial, will the fitting results be the same? That is, consider the following quintic polynomial 
function: 

𝑦ොሺହሻሺ𝑥ሻ ൌ 𝑎଴ ൅ 𝑎ଵ𝑥 ൅ 𝑎ଶ𝑥ଶ ൅ 𝑎ଷ𝑥ଷ ൅ 𝑎ସ𝑥ସ ൅ 𝑎ହ𝑥ହ (2.2)

The question is if samples are generated from a quadratic polynomial, will the higher-order coefficients, 
𝑎ଷ, 𝑎ସ, and 𝑎ହ, be zero after the fitting process? Unfortunately, the answer to this question is no because 
(a) since samples have noise, the quadratic polynomial function may have a larger error than the quintic 
polynomial function, and (b) in general more degrees-of-freedom can yield a smaller error in the fitting 
process. Therefore, it would be necessary to introduce a fitting strategy to penalize the higher-order 
polynomials against lower-order ones. 
 Polynomials are unbounded and oscillatory functions by nature. Therefore, they are not well-suited to 
extrapolating bounded data or monotonic (increasing or decreasing) data. The curve fitting process shown 
in Figure 2-2 only takes into account the accuracy within the range of samples. However, if the accuracy 
is measured beyond the range of samples, the error in PRS can be significantly increased. In Figure 2-2, 
for example, it can be easily estimated that the error between the true function and the fitted function can 
significantly increase when x ൏ 0 or x ൐ 3.  
 
2.3.Linear regression 

Selecting the sample locations in the design space where experiments are to be performed is possibly the 
most important part of obtaining a good approximation to QoI that may be used in optimization and 
uncertainty quantification. However, this sample selection turns out to be a difficult optimization problem 
itself and will be discussed in the next chapter. In this section, the second question of how to determine 
the unknown coefficients of PRS is discussed first.  
 

Polynomial response surface 
In the following explanations, the goal is to approximate the true function 𝑦ሺ𝐱ሻ using PRS. In order to 
determine the unknown coefficients, it is assumed that the functional form of PRS is already determined, 
and 𝑛௬ numbers of samples are available. The samples are prepared in the form of pairs of input variables 
and output QoI: ሺ𝐱௜, 𝑦௜ሻ, 𝑖 ൌ 1, ⋯ , 𝑛௬, where 𝐱௜ ൌ ሼ𝑥ଵ௜, 𝑥ଶ௜, ⋯ , 𝑥௡௜ሽ் is the vector of input variables at 𝑖th 
sample and 𝑦௜ is the measured/simulated QoI at 𝐱௜; i.e., 𝑦௜ ൌ 𝑦ሺ𝐱௜ሻ. For example, in the case of the 
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cantilevered beam problem in Figure 1-2, the input variable is 𝐱 ൌ ሼ𝐹, 𝐿, 𝑏, ℎሽ் with 𝑛 ൌ 4 and output 
QoI is 𝑦 ൌ 𝜎௠௔௫.  
 We want to approximate the true QoI 𝑦ሺ𝐱ሻ using a polynomial function 𝑦ොሺ𝐱, 𝛃ሻ, where 𝛃 ൌ
ሼ𝛽ଵ, 𝛽ଶ, ⋯ , 𝛽௡ഁ

ሽ் is the vector of parameters that need to be determined. The relationship between the 
true function and approximate function can be given as 

𝑦ሺ𝐱ሻ ൌ 𝑦ොሺ𝐱, 𝛃ሻ ൅ 𝜖ሺ𝐱ሻ (2.3)

where 𝜖ሺ𝐱ሻ is the approximation error. In this book, we refer to 𝑦ොሺ𝐱, 𝛃ሻ as a surrogate model. Different 
surrogate models can be defined depending on how to define the functional form of 𝑦ොሺ𝐱, 𝛃ሻ and how to 
determine the unknown model parameters. The vector of unknown parameters 𝛃 often does not have any 
physical meaning. Rather, we select a functional representation for 𝑦ොሺ𝐱, 𝛃ሻ, with 𝛃 representing some 
coefficients to be determined so as to fit the data well. 
 The goal of surrogate modeling is to determine the unknown coefficient 𝛃 so that the approximation 
error 𝜖ሺ𝐱ሻ is minimized. Therefore, natural questions are (a) what is the form of the approximation 
function 𝑦ොሺ𝐱, 𝛃ሻ and (b) what measure is used to minimize the error 𝜖ሺ𝐱ሻ. To address these questions, it is 
assumed that the true function 𝑦ሺ𝐱ሻ is unknown, but we can evaluate it as discrete points. In experiments, 
for example, even if the functional relationship between input variables and output QoI may not be 
known, we still can perform experiments to measure QoI by changing input variables. The same is true 
for complex numerical simulations, where multiple simulations can be performed by changing input 
variables. Therefore, the first step in surrogate modeling is to perform 𝑛௬ numbers of experiments to 
obtain samples: ሺ𝐱௜, 𝑦௜ሻ, 𝑖 ൌ 1, ⋯ , 𝑛௬. Then, Eq. (2.3) can be written as each sample location as 

𝑦௜ ൌ 𝑦ොሺ𝐱௜, 𝛃ሻ ൅ 𝑒௜, 𝑖 ൌ 1, ⋯ , 𝑛௬ (2.4)

where 𝑒௜ ൌ 𝜖ሺ𝐱௜ሻ is the error at 𝑖th sample location. Then, the requirement of minimizing error 𝜖ሺ𝐱ሻ is 
relaxed to minimize the errors at the sample locations.  
 Two simple examples of the approximate function 𝑦ොሺ𝐱௜, 𝛃ሻ are 

𝑦ොሺ𝑥, 𝛃ሻ ൌ 𝛽ଵ ൅ 𝛽ଶ𝑥 ൅ 𝛽ଷ𝑥ଶ (2.5)

𝑦ොሺ𝑥, 𝛃ሻ ൌ
𝛽ଵ

𝑥 ൅ 𝛽ଶ
 (2.6)

The functional form in Eq. (2.5) is a quadratic PRS, while that of Eq. (2.6) is a rational function. It is 
noted that the approximate function in Eq. (2.5) is a linear function of coefficients, while that in Eq. (2.6) 
is a nonlinear function of coefficients. Identifying unknown coefficients that are in a linear relationship 
with the approximate function is called linear regression as in Eq. (2.5), while that in a nonlinear 
relationship is called nonlinear regression as in Eq. (2.6). In this chapter, we will only handle those 
functional forms that yield linear regression. In particular, when all basis functions are monomials, the 
surrogate model is referred to as a polynomial response surface (PRS).  
 In general, the vector of unknown coefficients, 𝛃, is found by minimizing the error so that the 
approximate function is the best fit. As mentioned before, the approximation error is defined at every 
sample location. In order to determine the best fit, it is necessary to define a scalar measure of error from 
the individual errors at sample locations. The following three error measures can be used: 

𝑒ோெௌ ൌ ඩ
1

𝑛௬
෍൫𝑦௜ െ 𝑦ොሺ𝐱௜, 𝛃ሻ൯

ଶ

௡೤

௜ୀଵ

 (2.7)
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𝑒௔௩ ൌ
1

𝑛௬
෍|𝑦௜ െ 𝑦ොሺ𝐱௜, 𝛃ሻ|

௡೤

௜ୀଵ

 (2.8)

𝑒௠௔௫ ൌ max
௡೤

|𝑦௜ െ 𝑦ොሺ𝐱௜, 𝛃ሻ| (2.9)

The RMS error is most popular because it is a smooth function of 𝛃, but it tends to ignore small errors and 
emphasize large errors too much. The average error weighs small and large errors equally, while the 
maximum error considers the largest error only. The average error and maximum error are a non-smooth 
function of 𝛃, which is the main reason that they are not used often. The errors in Eqs. (2.7)-(2.9) are in 
fact norms in mathematics. For example, they are 𝐿ଶ-norm, 𝐿ଵ-norm, and 𝐿ஶ-norm, respectively. It is 
noted that the RMS error in Eq. (2.7) is different from the one in Eq. (2.1). The RMS error in Eq. (2.1) is 
the true error between the true function and surrogate model, while the one in Eq. (2.7) is the discrepancy 
between the samples and surrogate model. Unfortunately, the true RMS error cannot be found because we 
do not know the true function in most cases.  
 When the approximate function is given as a linear combination of unknown coefficients (e.g., the 
one in Eq. (2.5)), we can rewrite the surrogate model by focusing on the coefficients as 

𝑦ොሺ𝐱, 𝛃ሻ ൌ ෍ 𝛽௜𝜉௜ሺ𝐱ሻ

௡ഁ

௜ୀଵ

ൌ 𝛏ሺ𝐱ሻ்𝛃 (2.10)

where 𝛏ሺ𝐱ሻ ൌ ሼ𝜉ଵሺ𝐱ሻ, 𝜉ଶሺ𝐱ሻ, ⋯ , 𝜉௡ഁ
ሺ𝐱ሻሽ் is the vector of basis functions. For example, the quadratic 

polynomial function in Eq. (2.5) has three basis functions: 𝜉ଵሺ𝑥ሻ ൌ 1, 𝜉ଶሺ𝑥ሻ ൌ 𝑥, and 𝜉ଷሺ𝑥ሻ ൌ 𝑥ଶ. In 
general, the number of terms 𝑛ఉ and all basis functions are assumed to be given. Therefore, unknown 
coefficients, 𝛃, are the only undetermined terms in Eq. (2.10). 
 The exact coefficients, 𝛃, can be found when the number of sample points 𝑛௬ goes to infinity. That is, 
when sample points are defined at all the points in the design space, which is impossible because the input 
variables are real numbers. With a finite number of samples, we can only find the estimate of 𝛃, which 
will be referred to 𝐛 in the following derivations. From the expression 𝑦ොሺ𝐱௜, 𝛃ሻ ൌ 𝛏ሺ𝐱௜ሻ்𝐛, Eq. (2.4) can 
be rewritten in matrix-vector notation as 

൞

𝑒ଵ
𝑒ଶ
⋮

𝑒௡೤

ൢ ൌ ൞

𝑦ଵ
𝑦ଶ
⋮

𝑦௡೤

ൢ െ

⎣
⎢
⎢
⎢
⎡ 𝜉ଵሺ𝐱ଵሻ 𝜉ଶሺ𝐱ଵሻ

𝜉ଵሺ𝐱ଶሻ 𝜉ଵሺ𝐱ଶሻ

⋯ 𝜉௡ഁ
ሺ𝐱ଵሻ

⋯ 𝜉௡ഁ
ሺ𝐱ଶሻ

⋮ ⋮
𝜉ଵሺ𝐱௡೤

ሻ 𝜉ଵሺ𝐱௡೤
ሻ

⋱ ⋮
⋯ 𝜉௡ഁ

ሺ𝐱௡೤
ሻ⎦
⎥
⎥
⎥
⎤

⎩
⎨

⎧
𝑏ଵ
𝑏ଶ
⋮

𝑏௡ഁ⎭
⎬

⎫
 (2.11)

𝐞 ൌ 𝐲 െ 𝐗𝐛 

In Eq. (2.11), the ሺ𝑛௬ ൈ 𝑛ఉሻ design matrix 𝐗 is defined using the vectors of basis functions at all sample 
locations. Also, it is often called ‘regressor’ in statistics community. 
 Once the errors at sample locations are defined, the regression process determines the unknown 
coefficients, 𝐛, by minimizing these errors. Since 𝐛 is determined through the regression process, it is 
often referred to as regression coefficients. For that purpose, we need a scalar measure of error, instead of 
the vector of errors. Among the scalar measures of errors given in Eqs. (2.7)-(2.9), we will use the RMS 
error here. It is noted that the magnitude of 𝑒ோெௌ is not the focus her. Instead, the coefficients 𝐛 that 
minimizes  𝑒ோெௌ is what we want. Using the definition of 𝑒ோெௌ in Eq. (2.7) and that of errors in Eq. 
(2.11), the RMS error is redefined as 
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𝑒ோெௌ ൌ ඩ
1

𝑛௬
෍ 𝑒௜

ଶ

௡೤

௜ୀଵ

ൌ ඨ
1

𝑛௬
𝐞்𝐞 (2.12)

Therefore, minimizing 𝑒ோெௌ is equivalent to minimizing 𝐞்𝐞. The square sum of errors can be expressed 
as 

𝐞்𝐞 ൌ ሺ𝐲 െ 𝐗𝐛ሻ்ሺ𝐲 െ 𝐗𝐛ሻ ൌ 𝐲்𝐲 െ 𝐲்𝐗𝐛 െ 𝐛்𝐗்𝐲 ൅ 𝐛்𝐗்𝐗𝐛 (2.13)

In the above equation, it is noted that 𝐲்𝐗𝐛 ൌ 𝐛்𝐗்𝐲 because both are scalar. 
 The square sum of errors in Eq. (2.13) is a quadratic function of 𝐛. Therefore, if the matrix 𝐗்𝐗 is 
positive definite, the function is convex, and a local minimum will be the global minimum. In elementary 
polynomial function with a single variable, this corresponds to a quadratic function 𝑎𝑥ଶ with 𝑎 ൐ 0. The 
minimum of a quadratic function can be found from the condition that the derivative (i.e., gradient) 
becomes zero. In the same way, the coefficient vector 𝐛 that satisfies the first-order Kuhn-Tucker 
optimality condition will be the optimal coefficients: 

𝑑
𝑑𝐛

ሺ𝐞்𝐞ሻ ൌ െ2𝐗்𝐲 ൅ 2𝐗்𝐗𝐛 ൌ 𝟎 

𝐗்𝐗𝐛 ൌ 𝐗்𝐲 (2.14)

𝐛 ൌ ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 
Equation (2.14) is often referred to as the normal equation of linear regression equation, and 𝐗்𝐗 is 
referred to as the information matrix or moment matrix. The Solving Eq. (2.14) is computationally 
efficient because the dimension of the moment matrix is ሺ𝑛ఉ ൈ 𝑛ఉሻ, and the number of unknown 
coefficient 𝑛ఉ is much smaller than the number of samples 𝑛௬. This can be considered as the major 
advantage of linear regression, where the global optimum coefficients can be obtained by solving a single 
matrix equation. In the case of nonlinear regression, a nonlinear optimization problem needs to be solved 
iteratively.  
 The normal equation has a unique solution 𝐛 when the moment matrix 𝐗்𝐗 is positive definite. When 
monomial basis functions are used, the moment matrix is ill-conditioned for a large 𝑛ఉ, which means that 
the moment matrix is almost singular. To avoid some of the effects of the ill-conditioning, we can 
formulate the regression problem in a slightly different form. Consider the system of equations: 

𝐗𝐛 ൌ 𝐲 (2.15)

If we could solve this equation exactly, then from Eq. (2.13) we see that the RMS error will be zero. 
However, this system has 𝑛௬ equations for 𝑛ఉ unknowns, with 𝑛௬ in general larger than 𝑛ఉ, so that in 
general, we cannot find an exact solution. That is, any vector 𝐛 will not satisfy Eq. (2.15) exactly, but 
instead there will be a vector of residuals (differences between the left-hand side and the right-hand side 
of the equation). The solution of the normal equation is the vector 𝐛 that minimizes the sum of the squares 
of the residuals. However, instead of solving the normal equations, there are numerical methods, such as 
the QR decomposition, that solve for Eq. (2.15) directly for the least-squares solution, and these are 
usually more numerically stable than directly solving the normal equations. To improve numerical 
stability, it is also recommended to translate and scale all the variables so that each variable changes in the 
range ሺെ1, 1ሻ or ሺ0, 1ሻ [13].  
 
Example 2-1 
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Using three samples ሺ𝑥௜, 𝑦௜ሻ ൌ ሺ0,0ሻ, ሺ1,1ሻ, ሺ2,0ሻ, fit a linear PRS 𝑦ොሺ𝑥, 𝐛ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥. Use different error 
metrics in Eqs. (2.7)-(2.9) and compare them. 
 
Solution: 
The three samples are applied to the linear PRS model to calculate the error in Eq. (2.11) as 

𝑒ଵ ൌ  𝑦ሺ0ሻ െ 𝑏ଵ െ 𝑏ଶ ∙ 0
𝑒ଶ ൌ 𝑦ሺ1ሻ െ 𝑏ଵ െ 𝑏ଶ ∙ 1
𝑒ଷ ൌ 𝑦ሺ2ሻ െ 𝑏ଵ െ 𝑏ଶ ∙ 2

ቑ → ൝
𝑒ଵ
𝑒ଶ
𝑒ଷ

ൡ
ต

𝐞

ൌ ൝
0
1
0

ൡ
ด
𝐲

െ ൥
1 0
1 1
1 2

൩
ᇣᇧᇤᇧᇥ

𝐗

൜
𝑏ଵ
𝑏ଶ

ൠ
ถ

𝐛

 

Then, the matrix and vector that are required in the regression equation in Eq. (2.14) can be obtained as 

𝐗்𝐗 ൌ ቂ1 1 1
0 1 2

ቃ ൥
1 0
1 1
1 2

൩ ൌ ቂ3 3
3 5

ቃ, 𝐗்𝐲 ൌ ቂ1 1 1
0 1 2

ቃ ൝
0
1
0

ൡ ൌ ቄ1
1

ቅ 

Therefore, the regression equation, 𝐗்𝐗𝐛 ൌ 𝐗்𝐲, can be solved for regression coefficients as 

൜
3𝑏ଵ ൅ 3𝑏ଶ ൌ 1
3𝑏ଵ ൅ 5𝑏ଶ ൌ 1 → ൝𝑏ଵ ൌ

1
3

𝑏ଶ ൌ 0
 

 Therefore, the fitted linear PRS becomes a constant function; i.e., 𝑦ොሺ𝑥, 𝐛ሻ ൌ 1 3⁄ . Figure 2-3(a) 
compares the fitted PRS with the three sample points when the RMS error is used. It is clear that the 
fitting process selected the coefficients such that the positive error and negative errors are equally 
distributed. At all sample locations, the errors are 𝑒ଵ ൌ 𝑒ଷ ൌ െ 1 3⁄  and 𝑒ଶ ൌ 2 3⁄ , respectively. Then the 
RMS error becomes 

𝑒ோெௌ ൌ ටଵ
ଷ

ቈ൬ି
ଵ
ଷ

൰
మ

ା൬
ଶ
ଷ

൰
మ

ା൬ି
ଵ
ଷ

൰
మ

቉ ൌ 0.47 

 In general, it is difficult to find the PRS that minimizes the maximum error and the average error. For 
this simple example, however, it can be easily done. We expect that like the line that minimizes the RMS 
error, the lines that minimize the other two errors would be horizontal lines of the form 𝑦ොሺ𝑥, 𝐛ሻ ൌ 𝑏ଵ, 0 ൑
𝑏ଵ ൑ 1. This is expected as samples are symmetric with respect to 𝑥 ൌ 1. To minimize the maximum 
error, it is obvious that we must have 𝑏ଵ ൌ 0.5 such that all errors are of the same magnitude. This results 
in a maximum error as 

𝑒௠௔௫ ൌ 𝑚𝑎𝑥ሺ|0 െ 𝑏ଵ|, |1 െ 𝑏ଵ|, |0 െ 𝑏ଵ|ሻ ൌ 0.5 

In this case, this is also the average error and the RMS error because all three points have the same 0.5 
error. To minimize the average error, we note that for the range 𝑏ଵ ∈ ሾ0, 1ሿ, the average error will be 

𝑒௔௩ ൌ
1
3

ሺ|0 െ 𝑏ଵ| ൅ |1 െ 𝑏ଵ| ൅ |0 െ 𝑏ଵ|ሻ ൌ
1 ൅ 𝑏ଵ

3
 

The average error becomes minimum when 𝑏ଵ ൌ 0, at which the minimum average error becomes 𝑒௔௩ ൌ
1/3. Figure 2-3(b) compares all three linear PRSs. As can be seen in the figure, even if the same samples 
are used, the fitted surrogate models can be different with different error metrics. 
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Figure 2-3: Fitting a linear PRS with three samples (a) with RMS error and (b) with average error and 
maximum error.  
 
 At first glance, it looks like the maximum and RMS error metrics yield a better fit than the average 
error metric, but the quality of a fit depends on the error metric used as well. For example, Table 2-1 
evaluates the three PRS fits with the three different error metrics. It turns out that an error is a minimum 
when a surrogate is fitted with the same error metric.  
 
Table 2-1: Comparison of the three linear PRS fits with the three different error metrics. 

 RMS fit 
𝑦ො ൌ 1 3⁄  

Ave. error fit 
𝑦ො ൌ 0 

Max. error fit 
𝑦ො ൌ 0.5 

𝑒ୖ୑ୗ 0.471 0.577 0.5 

𝑒௔௩ 0.444 0.333 0.5 

𝑒௠௔௫ 0.667 1.0 0.5 

 

 

Polynomial response surface in multi-dimension 
So far, we only discussed a PRS in one-dimensional input variables. The polyfit and polyval 
Matlab functions in Section 2.2 can only be used for one-dimensional input variables with a fixed degree 
of polynomials. However, the linear regression is flexible enough such that it can be applied to multi-
dimensional input variables with an arbitrary degree of polynomials. In fact, the basis functions do not 
have to be monomials. As long as the basis functions are linearly independent and the QoI has a linear 
relationship with the regression coefficients, the linear regression is well-defined. In Matlab, multiple 
linear regression function regress is used for this purpose.  
 
Example 2-2 
A soft-drink company wants to determine the size of a can such that it can maximize its profit. The 
dimensions of the can are determined by input variables: diameter 𝐷 ∈ ሾ1.5, 3.5ሿ in. and height 𝐻 ∈
ሾ3.0, 7.0ሿ in. The true profit is an explicit function of these two variables: 

𝑝ሺ𝐷, 𝐻ሻ ൌ 0.2361𝜋𝐷ଶ𝐻 െ 3.858 ൈ 10ିସ𝜋ଶ𝐷ସ𝐻ଶ െ 0.1𝜋ሺ0.5𝐷ଶ ൅ 𝐷𝐻ሻ 

However, it is assumed that the true profit is unknown. Instead, the company conducted field tests and 
obtained nine samples as shown in the table. 
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Sample No. 𝐷 𝐻 𝑝 𝑝௧௥௨௘ 

1 1.8 3.6 5.9 5.6 

2 2.4 4.8 13.1 13.1 

3 3.0 6.0 22.0 21.9 

4 1.5 4.6 4.7 4.7 

5 2.1 5.8 12.0 12.0 

6 2.7 7.0 20.9 20.9 

7 1.4 5.6 4.9 4.9 

8 2.0 6.8 12.5 12.5 

9 2.6 8.0 21.4 21.4 

 
(a) Fit a quadratic polynomial to the profit per can using the experimental nine samples and plot the profit 
contours with samples. (b) Repeat the fitting process using the true samples that are generated from the 
true profit equation (use the last column of the table). Compare the two PRS and explain the reason for the 
difference. 
 
Solution: 
The quadratic PRS with two input variables has the following form with six unknown coefficients: 

𝑝̂ ൌ 𝑏ଵ ൅ 𝑏ଶ𝐷 ൅ 𝑏ଷ𝐻 ൅ 𝑏ସ𝐷ଶ ൅ 𝑏ହ𝐷𝐻 ൅ 𝑏଺𝐻ଶ 

By comparing with the true function, it is obvious that the quadratic PRS cannot be exact because the true 
function includes higher-order polynomial terms of input variables. And yet, it is difficult to use a higher-
order PRS because then the number of unknown coefficients can be more than that of the number of 
samples. It is also possible that the PRS can include specific terms, such as 𝐷ଶ, 𝐷𝐻, 𝐷ଶ𝐻, and 𝐷ସ𝐻ଶ. 
However, it is only possible if the model form is already known.  
 The design matrix can be calculated using all nine samples as 

𝐗 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1.8
1 2.4
1 3.0

3.6 3.24
4.8 5.76
6.0 9.00

6.48 12.96
11.52 23.04
18.0 36.0

1 1.5
1 2.1
1 2.7

4.6 2.25
5.8 4.41
7.0 7.29

6.9 21.16
12.18 33.64
18.9 49.0

1 1.4
1 2.0
1 2.6

5.6 1.96
6.8 4.00
8.0 6.76

7.84 31.36
13.6 46.24
20.8 64.0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(a) The unknown coefficients can be calculated from the regression equation in Eq. (2.14). Then the PRS 
approximate of the profit can be written as 

𝑝̂ ൌ െ7.1827 ൅ 2.8835𝐷 ൅ 0.3022𝐻 ൅ 0.3576𝐷ଶ ൅ 1.0024𝐷𝐻 െ 0.0707𝐻ଶ 

(b) In comparison, if the true values in the last column of the table are used, the PRS approximate 
becomes 

𝑝̂௧௥௨௘ ൌ െ7.9801 ൅ 2.5672𝐷 ൅ 0.6756𝐻 ൅ 0.2956𝐷ଶ ൅ 1.0898𝐷𝐻 െ 0.1150𝐻ଶ 

Note that four of the six coefficients are fairly close, whose difference is less than 10 percent of each 
other. However, the coefficients of 𝐻 and of 𝐻ଶ are quite different, indicating that these coefficients are 
less important for fitting the samples. This does not mean, however, that these coefficients may not affect 
predictions at other points besides the sample points. We are thus warned that these coefficients may need 
special treatment. The profit-per-can plot based on the experimental samples is shown in Figure 2-4: one 
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from a quadratic PRS using experimental samples and the other using the true samples. Both PRSs are 
obviously quite similar to each other. The following Matlab code is used for plotting Figure 2-4. 

% Quadratic PRS for profit-per-can 

x=[1.8 3.6; 2.4 4.8; 3.0 6.0; 1.5 4.6; 2.1 5.8; 2.7 7.0; 1.4 5.6; 2.0 

6.8; 2.6 8.0]; 

p=[5.9 13.1 22.0 4.7 12.0 20.9 4.9 12.5 21.4]'; 

D=x(:,1); H=x(:,2); 

ptrue=0.2361*pi*D.^2.*H-3.858E-4*pi^2*D.^4.*H.^2-0.1*pi*(0.5*D.^2+D.*H); 

% 

X=[ones(9,1) D H D.^2 D.*H H.^2]; 

A=X'*X; 

Btrue=X'*ptrue; 

B=X'*p; 

btrue=A\Btrue; 

b=A\B; 

% 

d=linspace(1.5,3.5,10); 

h=linspace(3.0,7.0,10); 

[D,H]=meshgrid(d,h); 

P=b(1)+b(2)*D+b(3)*H+b(4)*D.^2+b(5)*D.*H+b(6)*H.^2; 

Ptrue=btrue(1)+btrue(2)*D+btrue(3)*H+btrue(4)*D.^2+btrue(5)*D.*H+btrue(6)

*H.^2; 

surf(D, H, P); hold on; surf(D, H, Ptrue); 

 

 
Figure 2-4: Quadratic polynomial response surface model for the profit-per-can.  
 

 

Curse of dimensionality 
As shown in the previous example, the number of regression coefficients for the quadratic PRS is six for 
two-dimensional input variables. The number of regression coefficients rapidly increases as the order of 
PRS increases and the dimension of the input variable increases. Considering the fact that the required 
number of samples is about two- or three-fold of the number of regression coefficients, the required 
number of samples rapidly increases along with the dimension of input variables and the order of PRS, 
which is referred to as the curse of dimensionality. In the case of a quadratic and a cubic PRS, the 
numbers of regression coefficients are, respectively, 
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𝑛ఉ
ሺଶሻ ൌ

1
2

ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ (2.16)

𝑛ఉ
ሺଷሻ ൌ

1
6

ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻሺ𝑛 ൅ 3ሻ 
(2.17)

where 𝑛 is the dimension of input variables. For example, when 𝑛 ൌ 10, 𝑛ఉ
ሺଶሻ ൌ 66 and 𝑛ఉ

ሺଷሻ ൌ 286. 
Therefore, in 10-dimensional input variables, we need more than 800 samples to fit the PRS, which 
becomes impractical for many applications with expensive simulations or experiments. 
 Although the rapid growth of the number of required samples is a part of the curse of dimensionality, 
the major difficulty comes from the fact that when the dimensionality increases, the volume of the design 
space increases so fast that the available samples become sparse. In order to obtain a reliable result, the 
number of samples needed often grows exponentially with dimensionality. For example, let us assume 
that all input variables are normalized by a unit length. If we generate 10 evenly spaced samples in a one-
dimensional domain, then the distance between the samples would be 0.1. An equivalent sampling of a 
10-dimensional unit hypercube with a lattice that has a spacing of 0.1 between adjacent samples would 
require 10ଵ଴ sample points, which is practically impossible to use. Therefore, in a high-dimensional 
design space, samples are sparse and the distances between samples are quite large. When the distance 
between samples is large, it would be difficult to capture the trend of the function accurately. In addition, 
sparse sampling inevitably causes a large extrapolation region as shown in Figure 1-5, where the volume 
covered by samples (interpolation region) is dramatically reduced as the dimension increases. 
 Based on the above discussion, it would be challenging to build an accurate and reliable surrogate 
model with more than 10 design variables. Unfortunately, it is common that many engineering 
applications have more than 10 design variables. Instead of trying to make a surrogate model that is 
accurate in high-dimensional input variables with a small number of samples, it would make more sense 
to reduce the number of variables. It is hard to imagine that a QoI strongly depends on many variables 
simultaneously; such a system would be very sensitive and volatile for a small change in variables. 
Instead, many engineering systems strongly depend on only a handful number of variables. Therefore, it 
would make sense to identify those design variables that significantly affect the QoI and fix all other 
variables that are not significant. Then, the surrogate model is built using only those significant variables. 
This process of identifying significant input variables and fixing insignificant variables is called 
sensitivity analysis [14]. If 100 samples are affordable, it would be better to build an accurate surrogate 
with four significant input variables, rather than building an inaccurate surrogate with all ten variables. 
 It is also possible to combine multiple variables together instead of using individual variables, which 
is called dimensional analysis. A good example is nondimensionalization in fluid mechanics, where 
multiple variables are combined together to describe a physically important phenomenon together [15]. 
Another method of dimension reduction is the transformation of data from a high-dimensional space into 
a low-dimensional space so that the low-dimensional representation retains some meaningful properties of 
the original data, ideally close to its intrinsic dimension. Principle component analysis [16] or proper 
orthogonal decomposition (POD) is one of dimension reduction, which performs a linear mapping of the 
data to a lower-dimensional space in such a way that the variance of the data in the low-dimensional 
representation is maximized. In practice, the covariance matrix of the samples is constructed and the 
eigenvectors on this matrix are computed. The eigenvectors that correspond to the largest eigenvalues (the 
principal components) can now be used to reconstruct a large fraction of the variance of the original data. 
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Assumptions in linear regression 
Although the process of regression analysis in Eq. (2.14) is simple, the accuracy analysis of regression is 
quite comprehensive. Before we discuss regression accuracy, it would be useful to summarize the 
assumptions in the regression analysis.  
 (1) The regression analysis assumes that the input variables can be fully controllable; that is, we can 
select the input variables without any errors associated with them. This might sound obvious but in 
practice, it could be hard to control the input variables precisely during experiments. When a sample is 
given in the form of ሺ𝐱௜, 𝑦௜ሻ, the regression analysis assumes that there is random noise in 𝑦௜, but 𝐱௜ is 
precise. 
 (2) The functional form of PRS is a linear combination of unknown coefficients and basis functions. 
Therefore, the only limitation is the relationship between the QoI and unknown coefficients is linear. This 
is flexibility rather than limitation. Because of this flexibility, PRS often shows “too much power”, in that 
it tends to overfit the data. Using a too-small number of samples, too many basis functions and/or too-
high order of monomial basis functions can cause overfitting. There are several techniques available to 
prevent overfittings, such as ridge regression, lasso regression and Bayesian linear regression. 
 (3) The noise in each sample is independent. More specifically, the noise in samples is statistically 
uncorrelated. For example, the noise in two samples is nothing related to the distance between the two 
samples. In fact, the linear regression allows to have samples at the same location; i.e., 𝐱௜ ൌ 𝐱௝, but the 
output QoI samples may not be the same; i.e., 𝑦௜ ് 𝑦௝ because the noise in the two samples is 
independent. When we generate noise samples from ~𝑁ሺ0, 𝜎ଶሻ, we automatically apply the independence 
assumption.  
 (4) The variance of the noise is assumed to be constant throughout the entire design space. That is, the 
noise is normally distributed with a zero mean and a constant standard deviation 𝜎. Based on this 
assumption, minimizing the RMS error can provide an unbiased fit. This seems a reasonable assumption, 
but in practice, the noise in experiments often depends on the value of measurement. When the QoI does 
not vary rapidly over the design space, this assumption can be reasonable. When the QoI varies over 
orders of magnitude, however, this assumption may not represent the reality. For example, when we 
measure stress in a component, it might be reasonable to say that the measurement error is 10MPa when 
the level of stress is 500MPa, which corresponds to a 2% error. However, the same measurement error of 
10MPa may not be acceptable when the level of stress is 10MPa because that would imply the actual 
stress could vary anywhere between 0 and 20 MPa. In many engineering experiments, the measurement 
noise is often proportional to the magnitude of data. In such a case, it makes more sense to assume that the 
coefficient of variation (CoV) remains the same, not the standard deviation. If we want to check if 
samples satisfy this assumption, the residuals at all sample locations can be plotted. If residuals are 
randomly scattered about the horizontal midline at 0 with a similar bound, it means that this assumption is 
satisfied. If samples do not satisfy this assumption, it will result in an overall “average” estimate of 
variance being used instead of one that takes into account the true variance structure. This leads to less 
precise parameter estimates and biased standard errors, resulting in misleading tests and interval 
estimates. 
 (5) The moment matrix 𝐗்𝐗 is positive definite such that the regression analysis yields a unique 
solution 𝐛. In order to have a positive definite matrix 𝐗்𝐗, the design matrix 𝐗 must have a full column 
rank of 𝑛ఉ.  Rank deficiency can happen when a linear relationship exists between two or more basis 
functions or when a smaller number of samples are used than the number of coefficients to be estimated. 
It is noted that monomial basis functions are linearly independent. In order to prevent a near singular 
matrix, it is recommended that the number of samples should be two or three folds larger than that of the 
coefficients. 
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2.4. Goodness of fit 

The goal of the surrogate fitting process, in particular the linear regression in the previous section, is to 
find the best fit that can approximate the true function. In order to determine the quality of the 
approximation, it would be necessary to define the measure of goodness. In the case of the curve fitting in 
Section 2.2, the RMS error at sample locations was used as an error measure, which was minimized to 
determine regression coefficients. As shown in Section 2.3, different error measures would yield different 
fitting results. Different from the error measures to fit a surrogate, the measure of goodness can be 
considered post-processing in a way. After fitting a surrogate by minimizing an error measure, the 
measure of goodness characterizes the fidelity of the surrogate for predicting the behavior in future 
simulations. It is possible that a measure can be local at a point or in a region, but in this section, we limit 
ourselves to global measures, which are a single number that characterizes the overall fidelity of the 
surrogate model in the entire design space.  
 However, achieving this goal is often doomed because of a simple reason: we do not know the true 
function, and therefore, we cannot compare the accuracy of the surrogate model against the true function. 
Although samples represent the true function, as we discussed in the previous section, they include 
random noise (or, at least we assume it). Therefore, fitting the samples exactly does not guarantee that the 
surrogate model is accurate compared to the true function. A good example is the one shown in Figure 1-
8, where the quintic polynomial passes through all samples with zero error, but it is not an accurate 
surrogate model except for the sample locations. Therefore, the biggest challenge in assessing the 
accuracy of a surrogate model is how to evaluate its accuracy without knowing the true function. All 
information that we have (or we assume) is that the noise is normally distributed with respect to the true 
function, but we still do not know the variance of the distribution. Therefore, the goal of assessing the 
accuracy of a surrogate model to the true function is difficult to achieve. 
 Instead, it is possible to evaluate the accuracy of a surrogate model against the samples. That is, how 
well the surrogate fits the samples, which is referred to as ‘goodness of fit.’ In evaluating the goodness of 
fit, it is important to remember that errors are minimized at sample locations during the fitting process. 
For example, if the number of samples is the same as the number of regression coefficients; i.e., 𝑛௬ ൌ 𝑛ఉ, 
theoretically, it is possible that the regression equation can be solved such that the surrogate model can 
pass through all sample points. That is, the errors at all sample points are zero. However, this does not 
mean that the surrogate model is accurate at unsampled points. Therefore, the goodness of fit does not 
mean simply measuring the error at sample points. 
 In general, the goodness of fit is evaluated in two ways: (a) equivalence between the surrogate and 
samples and (b) prediction accuracy of the surrogate. Equivalence measures include the coefficient of 
multiple determination and the adjusted coefficient of multiple determination. They measure the 
equivalence between the surrogate and the samples in terms of variability. The first provides the fraction 
of the variability in the samples captured by the surrogate. The second adjusts it in an attempt to estimate 
the fraction that will be captured by using the surrogate to predict values at other points. Good fidelity 
will be reflected in these coefficients being close to one. The second category of prediction accuracy 
measures estimates what will be the RMS error in predictions based on the surrogate and includes cross-
validation error and standard error. The cross-validation error is a measure that can be applied to any 
surrogate, while the standard error applies only to linear regression with specific assumptions on the noise 
in the samples. A surrogate model is considered to be good when these error measures are small compared 
to the average value of the samples.  
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Estimation of noise in samples 
In most applications, the PRS approximation we construct based on given data is intended for the 
prediction of QoI at other design points, typically for improving the design. Therefore, the ultimate test of 
the PRS is how well it predicts the QoI at other points of interest. However, if the PRS does not 
approximate the response well even at the data points, we cannot expect it to approximate well other 
points in the design space. The most immediate measures of the accuracy of the fit to the samples are the 
various errors discussed earlier, the RMS error, the average error and the maximum error. 
 Since the samples are assumed to include both the true function value and noise, it is important to 
estimate the level of noise accurately so that the surrogate can approximate the true function, not the 
noise. After fitting a surrogate 𝑦ොሺ𝐱, 𝛃ሻ ൌ 𝛏ሺ𝐱ሻ்𝐛, the model predictions at sample points become 
𝑦ොሺ𝐱௜, 𝛃ሻ ൌ 𝛏ሺ𝐱௜ሻ்𝐛, 𝑖 ൌ 1, ⋯ , 𝑛௬. These 𝑛௬ predictions can be written in matrix-vector notation as 𝐲ො ൌ
𝐗 ∙ 𝐛, and the regression errors at the sample points become 𝐞 ൌ 𝐲ො െ 𝐲. Then, the RMS error in Eq. (2.7) 
can be rewritten as 

𝑒ோெௌ ൌ ඨ
𝑆𝑆𝑒
𝑛௬

 (2.18)

where the square-sum-error is defined as 𝑆𝑆𝑒 ൌ 𝐞்𝐞 ൌ 𝐲்𝐲 െ 2𝐛்𝐗்𝐲 ൅ 𝐛்𝐗்𝐗𝐛. However, this 
calculation of RMS error is quite misleading if we wanted to use it to assess the accuracy of PRS. This 
becomes clear if we note that the number of sample points 𝑛௬ is equal to the number of coefficients, 𝑛ఉ, 
then the PRS will pass through the sample points, and the error will be zero. We certainly do not expect 
that the error will be zero at other points, not included in the data. In fact, fitting a PRS to the same 
number of points equal to the number of coefficients (known as saturated design) is known to often lead 
to poor approximation, especially when there is noise in the data. 
 An impressive body of theoretical work has been done for the case where the noise in the samples is 
random with normal distribution with zero mean and standard deviation of 𝜎, and where the noise at one 
point is uncorrelated with the noise at other data points (e.g., Myers and Montgomery [4]).  
 Since the surrogate fitting process minimizes the RMS error, it is minimum at sample points but 
underestimates the error at unsampled (prediction) points. Therefore, it is not a good measure to assess the 
accuracy of the surrogate model. However, the square-sum-error can be used to estimate the variance of 
noise in samples. The variance of random samples 𝑦௜  is defined as 

𝑉𝑎𝑟 ൌ
1

𝑛௬ െ 1
෍൫𝑦௜ െ 𝜇௬൯

ଶ

௡೤

௜ୀଵ

 (2.19)

where 𝜇௬ is the mean of samples, and the denominator 𝑛௬ െ 1 is used for unbiased variance, which 
represents the number of degrees-of-freedom. It is reminded that PRS assumes that the model is accurate 
but the samples have a random noise. The surrogate 𝑦ොሺ𝐱, 𝛃ሻ is considered a mean prediction, and the 
difference between the samples and the mean predictions is considered noise. Therefore, in the viewpoint 
of noise, its mean is zero, and the unbiased estimate of the variance of the noise from the samples is 

𝜎ොଶ ൌ
𝑆𝑆𝑒

𝑛௬ െ 𝑛ఉ
 (2.20)

The square root of Eq. (2.20), 𝜎ො, is called the standard error of noise.  
 Since the surrogate model has 𝑛௬ samples with 𝑛ఉ model parameters, the denominator 𝑛௬ െ 𝑛ఉ is 
represents the number of degrees-of-freedom. If this estimate of the RMS error is larger than we can 
tolerate for predicting values of the response at candidate design points, we conclude that the PRS is 
inadequate. In this case, we must change the form of the response surface to try to fit the samples better. 
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The simplest approach is to add terms to the polynomial approximation. If we used a linear polynomial to 
start with, we may want to go to a quadratic. If we used a quadratic, we may want to use a cubic. 
 Unfortunately, while we can always improve the fit to the samples by increasing the number of terms 
in the PRS, it is not clear that these gains will translate into gains in predicting the PRS at other points. As 
we add coefficients, we run the danger of ‘overfitting’ the samples. This danger is particularly acute when 
the samples contain a substantial amount of noise. As we increase the number of coefficients, we may be 
fitting the noise rather than the underlying response. This danger is captured by Eq. (2.20). As we add 
more terms, we expect to decrease the numerator, but the denominator will also decrease.  
 There are several assumptions under the noise estimate in Eq. (2.20). Firstly, it is assumed that the 
true function is described by the model form of the surrogate. If there is a model form error, it is 
embedded in the estimated noise. Secondly, the samples include noise that is normally distributed with a 
zero mean and the same standard deviation at every sample. Lastly, the noises in different samples are not 
correlated. Under these assumptions, the standard error, 𝜎ො, is an estimate of the standard deviation of the 
noise. The standard error will be used to estimate the prediction error in Section 2.6. That is the error 
between the true function and the surrogate prediction. 
 
Example 2-3 
The following five equally-spaced samples are generated from a true function 𝑦 ൌ 𝑥 and added noise 
~𝑁ሺ0,1ଶሻ.: ሺ𝑥௜, 𝑦௜ሻ ൌ ሺ0, 1.5326ሻ, ሺ2.5, 1.7303ሻ, ሺ5.0, 5.3714ሻ, ሺ7.5, 7.2744ሻ, ሺ10.0, 11.1174ሻ. Fit the 
samples using a quartic PRS (5 coefficients) and see if the surrogate fits the trend or the noise. 
 
Solution: 
The five samples can be fitted using polyfit Matlab function. Since the quartic PRS has five 
coefficients, the number of samples and the number of coefficients are the same; i.e., 𝑛௬ ൌ 𝑛ఉ. Therefore, 
the regression equation is equivalent to solving a linear system of equations. In this case, the linear system 
of equations has a unique solution that makes the errors zero. The fitted quartic PRS becomes 

𝑦ොሺ𝑥ሻ ൌ 1.5326 െ 2.1864𝑥 ൅ 1.3397𝑥ଶ െ 0.1970𝑥ଷ ൅ 0.0095𝑥ସ 

Figure 2-5 compares the quartic PRS with samples and the true function. It is noted that the quartic PRS 
passes through all samples with zero errors. However, there is a significant error at unsampled locations. 
In this case, the PRS fits noise rather than the trend of the true function. This happens when the number of 
samples is not enough to determine the mean of the trend of samples. In order to have a meaningful 
regression performance, it is often recommended that the number of samples should be two- or three-fold 
larger than that of the regression coefficients. The following Matlab code can be used to plot Figure 2-5. 

x=[0 2.5 5 7.5 10]'; 

y=[1.5326 1.7303 5.3714 7.2744 11.1174]'; 

xp=0:0.5:10; ytrue=xp; 

[b,s]=polyfit(x,y,4);  

yfit=polyval(b,xp);  

plot(x,y,'+',xp,ytrue,'r',xp,yfit,'b');  

legend('Samples','True function','Fitted function'); 
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Figure 2-5: Fitted quartic polynomial response surface of noisy samples from 𝑦 ൌ 𝑥.  
 

 
As mentioned before, the PRS assumes that the model form is correct, but samples have noise. Because of 
this assumption, the estimate of noise variance in Eq. (2.20) is reasonable when the model form is correct. 
If the model form has an error, it will be included in the estimated noise variance. The following example 
shows how the model form error can contribute to the noise variance estimate. 
 
Example 2-4 
Generate 20 equally-spaced samples in 𝑥 ∈ ሾ0, 10ሿ from a true function 𝑦 ൌ 𝑥ଶand added noise 
~𝑁ሺ0,1ଶሻ. Fit the samples using linear and quadratic PRS and estimate the noises from the two 
surrogates. 
 
Solution: 
In order to prevent different random samples, rng default Matlab command is used, which will reset 
the random number generator sequence. In addition, the noise samples are shifted to have a zero mean by 
the following command: noise=noise-mean(noise). In this specific case, the standard deviation 
of noise samples is 1.4797, which is different from the population distribution ~𝑁ሺ0,1ଶሻ. The two fitted 
surrogate models become 

𝑦ො௅ሺ𝑥ሻ ൌ െ16.2473 ൅ 10.0916𝑥 

𝑦ොொሺ𝑥ሻ ൌ െ0.5748 ൅ 0.1657𝑥 ൅ 0.9926𝑥ଶ 

The estimated standard deviations from the two surrogate models are, respectively, 

𝜎ො௅ ൌ ඨ
𝑆𝑆𝑒௅

20 െ 2
ൌ 8.7153, 𝜎ොொ ൌ ඨ

𝑆𝑆𝑒ொ

20 െ 3
ൌ 1.5336 

Compared to the actual noise standard deviation of 1.4797, the estimate from the quadratic PRS is close to 
the actual one, but the estimate from the linear PRS is quite different from the actual one. This is because 
the linear PRS has a significant level of model error. Figure 2-6(a) shows the two PRS predictions. The 
quadratic PRS follows the trend of samples well, while the linear PRS approximates the trend linearly. As 
shown in Figure 2-6(b), the errors of the quadratic PRS are randomly distributed with respect to the zero 
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line, while the errors of the linear PRS are all positive in 𝑥 ൏ 2 or 𝑥 ൐ 8 and all negative in 2 ൏ 𝑥 ൏ 8. 
This is good indicator of the presence of model form error. The following Matlab code is used to fit the 
surrogate and plot the results. 

rng default; 

x=linspace(0,10,20); 

ytrue=x.^2; 

noise=randn(1,20); noise=noise-mean(noise); 

y=ytrue+noise; 

bL=polyfit(x,y,1);  

yL=polyval(bL,x);  

sigmaL=sqrt((y-yL)*(y-yL)'/(20-2)) 

bQ=polyfit(x,y,2);  

yQ=polyval(bQ,x);  

sigmaQ=sqrt((y-yQ)*(y-yQ)'/(20-3)) 

plot(x,y,'+',x,x.^2,'r',x,yL,'b',x,yQ,'k');  

legend('Samples','True function','Linear PRS','Quadratic PRS'); 

figure(2); 

plot(x,y-yL,'+',x,y-yQ,'o'); 

legend('e_L','e_Q'); 

 

 
Figure 2-6: Fitted linear and quadratic polynomial response surface of noisy samples from 𝑦 ൌ 𝑥ଶ.  
 

 

Coefficient of multiple determination 
As mentioned before, the accuracy at sample points is different from the accuracy at prediction points. 
Therefore, instead of measuring accuracy at sample points, it would be possible to measure the 
equivalence between the samples and PRS predictions in terms of variability. That is how well a surrogate 
captures the variability in samples. The coefficient of multiple determination ሺ𝑅ଶሻ  is a numerical index 
that reflects the degree to which variation in the samples is accounted for by the predictions. If a surrogate 
passes through all sample points, then the variability of the predictions at sample points would be the 
same as that of the samples. In that case, the entire variability in the samples is explained by the 
variability of the model predictions. On the other hand, if the model prediction is a constant at the mean of 
the samples, then none of the variability of the samples can be explained by the model predictions. In such 
a case, the entire variability becomes the square-sum-error 𝑆𝑆௘ in Eq. (2.18). 
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 Since we do not know the true function, the coefficient of multiple determination is defined as 
variation with respect to the mean of samples, which is defined as 

𝑦ത ൌ
1

𝑛௬
෍ 𝑦௜

௡೤

௜ୀଵ

 (2.21)

The vector version of the mean can be defined as 𝐲ത ൌ ሼ𝑦ത, 𝑦ത, ⋯ , 𝑦തሽ் whose dimension is 𝑛௬ ൈ 1. The 
variation of samples from the mean is defined as 

𝑆𝑆௬ ൌ ෍ሺ𝑦௜ െ 𝑦തሻଶ

௡೤

௜ୀଵ

 (2.22)

This is also known as the total variation. Similarly, the variation of the PRS 𝑦ො from the same mean is 
defined as  

𝑆𝑆௥ ൌ ෍ሺ𝑦ො௜ െ 𝑦തሻଶ

௡೤

௜ୀଵ

 (2.23)

where 𝑦ො௜ ൌ 𝑦ොሺ𝐱ଵሻ. This is also known as the explained variation. That is, the variation can be explained 
by the fitted model. If samples were generated by adding random noise to a true function and if the fitted 
PRS model is close to the true function, then 𝑆𝑆௬ is larger than 𝑆𝑆௥ because of the variation from the 
random noise in the samples. In fact, the variation from the random noise corresponds to the sum of 
square errors in Eq. (2.18), which is also known as the unexplained variation. In linear regression, these 
three variations have the following relationship: 

𝑆𝑆௬ ൌ 𝑆𝑆௥ ൅ 𝑆𝑆௘ (2.24)

That is, the total variation in samples is the sum of the explained variation by the model and the 
unexplained variation by noise. The relationship in Eq. (2.24) holds if and only if 𝐲்𝐲ത ൌ 𝐲ො்𝐲ത. Since 𝑦ത is a 
constant, the condition means that the sum of samples equals to the sum of predictions at sample points, 
or equivalently, the sum of residuals 𝑒௜ ൌ 𝑦௜ െ 𝑦ො௜ is zero. Since the first column of the design matrix 𝐗 is 
all ones, the first element of 𝐗்𝐞 is the sum of residuals. From the regression analysis, it can be shown 
that 

𝐗்𝐞 ൌ 𝐗்ሾ𝐈 െ 𝐗ሺ𝐗்𝐗ሻିଵ𝐗்ሿ𝐲 ൌ ሾ𝐗் െ 𝐗்ሿ𝐲 ൌ 𝟎 (2.25)

Therefore, the condition 𝐲்𝐲ത ൌ 𝐲ො்𝐲ത holds for linear regression of PRS. The proof of Eq. (2.24) is left as 
an exercise problem.  
 The ratio of Eq. (2.23) over Eq. (2.22), denoted by 𝑅ଶ, measures the fraction of the variation in the 
samples is captured by the PRS: 

𝑅ଶ ൌ
𝑆𝑆௥

𝑆𝑆௬
ൌ 1 െ

𝑆𝑆௘

𝑆𝑆௬
 (2.26)

𝑅ଶ is a measure of the goodness of fit of a PRS model [17], often interpreted as the proportion of sample 
variation “explained” by the model prediction. If the fitted model 𝑦ො comes from linear regression, it is 
expected that 0 ൑ 𝑅ଶ ൑ 1. An 𝑅ଶ ൌ 1 indicates that the fitted model explains all variability in samples 𝐲, 
while 𝑅ଶ ൌ 0 indicates no ‘linear’ relationship between the samples and predictions. An interior value 
such as 𝑅ଶ ൌ 0.7 means that 70% of variability in the samples may come from the surrogate predictions 
and the remaining 30% may come from the noise in samples. 
 It is interesting to note that 𝑅ଶ monotonically increases as the PRS includes additional basis 
functions; i.e., increasing the number of coefficients 𝑛ఉ. This can be considered a major drawback of 𝑅ଶ 
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to be used as a criterion for assessing a goodness-of-fit of a surrogate model. A good example was shown 
in Figure 2-5, where the order of PRS is increased to a quintic polynomial, the PRS passes through all the 
samples, and thus, 𝑅ଶ ൌ 1. However, this does not mean that the PRS is accurate in prediction. Therefore, 
𝑅ଶ may not represent the accuracy of a surrogate especially when the number of coefficients is close to 
the number of samples.  
 This leads to the alternative approach of looking at the adjusted 𝑅ଶ, namely 𝑅௔

ଶ, which penalizes 𝑅ଶ as 
extra basis functions are included in the model. The penalization is based on the degrees-of-freedom of 
the estimate of the variance around the mean. First, the square-sum-error 𝑆𝑆௘ is penalized by the degrees-
of-freedom 𝑛௬ െ 𝑛ఉ because it uses 𝑛௬ samples but 𝑛ఉ coefficients have been used. In the same way, the 
variance of samples 𝑆𝑆௬ is penalized by the degrees-of-freedom 𝑛௬ െ 1 because the mean is fixed. After 
using these penalizations on the original definition of 𝑅ଶ, the adjusted coefficient of multiple 
determination 𝑅௔

ଶ is given as 

𝑅௔
ଶ ൌ 1 െ

𝑆𝑆௘/ሺ𝑛௬ െ 𝑛ఉሻ

𝑆𝑆௬/ሺ𝑛௬ െ 1ሻ
ൌ 1 െ ሺ1 െ 𝑅ଶሻ ቆ

𝑛௬ െ 1
𝑛௬ െ 𝑛ఉ

ቇ (2.27)

If the adjusted value, 𝑅௔
ଶ, decreases as we increase the number of coefficients, it is a warning that we may 

be fitting the samples better, but losing predictive capability. 
 𝑅௔

ଶ can be negative and always less than or equal to 𝑅ଶ. When adding an additional basis, 𝑅௔
ଶ 

increases only when the basis contributes to the prediction accuracy. Therefore, 𝑅௔
ଶ can be a good 

indicator if an additional basis should be introduced or not. Let us assume that a series of additional basis 
functions are available in the order of their significance. Then each basis function is introduced in the 
linear regression and calculate 𝑅௔

ଶ each time. The level at which 𝑅௔
ଶ reaches a maximum, and decreases 

afterward, would be the regression with the ideal combination of having the best fit without fitting the 
noise. Therefore, 𝑅௔

ଶ is more appropriate when evaluating the PRS fit and comparing alternative models. 
 
Example 2-5 
A QoI 𝑦 is a function of a single variable 𝑥, and has eventually been identified to follow a simple 
relationship 𝑦௧௥௨௘ ൌ 𝑥. However, the first set of measurements that were taken are given as four ሺ𝑥, 𝑦ሻ 
sample pairs: ሺെ2, െ1.5ሻ, ሺെ1, െ1.5ሻ, ሺ1,1.25ሻ, ሺ2,1.75ሻ. From theoretical considerations, you also know 
that 𝑦ሺ0ሻ ൌ 0. Fit a linear function and a quadratic function to the samples, compare the two fits and see 
how they model the true function. 
 
Solution: 
Linear PRS: The PRS is of the form 𝑦ොሺ𝑥ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥, and using the point ሺ0,0ሻ as another sample point 
we can define the following matrices and vectors for regression: 

𝐗 ൌ

⎣
⎢
⎢
⎢
⎡
1
1

െ2
െ1

1
1

0
1

1 2 ⎦
⎥
⎥
⎥
⎤

,    𝐲 ൌ

⎩
⎪
⎨

⎪
⎧െ1.5

െ1.5
0

1.25
1.75⎭

⎪
⎬

⎪
⎫

,    𝐗்𝐗 ൌ ቂ5 0
0 10

ቃ,    𝐗்𝐲 ൌ ቄ 0
9.25

ቅ  

By solving the normal equation in Eq. (2.14), the unknown regression coefficients are identified as 𝑏ଵ ൌ 0 
and 𝑏ଶ ൌ 0.925. Therefore, the following linear PRS and residuals at sample locations can be obtained: 

𝑦ොሺଵሻሺ𝑥ሻ ൌ 0.925𝑥,    𝐞 ൌ

⎩
⎪
⎨

⎪
⎧ 0.35

െ0.575
0.0

0.325
െ0.1 ⎭

⎪
⎬

⎪
⎫
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The coefficient of multiple determination can be calculated from Eqs. (2.21) - (2.27) as 

𝑦ത ൌ 0,   𝑆𝑆௬ ൌ 9.125,   𝑆𝑆௥ ൌ 8.5563, 𝑅ଶ ൌ 0.9377, 𝑅௔
ଶ ൌ 0.9169  

Therefore, based on the coefficient of multiple determination, the linear PRS performs well in predicting 
the trend of samples. In fact, the linear PRS appears to be satisfactory in terms of error measures as well: 

𝑒ோெௌ ൌ 0.337, 𝑒௔௩ ൌ 0.27, 𝑒௠௔௫ ൌ 0.575  

Lastly, the estimate of the standard deviation of noise in Eq. (2.20) becomes 

𝜎ොଶ ൌ
𝑆𝑆௘

𝑛௬ െ 𝑛ఉ
ൌ 0.1896, ⇒ 𝜎ො ൌ 0.4354  

which is close to the true standard deviation of noise 𝜎 ൌ 0.3953, which can be obtained by comparing it 
with 𝑦௧௥௨௘ and the samples. 
 
Quadratic PRS: The PRS is of the form 𝑦ොሺ𝑥ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥 ൅ 𝑏ଷ𝑥ଶ, and using point ሺ0,0ሻ as another 
sample point we can define the following matrices and vectors for regression: 

𝐗 ൌ

⎣
⎢
⎢
⎢
⎡
1
1

െ2
െ1

4
1

1
1

0
1

0
1

1 2 4⎦
⎥
⎥
⎥
⎤

,    𝐲 ൌ

⎩
⎪
⎨

⎪
⎧െ1.5

െ1.5
0

1.25
1.75⎭

⎪
⎬

⎪
⎫

,    𝐗்𝐗 ൌ ൥
5 0 10
0 10 0

10 0 34
൩,    𝐗்𝐲 ൌ ൝

0
9.25
0.75

ൡ  

By solving the normal equation in Eq. (2.14), the unknown regression coefficients are identified as 𝑏ଵ ൌ
െ0.1071, 𝑏ଶ ൌ 0.925, and 𝑏ଷ ൌ 0.0536. Therefore, the following quadratic PRS and residuals at sample 
locations can be obtained: 

𝑦ොሺଶሻሺ𝑥ሻ ൌ െ0.1071 ൅ 0.925𝑥 ൅ 0.0536𝑥ଶ,    𝐞 ൌ

⎩
⎪
⎨

⎪
⎧ 0.243

െ0.521
0.107
0.379

െ0.207⎭
⎪
⎬

⎪
⎫

  

The coefficient of multiple determination can be calculated from Eqs. (2.21) − (2.27) as 

𝑦ത ൌ 0,   𝑆𝑆௬ ൌ 9.125,   𝑆𝑆௥ ൌ 8.5964, 𝑅ଶ ൌ 0.9421, 𝑅௔
ଶ ൌ 0.8841  

We see that there is only a small improvement in 𝑅ଶ, and that 𝑅௔
ଶ is actually poorer, which is an indication 

that we have not gained any predictive capabilities by adding the quadratic terms. The same conclusion 
can be obtained based on the error metrics as 

𝑒ோெௌ ൌ 0.325, 𝑒௔௩ ൌ 0.291, 𝑒௠௔௫ ൌ 0.521  

These errors have not changed much compared to the linear model, with small improvements in the RMS 
and maximum errors, and a small increase in the average error. The estimate of the standard deviation 
of the noise in the samples from Eq. (2.20) becomes 

𝜎ොଶ ൌ
𝑆𝑆௘

𝑛௬ െ 𝑛ఉ
ൌ 0.2643, ⇒ 𝜎ො ൌ 0.5141  

which is a small increase over the linear case. This increase is another indication that the quadratic 
approximation is not better than the linear approximation. 
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Figure 2-7: Comparison of linear and quadratic polynomial responses  
 

 
We discussed before that PRS starts from the assumption that the model form is accurate, but samples 
have random noise that follows a normal distribution with zero mean. In reality, however, we do not 
know the correct model form. We do not know if the true functional form is polynomials either. From 
Taylor’s expansion theorem, it is possible that any continuous and continuous function can be 
approximated using polynomials. Therefore, we can accept the idea that the true function is in the form of 
polynomials. Then the remaining question is what orders of polynomials should be used. As shown in the 
previous example, a higher-order polynomial does not mean a better approximation. Therefore, in order to 
find an appropriate model form, we start from lower-order polynomials and gradually increase the order 
until the approximation becomes worse, or we start from higher-order polynomials and gradually remove 
basis functions that do not contribute significantly. In Section 2.5, we will discuss the second approach, 
which is called backward elimination.  
 
Example 2-6 
Compare the average error and the coefficient of multiple determination of two PRS surrogates that are 
generated from two true functions 𝑦ሺଵሻሺ𝑥ሻ ൌ 𝑥 and 𝑦ሺଶሻሺ𝑥ሻ ൌ 0.1𝑥. In order to build the surrogates, 
generate 31 equal-interval samples from the design space 𝑥 ∈ ሾ0, 30ሿ and add random noise from the 
normal distribution ~𝑁ሺ0,1ଶሻ. Check if 𝑒௔௩ and 𝑅ଶ can be used to assess the accuracy of surrogates. 
 
Solution: 
In order to generate the same sequence of random numbers, the rng default command is used before 
generating random numbers in Matlab. After generating samples of true functions 𝑦௧௥௨௘

ሺଵሻ  and 𝑦௧௥௨௘
ሺଶሻ , the 

same random noises are added to the true functions. Since the input variable is one dimension, polyfit 
and polyval Matlab functions are used for building the linear PRS. The two PRS surrogates are, 
respectively, 

𝑦ොሺଵሻሺ𝑥ሻ ൌ 0.5728 ൅ 0.9993𝑥 

𝑦ොሺଶሻሺ𝑥ሻ ൌ 0.5728 ൅ 0.0993𝑥 

Both PRSs have the same average error 𝑒௔௩ ൌ 0.5628. However, the coefficients of multiple 
determination are quite different. 𝑅ଶ for 𝑦ොሺଵሻ is 0.9806, while that of 𝑦ොሺଶሻ is 0.3325. Therefore, even if the 
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average error of the two surrogates is the same, 𝑅ଶ of the first surrogate looks much better than the 
second. This happens because even if the noises are the same 𝑦ሺଵሻ varies much faster than 𝑦ሺଶሻ. As shown 
in Figure 2-8(a), the difference between samples and PRS surrogate seems small, while the difference 
looks significant in Figure 2-8(b). Therefore, 𝑅ଶ does not reflect the accuracy of a surrogate model. It 
shows the ratios of the variation of PRS surrogate to the variation of samples. The following Matlab code 
is used to plot Figure 2-8.  
 

rng default; 
x=linspace(0,30,31); noise=randn(1,31); 
y1true=x; y1=y1true + noise; 
y2true=0.1*x; y2=y2true + noise; 
b1=polyfit(x,y1,1); 
b2=polyfit(x,y2,1); 
y1p=polyval(b1,x);  
y2p=polyval(b2,x);  
eva1= sum(abs(y1p-y1true))/31; 
eva2= sum(abs(y2p-y2true))/31; 
meany1=mean(y1); 
meany2=mean(y2); 
SSy1= sum((y1-meany1).^2); 
SSy2=sum((y2-meany2).^2); 
SSr1=sum((y1p-meany1).^2); 
SSr2=sum((y2p-meany2).^2); 
R1=SSr1/SSy1; 
R2=SSr2/SSy2; 

figure(1) 

plot(x,y1,'+',x,y1true,'b',x,y1p,'r'); 

legend('Samples','True function','Linear PRS'); 

figure(2) 

plot(x,y2,'+',x,y2true,'b',x,y2p,'r'); 

legend('Samples','True function','Linear PRS'); 
  

 
Figure 2-8: Fitted linear polynomial response surface from (a) 𝑦 ൌ 𝑥 and (b) 𝑦 ൌ 0.1𝑥.  
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The Matlab function regress can calculate the coefficient of multiple determination as a part of its 
model statistics. For example, the following code can be used to calculate 𝑅ଶ: 

[b,~,~,~,stats]=regress(y, X); 

R2=stats(1) 

 

Cross-validation 
The only true test of the predictive capabilities of the response surface is evaluating it at points not used in 
its construction. In that aspect, the coefficient of multiple determination cannot be a good measure to 
evaluate the goodness-of-fit. In order to evaluate the prediction capability of a surrogate, it would be 
necessary to have a separate set of samples that are not used in the fitting process. Therefore, it would be 
necessary to divide the entire set of samples into a training set and a validation set. The samples in the 
training set are used for fitting a surrogate, and the samples in the validation set are used for evaluating 
the accuracy or prediction capability of the surrogate. This may be considered wasteful because we do not 
use all the samples for fitting the best possible surrogate. Because additional tests or numerical 
evaluations of 𝑦 for validation are often expensive, it is worthwhile to look for a way of checking 
predictive capability without performing additional evaluations at new points. 
 Cross-validation is a resampling method that uses different portions of the samples to train and 
validate a model on different iterations. It is mainly used in settings where the goal is prediction, and one 
wants to estimate how accurately a predictive model will perform in practice. The goal of cross-validation 
is to test the model’s ability to predict new samples that were not used in estimating it, in order to flag 
problems like overfitting or selection bias [18] and to give an insight into how the model will generalize 
to a new dataset. Cross-validation combines (averages) measures of fitness in prediction to derive a more 
accurate estimate of model prediction performance [19]. 
 k-fold cross-validation: In k-fold cross-validation, the original samples are randomly partitioned into 
𝑘 equal-sized subsets. Of the 𝑘 subsets, a single subset is retained as the validation sample set for testing 
the model, and the remaining 𝑘 െ 1 subsets are used as training samples. The cross-validation process is 
then repeated 𝑘 times, with each of the 𝑘 subsets used exactly once as the validation set. The 𝑘 results can 
then be averaged to produce a single estimation. In this method, all samples are used for both training and 
validation, and each sample is used for validation exactly once. Figure 2-9 shows an example when 𝑘 ൌ
5. The entire samples are divided into five equal-sized subsets. Although the division looks sequential in 
the figure, in practice subsets are generated randomly. The first four subsets are used to fit a surrogate, 
and the last subset is used to validate the surrogate. The outcome of the validation is in terms of prediction 
error 𝑒௣ଵ. This process is repeated for other subsets and yields five predictions errors: 𝐞௣ ൌ
൛𝑒௣ଵ, 𝑒௣ଶ, 𝑒௣ଷ, 𝑒௣ସ, 𝑒௣ହൟ

்
.  

 

 
Figure 2-9: Five-fold cross-validation.  
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 Leave-one-out cross-validation: Leave-one-out cross-validation involves using one sample as the 
validation set and the remaining 𝑛௬ െ 1 samples as the training set. That is, 𝑛௬ െ 1 samples are used to fit 
a surrogate, and the error between the surrogate prediction and the validation sample is calculated as a 
prediction error 𝑒௣௜. This process is repeated in all 𝑛௬ samples to yield 𝑛௬ prediction errors. This is 
equivalent to k-fold cross-validation with 𝑘 ൌ 𝑛௬. The process looks similar to a jackknife; however, with 
cross-validation one computes a statistic on the left-out sample(s), while with jackknifing one computes a 
statistic from the kept samples only. In this section, we will only explain leave-one-out cross-validation.  
 If the number of samples used for the fit is substantially larger than the number of coefficients, 𝑛௬ ≫
𝑛ఉ, leaving out one sample will not change the quality of the fit significantly. We can therefore leave out 
one sample, fit the PRS to the remaining samples and check the error at the point that was left out. Let us 
assume that we leave out the 𝑖th sample. The surrogate that is built without 𝑖th sample is denoted by 𝑦ොሺ௜ሻ. 
Then, the prediction error at the 𝑖th sample is 

𝑒௣௜ ൌ 𝑦௜ െ 𝑦ොሺ௜ሻሺ𝐱௜ሻ (2.28)

Note that the prediction error 𝑒௣௜ is different from the regression error: 𝑒௜ ൌ 𝑦௜ െ 𝑦ොሺ𝐱௜ሻ. We can then 
repeat the procedure at each sample to obtain the vector of prediction errors 𝐞௣

் ൌ ሼ𝑒௣ଵ, 𝑒௣ଶ, ⋯ , 𝑒௣௡೤
ሽ. 

Since we need a single scalar measure to evaluate the prediction accuracy of a surrogate, the square sum 
of the prediction errors can be used, which is known as PRESS (predicted residual error sum of squares). 
The PRESS can be defined as 

𝑃𝑅𝐸𝑆𝑆 ൌ ෍ 𝑒௣௜
ଶ

௡೤

௜ୀଵ

ൌ ෍ൣ𝑦௜ െ 𝑦ොሺ௜ሻሺ𝐱௜ሻ൧
ଶ

௡೤

௜ୀଵ

 (2.29)

 The PRESS statistic provides a summary measure of the fit of a model to a sample of observations 
that were not themselves used to estimate the model [20]. The PRESS statistic can be calculated for a 
number of surrogate models for the same set of samples, with the lowest values of PRESS indicating the 
best surrogate. Surrogate models that are over-fitted samples would tend to give small residuals for 
samples included in the model-fitting but large residuals for samples that are excluded. 
 Another advantage of the PRESS statistic is that it is independent of surrogate models. That is, it can 
be used in any surrogate model. Therefore, it is versatile. The only bottleneck of the PRESS statistic is 
that it can be expensive to fit surrogate models 𝑛௬ times. As 𝑛௬ increases, this can be expensive. 
However, the baseline assumption of surrogate modeling is that the major cost comes from obtaining 
samples, which means performing experiments or running expensive computer simulations. Therefore, the 
fitting cost of the surrogate can be ignorable.  
 In the case of linear regression, however, the requirement of fitting surrogates 𝑛௬ times can be 
removed. The PRESS statistics can be evaluated with one surrogate fitting. First, we derive the linear 
relationship between the surrogate predictions and samples. By evaluating the surrogate predictions at all 
the sample points, we have 

𝐲ො ൌ 𝐗 ∙ 𝐛 ൌ 𝐗ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 ൌ 𝐄 ∙ 𝐲 (2.30)

where the 𝑛௬ ൈ 𝑛௬ symmetric matrix 𝐄 is an idempotent matrix. An important property of the idempotent 
matrix is that 𝐄௞ ൌ 𝐄. Using this relationship, the regression errors at sample locations in Eq. (2.11) can 
be written as 

𝐞 ൌ 𝐲 െ 𝐲ො ൌ ሾ𝐈 െ 𝐗ሺ𝐗்𝐗ሻିଵ𝐗்ሿ𝐲 ൌ ሾ𝐈 െ 𝐄ሿ𝐲 (2.31)
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where ሾ𝐈 െ 𝐄ሿ is also an idempotent matrix. In particular, the diagonal term 1 െ 𝐸௜௜ represents the 
importance of sample 𝑦௜  on error 𝑒௜. It would be difficult to derive, but it can be shown that the 
relationship between the regression error 𝑒௜ and the prediction error 𝑒௣௜ can be written as 

𝑒௣௜ ൌ
𝑒௜

1 െ 𝐸௜௜
 (2.32)

Basically, the prediction error at the 𝑖th sample is the regression error scaled by the diagonal term 1 െ 𝐸௜௜. 
Therefore, the PRESS statistic can be calculated from a single surrogate fit as 

𝑃𝑅𝐸𝑆𝑆 ൌ ෍ ൬
𝑒௜

1 െ 𝐸௜௜
൰

ଶ
௡೤

௜ୀଵ

 (2.33)

The root-mean-squared error of the PRESS statistic can be defined as 

𝑒௉ோாௌௌ ൌ ඩ
1

𝑛௬ െ 1
෍ ൬

𝑒௜

1 െ 𝐸௜௜
൰

ଶ
௡೤

௜ୀଵ

 (2.34)

The 𝑒௉ோாௌௌ is preferred over 𝑃𝑅𝐸𝑆𝑆 because the former has the same unit as QoI. 
 It should be noted that the matrix 𝐗்𝐗 is often ill-conditioned, especially for large problems, and then 
the calculation of the matrix 𝐄 from Eq. (2.30) is not very reliable. However, even the direct calculation of 
𝐞௣, by performing the 𝑛௬ times of surrogate fits, is usually less expensive than carrying out additional 
experiments in order to test the accuracy of the surrogate. 
 
Example 2-7 
Generate 30 equal-interval samples from the true function 𝑦 ൌ 𝑥, 𝑥 ∈ ሾ1, 30ሿ with randomly distributed 
noise ~𝑁ሺ0,1ଶሻ. Fit a linear PRS and compare (a) the constant term 𝑏ଵ with the mean of noise, (b) the 
standard error with the standard deviation of noise samples, and (c) the standard error and the PRESS 
statistic. 
 
Solution: 
We used rng default command to keep the random number sequence the same. The mean of noise is 
𝜇௡௢௜௦௘ ൌ 0.5519 and the standard deviation of the noise is  𝜎௡௢௜௦௘ ൌ 1.3. Fitting the 30 samples with a 
linear PRS yields the following expression 

𝑦ොሺ𝑥ሻ ൌ 0.5981 ൅ 0.997𝑥  

It is noted that the constant term 𝑏ଵ ൌ 0.5981 is the same as the mean of noise. This is because the linear 
regression is unbiased fitting. That is, even if samples were generated from the true function since the 
noise samples were biased by 0.5519, the PRS surrogate is also shifted by a similar level of bias. This is 
not identical to the mean of noise because some errors are shifted to the linear coefficient 𝑏ଶ.  
 The standard error is calculated based on the square root of Eq. (2.20): 𝜎ො ൌ 1.3228, which is close to 
the standard deviation of noise, 1.30. In addition, the root-mean-squared error of the PRESS statistic, 
𝑒௉ோாௌௌ is calculated using Eq. (2.34): 𝑒௉ோாௌௌ ൌ 1.3907, which is also close to the standard error.  
 The actual RMS error between 𝑦ොሺ𝑥ሻ and the true function is 0.5619, which is much smaller than the 
standard error. This is because a large number of samples filtered the noise. As we discussed in Section 
2.2, the surrogate is more accurate than the samples.  
 The following Matlab code is used for the example: 

rng default; 

x=[1:30]'; noise=randn(30,1);y=x+noise; 
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X=[ones(30,1) x]; 

b=regress(y,X) 

yfit=b(1)+b(2)*x; 

error=y-yfit; 

sigma=sqrt(error'*error/28) 

mean(noise) 

std(noise) 

M=X'*X; E=X*inv(M)*X'; 

d=diag(E) 

ep=error./(1-d); 

PRESS=ep'*ep 

ePRESS=sqrt(PRESS/29) 

 

 
Example 2-8 
Consider the quadratic PRS in Example 2-5, calculate the PRESS statistic by repeating the fitting process 
by 5 times, and compare it with the PRESS statistic from a single fit in Eq. (2.33). 
 
Solution: 
First, we calculate the PRESS statistic from a single fit. From Example 2-5, the idempotent matrix can be 
obtained as 

𝐄 ൌ 𝐗ሺ𝐗்𝐗ሻି𝟏𝐗் ൌ

⎣
⎢
⎢
⎢
⎡

0.8857 0.2671
0.2571 0.3714

െ0.0857 െ0.1429
0.3429 0.1714

0.0857
െ0.1429

െ0.0857 0.3429
െ0.1429 0.1714

0.4857 0.3429
0.3429 0.3714

െ0.0857
0.2571

0.0857 െ0.1429 െ0.0857 0.2571 0.8857 ⎦
⎥
⎥
⎥
⎤
  

Therefore, the regression errors and the prediction errors from a single fit can be obtained from Eq. (2.32) 
as 

𝐞 ൌ

⎩
⎪
⎨

⎪
⎧ 0.243

െ0.521
0.107
0.379

െ0.207⎭
⎪
⎬

⎪
⎫

, 𝐞௣ ൌ ൜
𝑒௜

1 െ 𝐸௜௜
ൠ ൌ

⎩
⎪
⎨

⎪
⎧ 2.125

െ0.8295
0.2083
0.6023

െ1.8125⎭
⎪
⎬

⎪
⎫

  

It is noted that the prediction error significantly increased in the first and last samples. This is because 𝐸ଵଵ 
and 𝐸ହହ are close to one. Physically it means that when the first and the last sample is dropped, they 
belong to the extrapolation region after fitting the surrogate.  
 Second, we demonstrate the case when the third sample (0,0) is dropped. In this case, the following 
matrices and vectors can be defined: 

𝐗 ൌ ቎

1 െ2 4
1 െ1 1
1
1

1
2

1
4

቏ ,    𝐲 ൌ ቐ

െ1.5
െ1.5
1.25
1.75

ቑ, 𝐗்𝐗 ൌ ൥
4 0 10
0 10 0

10 0 34
൩, 𝐗்𝐲 ൌ ൝

0
9.25
0.75

ൡ  

By solving the normal equation in Eq. (2.14), the unknown regression coefficients are identified as 𝑏ଵ ൌ
െ0.2083, 𝑏ଶ ൌ 0.925, and 𝑏ଷ ൌ 0.0833. Therefore, the following quadratic PRS can be obtained: 

𝑦ොሺଷሻሺ𝑥ሻ ൌ െ0.2083 ൅ 0.925𝑥 ൅ 0.0833𝑥ଶ  

Now the prediction error is calculated at the dropped sample location (0,0), which is 

𝑒௣ଷ ൌ 𝑦ଷ െ 𝑦ොሺଷሻሺ0ሻ ൌ 0 ൅ 0.2083 ൌ 0.2083  
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This process is repeated for every sample position to obtain the following prediction errors: 
  

𝐞௣ ൌ ൛𝑦௜ െ 𝑦ොሺ௜ሻሺ𝑥௜ሻൟ ൌ

⎩
⎪
⎨

⎪
⎧ 2.125

െ0.8295
0.2083
0.6023

െ1.8125⎭
⎪
⎬

⎪
⎫

  

Therefore, the prediction error from Eq. (2.32) is identical to the prediction error from the definition of 
cross-validation. The following Matlab code is used to calculate the prediction errors: 

X=[1 -2 4;1 -1 1;1 0 0;1 1 1;1 2 4]; 
y=[-1.5 -1.5 0 1.25 1.75]'; 
for i=1:5 
 Xt=X; Xt(i,:)=[]; 
 yt=y;yt(i)=[]; 
 bt=inv(Xt'*Xt)*Xt'*yt; 
 ept(i)=y(i)-X(i,:)*bt; 
end 

 

 
Since the PRESS statistic measures the prediction accuracy of a surrogate, a surrogate is considered to be 
accurate when the PRESS statistic is small. When multiple surrogates are compared, the surrogate whose 
PRESS statistic is the smallest can be considered the best surrogate to fit the samples. In the case of PRS 
surrogates, however, the PRESS static will not converge to zero. This is expected because the PRS starts 
from the assumption that the samples have random noise and a good surrogate is supposed to fit the trend 
of samples, not the noise. Therefore, if a surrogate is identical to the true function, the diagonal term of 
the idempotent matrix 𝐸௜௜ ൌ 0 and the PRESS statistic in Eq. (2.33) becomes the square-sum-error 𝑆𝑆௘. 
 
2.5. Confidence of coefficients and backward elimination 

In Example 2-5 we compared a linear PRS surrogate to a quadratic PRS surrogate. However, we do not 
have to limit ourselves to PRS surrogates that have all the terms up to a particular order. For example, we 
can consider a quadratic model without the constant term, 𝑦ොሺ𝑥ሻ ൌ 𝑏ଵ𝑥 ൅ 𝑏ଶ𝑥ଶ. Similarly, with two 
variables, it is common for people to consider a model of the form 𝑦ොሺ𝐱ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ ൅ 𝑏ସ𝑥ଵ𝑥ଶ. 
This model does not include quadratic terms in 𝑥ଵ and 𝑥ଶ, but it includes the ‘interaction’ term 𝑥ଵ𝑥ଶ. We 
can stipulate such a partial model based on some knowledge of the behavior of the true function. 
However, most often such partial models are created by discarding terms with coefficients that cannot be 
accurately estimated based on the samples. Such coefficients do not have much effect on the accuracy of 
the fit of the given samples, and leaving them in the model can reduce its predictive quality for design 
points where these coefficients have a large effect on the prediction. 
 The first straightforward idea is to remove those basis functions whose coefficients are small 
compared to other coefficients. For example, let us consider the following quadratic PRS surrogate: 

𝑦ොሺ𝑥ଵ, 𝑥ଶሻ ൌ 10.5 ൅ 0.01𝑥ଵ ൅ 9.87𝑥ଶ െ 5𝑥ଵ
ଶ ൅ 7.6𝑥ଵ𝑥ଶ ൅ 0.02𝑥ଶ

ଶ (2.35)

If we assume that both input variables 𝑥ଵ and 𝑥ଶ are normalized 𝑥ଵ, 𝑥ଶ ∈ ሾ0, 1ሿ, then it is clear that the 
linear 𝑥ଵ term and quadratic 𝑥ଶ

ଶ term are not important as their coefficients are small compared to other 
coefficients. That is, even if 𝑥ଵ and 𝑥ଶ

ଶ vary, the surrogate prediction will not change much because of 
their small coefficients. Therefore, these two basis functions can be removed to yield 
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𝑦ොሺ𝑥ଵ, 𝑥ଶሻ ൌ 10.5 ൅ 9.87𝑥ଶ െ 5𝑥ଵ
ଶ ൅ 7.6𝑥ଵ𝑥ଶ (2.36)

However, such a heuristic approach may cause a problem if other basis functions with a large coefficient 
vary significantly with a small change in samples. Therefore, it would be necessary to develop a 
systematic approach to determine which basis functions or which coefficients should be removed from the 
surrogate model. 
 As we discussed several times, PRS surrogates start from the assumption that there is a true function, 
and samples include random noise to the true function. We try to build a surrogate that can filter out 
random noise and approximate the true function as closely as possible. Because of this randomness in 
noise, however, different samples can be obtained by different realizations of the noise, which end up 
identifying different coefficients. Therefore, it is fair to say that the identified coefficients of the PRS are 
random as well, whose distribution we want to characterize. A straightforward way of identifying the 
distribution of coefficients is to generate many sets of samples by adding random noise to the true 
function. By fitting these multiple sets of samples, we can obtain multiple sets of coefficients, from which 
we can estimate the distribution. However, this approach is only possible when we know the true function 
and we can generate multiple sets of samples. In reality, it is already expensive to generate one set of 
samples. Therefore, it would be necessary to come up with a method of identifying the distribution of 
coefficients with one set of samples. 
 We can identify the distribution of these coefficients without changing the samples by estimating the 
standard deviation of the coefficients. That is, we assume that the coefficients are normally distributed 
with the values obtained from linear regression as a mean. Therefore, the standard deviation is the only 
unknown information needed to be estimated. Since a change in a sample can affect multiple coefficients 
simultaneously, it would be necessary to estimate the covariance of the coefficients. Let us first introduce 
the covariance matrix 𝚺𝐛 of the vector of random coefficients 𝐛, which is defined as 

𝚺𝐛 ൌ ሾ𝐛 െ 𝐸ሺ𝐛ሻሿሾ𝐛 െ 𝐸ሺ𝐛ሻሿ் (2.37)

where 𝐸ሺ∙ሻ is the expected value of a random variable. That is, due to random noise we get different 
vectors 𝐛 by fitting the samples from different realizations. 𝐸ሺ𝐛ሻ  is the expected value (or average over a 
very large number of experiments) of 𝐛, and 𝐛 െ 𝐸ሺ𝐛ሻ is the deviation of 𝐛 from its expected value. Then 
the covariance matrix is the expected value of products of various components of the deviations. In 
particular, the diagonal terms of the matrix are by definition the variance of the components of 𝐛, while 
the off-diagonal terms are a measure of the correlation between components. It is possible to show that 

𝚺𝐛 ൌ 𝜎ଶሾ𝐗்𝐗ሿିଵ (2.38)

That is, due to the randomness in noise, the estimated coefficients from the regression are also random, 
whose randomness follows a normal distribution ~𝑁ሺ𝐛, 𝚺𝐛ሻ.  
 Note that 𝜎 is the standard deviation of random noise, which is unknown. Instead, we can use its 
estimate 𝜎ො derived in Eq. (2.20). Now, we can estimate the standard deviation of individual coefficients as 

𝜎௕೔
ൌ 𝜎ොඥሾሺ𝐗்𝐗ሻିଵሿ௜௜ (2.39)

which is referred to as the standard error of the coefficient. A useful measure of the accuracy of a 
component of 𝐛 is the estimate of the coefficient of variation, 𝐜, which is the ratios of the standard 
deviation to the absolute value of the component. The coefficient of variation of the 𝑖th component 𝑐௜ is 
defined as 

𝑐௜ ൌ
𝜎௕೔

|𝑏௜|
 (2.40)
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If 𝑐௜ ൐ 1, it means that the uncertainty (i.e., the standard deviation) is larger than the coefficient itself, 
which means that the identified coefficient has very low confidence.  
 The coefficient |𝑏௜| and its coefficient of variation 𝑐௜ can be used to identify insignificant basis 
functions of the PRS. An important basis function should have a large magnitude of the coefficient such 
that the surrogate prediction strongly depends on the term. Also, if the coefficient of variation is small, it 
means that the coefficient is well-identified. On the other hand, when the coefficient cannot be identified 
accurately for given samples, it means that the coefficient does not have much effect on the accuracy of 
the PRS. 
 In many PRS procedures, the quantity which is used to assess the need for a coefficient is the inverse 
of 𝑐௜, which is called the test statistic, or the t-statistic. The coefficient of variation is used in a strategy 
called backward elimination (Myers and Montgomery, p. 650 [4]). In this strategy, we eliminate the 
coefficient with the largest coefficient of variation. After removing the basis function, the surrogate is 
performed with the reduced basis function with the same samples. This process is repeated until the 
coefficient of variation of the remaining terms is small enough, or we can use a measure such as 𝑅௔

ଶ or 
𝑒௉ோாௌௌ to indicate when eliminating additional terms reduces the accuracy of the PRS. This is illustrated 
by applying this strategy to the quadratic PRS in Example 2-5. 
 
Example 2-9 
Use backward elimination, starting with the quadratic model of Example 2-5, to find the model 
with the highest value of 𝑅௔

ଶ. Confirm your conclusion by recalculating the coefficients for a slight 
perturbation of the sample at 𝑥 ൌ 1 to 𝑦ሺ1ሻ ൌ 1.35.  
 
Solution: 
The quadratic PRS that we obtained from Example 2-5 was 𝑦ොሺ𝑥ሻ ൌ െ0.1071 ൅ 0.925𝑥 ൅ 0.0536𝑥ଶ, 
which has the adjusted coefficient of multiple determination 𝑅௔

ଶ ൌ 0.8841 and the estimated noise 
standard deviation 𝜎ො ൌ 0.5141. In order to determine which coefficient should be removed, the inverse of 
the moment matrix and the covariance matrix of the coefficients are calculated as 

ሺ𝐗்𝐗ሻିଵ ൌ

⎣
⎢
⎢
⎢
⎢
⎡

17
35

0 െ
1
7

0
1

10
0

െ
1
7

0
1

14 ⎦
⎥
⎥
⎥
⎥
⎤

,    𝚺𝒃 ൌ ൥
0.1284 0 െ0.03776

0 0.02643 0
െ0.03776 0 0.01888

൩  

 Using these matrices, the coefficients of variation of all the coefficients can be calculated as 

𝑐ଵ ൌ
√0.1284
0.1071

ൌ 3.35,   𝑐ଶ ൌ
√0.02643

0.925
ൌ 0.176, 𝑐ଷ ൌ

√0.01888
0.0536

ൌ 2.56  

It turns out that the first coefficient 𝑏ଵ has the largest coefficient of variation, and thus, we can remove the 
constant term. Therefore, the reduced PRS form becomes 𝑦ොሺ𝑥ሻ ൌ 𝑏ଶ𝑥 ൅ 𝑏ଷ𝑥ଶ. Note that we cannot use 𝑏ଶ 
and 𝑏ଷ from the initial surrogate because the reduced surrogate has different basis functions. Therefore, 
we need to fit the reduced surrogate again with the same samples, with the following matrices and 
vectors: 

𝐗 ൌ

⎣
⎢
⎢
⎢
⎡
െ2
െ1

4
1

0
1

0
1

2 4⎦
⎥
⎥
⎥
⎤

,    𝐲 ൌ

⎩
⎪
⎨

⎪
⎧െ1.5

െ1.5
0

1.25
1.75⎭

⎪
⎬

⎪
⎫

,    𝐗்𝐗 ൌ ቂ10 0
0 34

ቃ,    𝐗்𝐲 ൌ ቄ9.25
0.75

ቅ  
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The normal equation yields 𝑏ଶ ൌ 0.925 and 𝑏ଷ ൌ 0.0221. That is, 𝑦ොሺ𝑥ሻ ൌ 0.925𝑥 ൅ 0.0221𝑥ଶ. 
Therefore, the linear coefficient does not change, but the quadratic coefficient changes significantly from 
0,0536 to 0.0221. The reduced surrogate has the following regression errors: 

𝐞 ൌ ሼെ0.262, 0.597, 0.0, െ0.3038, 0.188ሽ்  

And the various error metrics are 𝑆𝑆௬ ൌ 9.125, 𝑆𝑆௘ ൌ 0.5522, 𝑅ଶ ൌ 0.9394, 𝑅௔
ଶ ൌ 0.9193, 𝜎ො ൌ 0.429. 

Compared to 𝑅௔
ଶ of the initial quadratic PRS, 𝑅௔

ଶ of the reduced PRS is increased from 0.8841 to 0.9193. 
Therefore, we can say that eliminating the constant term improves the prediction capability.  
 In order to check if a further elimination improves the surrogate, the coefficients of variation are 
calculated again. First, the following matrices are defined: 

ሺ𝐗்𝐗ሻିଵ ൌ ൦

1
10

0

0
1

34

൪,    𝚺𝒃 ൌ ቂ0.0184 0
0 0.00541

ቃ  

 Using these matrices, the coefficients of variation of all the coefficients can be calculated as 

𝑐ଶ ൌ
√0.0184

0.925
ൌ 0.147, 𝑐ଷ ൌ

√0.00541
0.0221

ൌ 3.33  

Based on the three coefficients of variation, the last coefficient 𝑏ଷ has the largest coefficient of variation, 
and thus, we can remove the quadratic term. Therefore, the reduced PRS form becomes 𝑦ොሺ𝑥ሻ ൌ 𝑏ଶ𝑥. 
Fitting this linear PRS yields 𝑦ොሺ𝑥ሻ ൌ 0.925𝑥 with error metrics 𝑅௔

ଶ ൌ 0.9169, 𝜎ො ൌ 0.4354. Therefore, 𝑅௔
ଶ 

is slightly decreased from the previous PRS surrogate, which means the previous PRS surrogate is better 
than this one. Therefore, we stop the elimination process and conclude that the best PRS surrogate to fit 
the samples is 𝑦ොሺ𝑥ሻ ൌ 0.925𝑥 ൅ 0.0221𝑥ଶ. 
 Now let the sample at 𝑥 ൌ 1 is perturbed from 𝑦ሺ1ሻ ൌ 1.25 to 𝑦ሺ1ሻ ൌ 1.35, which corresponds to 
8% perturbation. Then, the coefficients of the original quadratic PRS are perturbed by 

𝑦ො௢௥௜௚௜௡௔௟ሺ𝑥ሻ ൌ െ0.1071 ൅ 0.925𝑥 ൅ 0.0536𝑥ଶ  

𝑦ො௣௘௥௧௨௥௕௘ௗሺ𝑥ሻ ൌ െ0.0729 ൅ 0.935𝑥 ൅ 0.0465𝑥ଶ  

That is, the constant coefficient is changed by 30%, the linear coefficient by 1%, and the quadratic 
coefficient by 13%. Therefore, it makes sense that the constant coefficient is the most uncertain and needs 
to be eliminated first. In the case of the reduced PRS, the coefficients are perturbed by 

𝑦ො௢௥௜௚௜௡௔௟ሺ𝑥ሻ ൌ 0.925𝑥 ൅ 0.02205𝑥ଶ  

𝑦ො௣௘௥௧௨௥௕௘ௗሺ𝑥ሻ ൌ 0.935𝑥 ൅ 0.025𝑥ଶ  

The linear coefficient is changed by 1%, while the quadratic coefficient is by 13%. However, the 
elimination of the quadratic coefficient may decrease the prediction capability of the surrogate. 
 

 
2.6. Prediction variance 

In Section 2.4, we discussed cross-validation, which is a good metric to measure the prediction capability 
at unsampled locations. The good characteristic of cross-validation is that it is model-independent, which 
means that it can be applied to any kind of surrogate, not limited to linear regression PRS. However, 
cross-validation can provide the prediction accuracy of a surrogate in the form of prediction errors at 
sample locations and RMS of prediction errors. The latter is a good estimate of the standard deviation of 
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the noise. Therefore, cross-validation is a good metric to assess the overall accuracy of a surrogate. 
However, the ultimate goal of the accuracy study is to estimate the prediction accuracy of the surrogate at 
unsampled locations. 
 

Prediction uncertainty 
If we limit ourselves to the PRS surrogate with linear regression, it is possible to estimate the prediction 
accuracy at unsampled locations. As mentioned before, the PRS surrogate that we obtained from 
regression in Eq. (2.10) is actually the mean of the prediction. This is because the PRS surrogate starts 
from the assumption of random noise. Because of the random distribution of noise ~𝑁ሺ0, 𝜎ଶሻ, the 
regression coefficients are also random ~𝑁ሺ𝐛, 𝚺𝐛ሻ, and thus, the prediction at unsampled locations as 
well. Since the relationship between the prediction and coefficients is linear and since the basis functions 
are not random, the prediction at an unsampled point 𝐱௣will also follow a normal distribution 
~𝑁 ቀ𝑦ො൫𝐱௣൯, 𝜎௬

ଶ൫𝐱௣൯ቁ. That is, the obtained PRS surrogate is a mean prediction and 𝜎௬
ଶ൫𝐱௣൯ is the 

prediction variance. Since this uncertainty in prediction is caused by the randomness in noise, it makes 
sense that the prediction uncertainty is proportional to the standard deviation 𝜎 of the noise.  
 Also, the prediction accuracy is usually good close to the sample locations because even if the 
samples include random noise, the regression process filters out the noise and the samples represent the 
trend of the true function. Therefore, as the prediction point moves away from sample locations, the 
prediction becomes inaccurate; that is, the prediction uncertainty increases. It would be better to explain 
the meaning of prediction uncertainty using a normal distribution. Figure 2-10 shows the probability 
density function of a normal distribution. The mean location corresponds to the surrogate prediction 
𝑦ො൫𝐱௣൯. Then the probability that the true function is located within the range ሾ𝑦ො൫𝐱௣൯ െ 𝜎௬൫𝐱௣൯, 𝑦ො൫𝐱௣൯ ൅
𝜎௬൫𝐱௣൯ሿ is 68%, ሾ𝑦ො െ 2𝜎௬, 𝑦ො ൅ 2𝜎௬ሿ is 95%, and ሾ𝑦ො െ 3𝜎௬, 𝑦ො ൅ 3𝜎௬ሿ is 99.7%. If the prediction 
uncertainty 𝜎௬൫𝐱௣൯ is large, then the chance that the surrogate prediction is close to the true function is 
low. Therefore, it is important to have a low prediction uncertainty in order to have a good prediction 
capability. If 𝜎௬ can not be low at everywhere, it should be low at the point of interest, such as the 
optimum design point.  
 

 
Figure 2-10: Normal distribution of surrogate prediction.  
 
 An important thing to note in prediction uncertainty is that it tends to be low in the interpolation 
region, while it tends to increase fast in the extrapolation region. As shown in Figure 1-5, the interpolation 
region is within the convex hull of the sample points, while the extrapolation region is outside of the 



 2-49

convex hull. The prediction in the extrapolation region is associated with large errors. Especially for a 
high dimensional domain, extrapolation usually cannot be avoided.  
 The PRS expression in Eq. (2.10) can be written as 𝑦ොሺ𝐱௣ሻ ൌ 𝛏ሺ𝐱௣ሻ்𝐛. In the viewpoint of 
uncertainty, the vector of basis functions 𝛏ሺ𝐱௣ሻ is deterministic, while the vector of coefficient 𝐛 is 
uncertain. In the probability theory, the variance of a random variable 𝑦 ൌ 𝑎𝑥 with variance 𝑉ሾ𝑥ሿ ൌ 𝜎ଶ 
can be obtained by 𝑉ሾ𝑦ሿ ൌ 𝑎ଶ𝑉ሾ𝑥ሿ ൌ 𝑎ଶ𝜎ଶ. When the random variable is a vector with multiple 
components, the covariance matrix is used instead. Therefore, the variance of the prediction 𝑦ොሺ𝐱௣ሻ can be 
written as 𝑉ൣ𝑦ො൫𝐱௣൯൧ ൌ 𝛏ሺ𝐱௣ሻ்𝚺𝐛𝛏ሺ𝐱௣ሻ ൌ 𝜎ො𝟐𝛏ሺ𝐱௣ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱௣ሻ. The square root of the prediction 
variance is called the standard error of prediction, defined as 

𝜎௬ ൌ 𝜎ොට𝛏ሺ𝐱௣ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱௣ሻ (2.41)

where we used 𝜎ො as an estimate of 𝜎. The standard error of prediction increases proportionally to the 
standard deviation of the noise. Also, the term 𝛏ሺ𝐱௣ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱௣ሻ increases fast as the prediction point 
𝐱௣ moves away from sample points.  
 

Sample sensitivity 
Another interesting piece of information related to prediction accuracy is the sensitivity of prediction with 
respect to samples. That is, how much the prediction 𝑦ොሺ𝐱௣ሻ will vary due to a change in one sample 𝑦௜? 
This information is particularly important if we want to find out the most important samples. Of course, 
the locations of samples affect significantly the prediction performance. However, this topic will be 
discussed separately in Chapter 3. In this section, it is assumed that the locations of all samples are fixed, 
and only the value of QoI 𝑦௜ varies.  
 This information is readily available from the definition of PRS surrogate with identified coefficients  

𝑦ො൫𝐱௣൯ ൌ 𝛏൫𝐱௣൯
்

𝐛 ൌ 𝛏൫𝐱௣൯
்

ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 (2.42)

Since sample locations are fixed, the moment matrix 𝐗்𝐗 is fixed. Differentiating Eq. (2.42) with respect 
to 𝑖th component of 𝐲 yields 

𝜕𝑦ො൫𝐱௣൯
𝜕𝑦௜

ൌ ቄ𝛏൫𝐱௣൯
்

ሺ𝐗்𝐗ሻିଵ𝐗்ቅ
௜
 (2.43)

It is noted that the sample sensitivity in Eq. (2.43) only shows the effect of the sample value on the mean 
prediction. Its effect on the prediction uncertainty is more complicated through the standard deviation of 
the noise.  
 
Example 2-10 
The design space of a linear PRS 𝑦ොሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ is given by െ1 ൑ 𝑥ଵ, 𝑥ଶ ൑ 1. (a) When 
three sample locations are given as ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺെ1, െ1ሻ, ሺെ1,1ሻ, ሺ1, െ1ሻ, calculate the standard error of 
prediction in terms of noise standard deviation 𝜎ො at all corner points and the center of the design space. (b) 
Find the location and value or the minimum standard error of prediction. (c) If an additional sample is 
given at ሺ1,1ሻ, repeat part (a).  
 
Solution: 
(a) With the three samples, Figure 2-11(a) shows the interpolation and extrapolation regions along with 
the samples. For linear PRS, the vector of basis functions and design matric is defined as 
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𝛏 ൌ ൝
1
𝑥ଵ
𝑥ଶ

ൡ ,   𝐗 ൌ ൥
1 െ1 െ1
1 െ1 1
1 1 െ1

൩, 𝐗்𝐗 ൌ ൥
3 െ1 െ1

െ1 3 െ1
െ1 െ1 3

൩, ሺ𝐗்𝐗ሻିଵ ൌ
1
4

൥
2 1 1
1 2 1
1 1 2

൩  

The standard error of prediction in Eq. (2.41) is given as 

𝜎௬ ൌ 𝜎ොඥ𝛏்ሺ𝐗்𝐗ሻିଵ𝛏 ൌ 𝜎ොට0.5ሺ1 ൅ 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൅ 𝑥ଵ𝑥ଶሻ 

The standard error at the three sample locations is 𝜎௬ ൌ 𝜎ො. That is, the prediction uncertainty at the 
sample location is the same as the uncertainty of the sample itself. At the center of the design space 
ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ0,0ሻ, 𝜎௬ ൌ 𝜎ො √2⁄ , which is lower than that of the sample locations. On the other hand, the 
unsampled corner ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ1,1ሻ has the highest prediction uncertainty of 𝜎௬ ൌ √3𝜎ො. This is because 
this corner is the farthest extrapolation point.  
  

 
Figure 2-11: Interpolation and extrapolation regions defined by samples in Example 2-10.  
 
(b) It is interesting to note that the prediction uncertainty is not minimum at sample locations. Figure 2-
11(b) shows the contour plot of the prediction uncertainty. It seems that the prediction uncertainty is 
minimum inside the interpolation region. The minimum point can be found by differentiating the standard 
error of prediction in Eq. (2.41) 

𝜕𝜎௬
ଶ

𝜕𝑥ଵ
ൌ

𝜎ොଶ

2
ሺ1 ൅ 2𝑥ଵ ൅ 𝑥ଶሻ ൌ 0 

𝜕𝜎௬
ଶ

𝜕𝑥ଶ
ൌ

𝜎ොଶ

2
ሺ1 ൅ 2𝑥ଶ ൅ 𝑥ଵሻ ൌ 0 

Solving the above two equations solves for 𝑥ଵ ൌ 𝑥ଶ ൌ െ 1 3⁄ . The prediction uncertainty at this point is 
𝜎௬ ൌ 𝜎ො √3⁄ . The minimum point is in fact the centroid of the interpolation region. The following Matlab 
code is used to plot Figure 2-11(b). 

x=[-1 -1 1]; y=[-1 1 -1]; 

[X,Y]=meshgrid(-1:.1:1, -1:.1:1); 
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Z=sqrt(.5*(1+X+Y+X.^2+Y.^2+X.*Y)); 

v=linspace(0.6,1.8,7) 

scatter(x,y,'filled');  

grid on; hold on 

[C,h]=contour(X,Y,Z,v);  

clabel(C,h) 

 
(c) When an additional sample is added at ሺ1,1ሻ, the vector of basis functions and design matric is defined 
as 

𝛏 ൌ ൝
1
𝑥ଵ
𝑥ଶ

ൡ ,   𝐗 ൌ ቎

1 െ1 െ1
1 െ1 1
1
1

1
1

െ1
1

቏, 𝐗்𝐗 ൌ ൥
4 0 0
0 4 0
0 0 4

൩, ሺ𝐗்𝐗ሻିଵ ൌ
1
4

൥
1 0 0
0 1 0
0 0 1

൩  

The standard error of prediction in Eq. (2.41) is given as 

𝜎௬ ൌ 𝜎ොඥ𝛏்ሺ𝐗்𝐗ሻିଵ𝛏 ൌ 𝜎ොට0.25ሺ1 ൅ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶሻ 

The standard error of prediction at the four corner points is 𝜎௬ ൌ √3𝜎෢ 2ൗ , which is lower than the standard 
error of noise. This means that the surrogate is more accurate than the samples. The minimum prediction 
uncertainty occurs at the origin of the design space ሺ0,0ሻ, whose value is 𝜎௬ ൌ 𝜎ො 2⁄ . Figure 2-12 shows 
the contour plot of the prediction uncertainty. It is noted that the additional sample does not improve the 
low prediction uncertainty, but significantly reduces the large prediction uncertainty in the extrapolation 
region.  
 

 
Figure 2-12: Contour of the standard error of prediction with four samples.  
 

 

Prediction variance with variable noise 
So far, we consider the case when noises of all samples are from an identical distribution ~𝑁ሺ0, 𝜎ଶሻ. 
From this assumption, the prediction variance is determined as 𝑉ൣ𝑦ො൫𝐱௣൯൧ ൌ 𝜎𝟐𝛏ሺ𝐱௣ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱௣ሻ. In 
some cases, however, noises at different locations may have different magnitudes. This is particularly true 
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when the magnitude of the noise is proportional to the magnitude of QoI. In such a case, the sample 
sensitivity in the previous subsection can be utilized to estimate the prediction variance. Let the noise 
variance of each sample point is 𝜎௜

ଶ. Then, the prediction variance can be defined as 

𝑉ሾ𝑦ො൫𝐱௣൯ሿ ൌ ෍ ቆ
𝜕𝑦ො൫𝐱௣൯

𝜕𝑦௜
ቇ

ଶ௡೤

௜ୀଵ

𝜎௜
ଶ (2.44)

 
Example 2-11 
Consider the linear PRS in Example 2-5. (a) When all samples have the noise standard deviation 𝜎, 
calculate the prediction variance at 𝑥 ൌ 3. (b) When all samples have different noise standard deviations, 
which sample has the most significant influence on the prediction variance at 𝑥 ൌ 3. Explain why. 
 
Solution: 
(a) In the case of linear PRS, the following matrices were defined: 

𝐗 ൌ

⎣
⎢
⎢
⎢
⎡
1
1

െ2
െ1

1
1

0
1

1 2 ⎦
⎥
⎥
⎥
⎤

,    𝐲 ൌ

⎩
⎪
⎨

⎪
⎧െ1.5

െ1.5
0

1.25
1.75⎭

⎪
⎬

⎪
⎫

,    𝐗்𝐗 ൌ ቂ5 0
0 10

ቃ ,    𝛏 ൌ ቄ1
𝑥

ቅ  

The linear PRS becomes 

𝑦ොሺ𝑥ሻ ൌ 𝛏்ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 ൌ 0.925𝑥  

Prediction variance at 𝑥 ൌ 3 becomes 

𝑉ሾ𝑦ොሺ𝑥ሻሿ ൌ 𝜎ଶ𝛏்ሺ𝐗்𝐗ሻିଵ𝛏 ൌ 𝜎ଶሼ1, 𝑥ሽ ቂ0.2 0
0 0.1

ቃ ቄ1
𝑥

ቅ ൌ ሺ0.2 ൅ 0.1𝑥ଶሻ𝜎ଶ ൌ 1.1𝜎ଶ  

Therefore, if all samples have the same noise standard deviation, the prediction variance at 𝑥 ൌ 3 is 
1.1𝜎ଶ. 
 
(b) When all samples have different noise standard deviations, it would be necessary to use sample 
sensitivity in Eq. (2.44). First sample sensitivity at 𝑥 ൌ 3 can be calculated as  

𝜕𝑦ො
𝜕𝑦௜

ൌ 𝛏்ሺ𝐗்𝐗ሻିଵ𝐗் ൌ 0.1ሾ2 െ 2𝑥 2 െ 𝑥 2 2 ൅ 𝑥 2 ൅ 2𝑥ሿ

                                        ൌ 0.1ሾെ4 െ1 2 5 8ሿ 

When all samples have the same noise standard deviation, Eq. (2.44) yields 𝑉ሾ𝑦ොሺ𝑥ሻሿ ൌ 1.1𝜎ଶ, which is 
the same outcome with Part (a). If all samples have different noise standard deviation, the most influential 
sample to the prediction variance at 𝑥 ൌ 3 is 𝑦ହ whose sample sensitivity is highest. This is because the 
sample location 𝑥 ൌ 2 is closest to the prediction point 𝑥 ൌ 3. 
 

 
2.7. Outliers 

In Section 2.5, we discussed the stepwise elimination of insignificant coefficients based on their 
coefficient of variation. That is, if a coefficient has a large uncertainty, it means that the coefficient is 
difficult to identify and insignificant in prediction. The true function may not have the basis function and 
it justifies the removal of the coefficient. If a sample is suspicious, we may need systematic reasoning to 
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eliminate the sample from the fitting process. The same concept can be applied to identify 
wrong/erroneous samples. 
 Both in physical experiments and computer simulations, we have samples with large errors 
occasionally. In computer simulations, these may reflect failures of the solution algorithm, software 
implementation, or mistakes by the user of the software. Sample points with large errors are called 
outliers. It is important to detect them and either remove or repair them because they can have a large 
detrimental effect on the prediction accuracy of the surrogate. 
 A standard tool for detecting outliers is the Iteratively Reweighted Least Squares (IRLS) procedure. 
In order to understand their basis, let us consider first the weighted least square (WLS) procedure. 
Weighted least squares procedures minimize a weighted sum of the squares of the residuals. Linear 
regression in Section 2.3 corresponds to using the same weights for all the samples. There are many 
possible reasons for using WLS rather than standard least squares. We may have more confidence in some 
samples than in others. We may want to weigh more heavily points that are close to the region where we 
will need to predict the surrogate than points far away. The noise at some points may be known to be 
higher than at other points. 
 In these cases, instead of using Eq. (2.12) we use the weighted-root-mean-square error: 

𝑒௪ோெௌ ൌ ඩ
1

𝑛௬
෍ 𝑤௜𝑒௜

ଶ

௡೤

௜ୀଵ

ൌ ඨ
1

𝑛௬
𝐞்𝐖𝐞 (2.45)

where, 𝑤௜ is the weight associated with the 𝑖th sample, and 𝐖 is a diagonal matrix with the weights on the 
diagonal. Minimizing the weighted RMS error, 𝑒௪ோெௌ yields a modified set of normal equations 

𝐗்𝐖𝐗𝐛 ൌ 𝐗்𝐖𝐲 (2.46)

 Iteratively reweighted least squares procedures weigh points with large residuals with small weights, 
with the weight decreasing with increasing magnitude of the residual. Then the WLS procedure is 
performed. If the point is an outlier, the surrogate model will move away from it, so its residual will 
increase. We will assign a smaller weight to the point and repeat the procedure. Eventually, outliers are 
likely to end up with zero or very low weight. There are several weighting schemes, see e.g., Myers and 
Montgomery, p. 671 [4]. One of the simplest is Huber's scheme, defined as 

𝑤௜ ൌ ൜
1 if |𝑒௜| 𝜎ො⁄ ൑ 1

|𝑒௜| 𝜎ො⁄ otherwise
 (2.47)

In practice, the procedures can be repeated until the weight of the outlier decreases enough, or once a 
sample is identified as an outlier, the procedures can be stopped and the samples can be removed in the 
regular linear regression process. 
 
Example 2-12 
Stress and strain are linearly related by 𝑠𝑡𝑟𝑒𝑠𝑠 ൌ 𝐸 ∙ 𝑠𝑡𝑟𝑎𝑖𝑛, where Young’s modulus 𝐸 needs to be 
estimated based on four stress-strain measurements. For values of strains of 1, 2, 3, and 4 millistrains, 
stresses are measured by 9, 22, 36, and 39 ksi. Using a linear PRS model 𝑠𝑡𝑟𝑒𝑠𝑠 ൌ 𝐸 ∙ 𝑠𝑡𝑟𝑎𝑖𝑛, identify 
Young’s modulus after removing an outlier. 
 
Solution: 
Since we do not know which samples are an outlier, we perform regular linear regression with a constant 
weight 𝑤௜ ൌ 1. Denoting the stress by 𝑦 as a QoI and the strain by 𝑥, the four samples are used to define 
the following normal equation: 



 2-54

𝐗 ൌ ቎

1
2
3
4

቏ , 𝐲 ൌ ቐ

9
22
36
39

ቑ , 𝐗்𝐗 ൌ ሾ30ሿ, 𝐗்𝐲 ൌ ሼ317ሽ, 𝐸 ൌ ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 ൌ 10.569 Msi 

Note that there is no constant term in this PRS surrogate. The vector of residual errors is given as 𝐞 ൌ 𝐲 െ
𝐲ො ൌ ሼ1.567, െ0.867, 4.3, െ3.267ሽ். Therefore, the standard errors of noise and coefficient become 

𝜎ො ൌ ඨ
𝐞்𝐞

4 െ 1
ൌ 3.2846, 𝜎ොா ൌ 3.2846ඨ

1
30

ൌ 0.6 

The only residual error that is greater than 𝜎ො is the third one. Therefore, its weight is calculated as 𝑤ଷ ൌ
3.2846/4.3 ൌ 0.764. 
 Now, since samples have different weights, we perform weighted least-squares fitting with 𝐖 ൌ
diagሾ1.0, 1.0, 0.764, 1.0ሿ to yield 

𝐗்𝐖𝐗 ൌ ሾ27.876ሿ, 𝐗்𝐖𝐲 ൌ ሼ295.512ሽ, 𝐸 ൌ ሺ𝐗்𝐖𝐗ሻିଵ𝐗்𝐖𝐲 ൌ 10.46 Msi 

Note that Young’s modulus is slightly reduced. In the iterative reweighted least-squares process, the new 
vector of residual errors is calculated as 𝐞 ൌ ሼ1.457, െ1.085, 4.628, 2.830ሽ். The new linear PRS yields 

𝜎ො ൌ ඨ
𝐞்𝐖𝐞
4 െ 1

ൌ 3.037, 𝜎ොா ൌ 3.037ඨ
1

30
ൌ 0.56 

Overall, the standard error of the coefficient is reduced slightly. Among the new residual errors, only the 
third one is larger than the standard error of noise. Therefore, its weight is recalculated as 𝑤ଷ ൌ
3.037/4.628 ൌ 0.656. It is noted that the weight of the third sample decreases further. One more 
iteration yields 

𝐗்𝐖𝐗 ൌ ሾ26.904ሿ, 𝐗்𝐖𝐲 ൌ ሼ279.848ሽ, 𝐸 ൌ ሺ𝐗்𝐖𝐗ሻିଵ𝐗்𝐖𝐲 ൌ 10.40 Msi 

We can continue iteration until the residual errors become smaller than the standard error of noise. Or, we 
can be satisfied that the process has identified the third sample as an outlier and eliminated it. If we 
remove the third sample, we can identify 𝐸 ൌ 9.95 Msi, with the standard error of coefficient 𝜎ොா ൌ
0.376. 
 

 
2.8. Statistical view of linear regression 

So far, we developed the linear regression process as a minimization of an error between the samples and 
model predictions. This is indeed deterministic optimization and due to the quadratic nature of the sum-
of-square errors, the optimization has a unique solution. At the same time, however, we also presented 
uncertainty associated with samples, regression coefficients, and predictions at unsampled points. These 
uncertainties stem from the fundamental assumption that samples include random noise. In this section, 
we will derive the uncertainty information from the statistical view of the linear regression process. 
 Although the purpose of surrogate modeling is to develop an approximate function using given 
samples, it would be better to express the samples in terms of the true model in order to explain their 
relationship from the statistical viewpoint. First, we assume that there is a true function 𝑓ሺ𝐱; 𝛃ሻ, which 
describes the behavior of QoI as a deterministic function of input variables 𝐱 and model parameters 𝛃. In 
particular, in the case of PRS surrogates, it is assumed that the true function is in the form of polynomials 
and the model parameters 𝛃 become the coefficients of the polynomials. Second, it is assumed that the 
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PRS surrogate has an exact model form, but the coefficients are approximate. Therefore, the PRS 
surrogate can be represented by 𝑓ሺ𝐱; 𝐛ሻ, where 𝐛 is the approximate coefficients. Lastly, the samples are 
assumed to be generated from the true function 𝑓ሺ𝐱; 𝛃ሻ by adding random noise or some error defined by 
𝜖~𝑁ሺ0, 𝜎ଶሻ. In this viewpoint, we can think of sample 𝑦 at point 𝐱 as a model given in the following 
form: 

𝑦 ൌ 𝑓ሺ𝐱; 𝛃ሻ ൅ 𝜖 (2.48)

That is, a sample has a deterministic part (true function) and a probabilistic part (noise or error).  
 Since the noise is assumed to be normally distributed with a zero mean and variance 𝜎ଶ, the sample in 
Eq. (2.48) follows a normal distribution 𝑦|𝐱~𝑁ሺ𝑓ሺ𝐱; 𝛃ሻ, 𝜎ଶሻ. Here, the notation, 𝑦|𝐱, means a conditional 
probability of 𝑦 given 𝐱. Let 𝑝ሺ𝑦|𝐱ሻ be the conditional probability density function (PDF), then it can be 
written as 

𝑝ሺ𝑦|𝐱ሻ ൌ 𝑁ሺ𝑓ሺ𝐱; 𝛃ሻ, 𝜎ଶሻ (2.49)

In this viewpoint, each sample is a random variable whose mean is the true function and variance 𝜎ଶ. 
 Now, the main task of surrogate modeling is to estimate the unknown coefficient 𝛃. In the case of 
linear regression, the unknown coefficients are determined by minimizing the sum-of-square errors. From 
the statistical viewpoint, instead of minimizing a measure of error, the following question is asked: how 
likely is it that the samples can be obtained given the input variable 𝐱 and parameter 𝛃? Such likelihood of 
obtaining the sample is represented in the form of conditional probability 𝑝ሺ𝑦|𝐱ሻ in Eq. (2.49). Since 
there are 𝑛௬ numbers of samples, the likelihood of obtaining all samples can be written as 

𝑝 ቀ𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௡೤ቚ 𝐱ଵ, 𝐱ଶ, ⋯ , 𝐱௡೤ቁ (2.50)

This is indeed the condition joint PDF of 𝑛௬ numbers of random variables.  
 In PRS surrogate modeling, it is assumed that all samples are uncorrelated to each other. More 
specifically, they are independent and identically distributed (iid). That means, the random noises in 𝑦௜ 
and 𝑦௝ come from the same distribution~𝑁ሺ0, 𝜎ଶሻ, but their realizations 𝜖௜ and 𝜖௝ are independent. In 
such a case, the conditional joint PDF in Eq. (2.50) can be obtained by the product of all conditional PDFs 
of individual samples. That is, the likelihood function of all samples can be written as 

𝑝ሺ𝐲|𝐗, 𝛃, 𝜎ሻ ൌ ෑ 𝑝ሺ𝑦௜|𝐱௜ሻ

௡೤

௜ୀଵ

ൌ ෑ 𝑁ሺ𝑓ሺ𝐱௜; 𝛃ሻ, 𝜎ଶሻ

௡೤

௜ୀଵ

 

                                         ൌ ൫𝜎√2𝜋൯
ି௡೤

exp ቎െ
1

2𝜎ଶ ෍൫𝑦௜ െ 𝑓ሺ𝐱௜; 𝛃ሻ൯
ଶ

௡೤

௜ୀଵ

቏ 

(2.51)

 It is important to understand the difference between the conditional joint PDF and the likelihood 
function. Although both have the same expression, the interpretations are different. In the case of 
conditional joint PDF, 𝑝ሺ𝐲|𝐗, 𝛃, 𝜎ሻ means the PDF value of 𝐲 for given parameters 𝐗, 𝛃, 𝜎. In this case, 𝐲 
is varied to obtain different probability density values. On the other hand, in the case of the likelihood 
function, 𝑝ሺ𝐲|𝐗, 𝛃, 𝜎ሻ means the probability density value to obtain 𝐲 for given 𝐗, 𝛃, 𝜎. In this case, 𝐲 is 
fixed, and 𝐗, 𝛃, 𝜎 are varied to obtain different likelihood values at different parameters. 
 Figure 2-13 shows the relationship between the PDF and likelihood function in the case of one sample 
with one parameter. Figure 2-13(a) shows three PDFs of sample 𝑦 with three different parameter values 
𝛽ଵ, 𝛽ଶ, 𝛽ଷ. The three PDFs have the same shape but with different mean values. This happens because we 
assume that sample 𝑦 has a mean 𝑓ሺ𝐱; 𝛃ሻ, which depends on the parameter 𝛽. If the variance 𝜎ଶ is also 
included as a parameter, the shape of the PDF will also change.  
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 Now, when an actual sample turns out to be 𝑦ଵ from the experiment, the PDFs have different values 
depending on parameter values (the three red circle markers). This is basically likelihood. When 𝛽 ൌ 𝛽ଵ, 
the probability density to obtain sample 𝑦ଵ is 𝐴, when 𝛽 ൌ 𝛽ଶ it is 𝐵, etc. Therefore, the likelihood of 
obtaining sample 𝑦ଵ can be plotted by varying the parameter 𝛽 as shown in Figure 2-13(b), which is the 
likelihood function. It is noted that sample 𝑦 is a variable in PDF, while parameter 𝛽 is a variable in the 
likelihood function. In general, the shape of PDF and that of likelihood are different. 
 

 
Figure 2-13: Probability density function versus likelihood function.  
 
 Different from the least-squares method in linear regression, the idea behind the likelihood function is 
that the likelihood function in Figure 2-13(b) is our knowledge of the unknown parameter. That is, we 
cannot estimate the unknown parameter deterministically but only in the form of a probabilistic 
distribution. Because sample 𝑦 has uncertainty due to random noise, we cannot estimate the parameter 
exactly. Instead, the probability that the parameter is 𝛽ଵ is high, while the probability that the parameter is 
𝛽ଷ is low. If we know sample 𝑦ଵ is exact and there is no randomness; i.e., 𝜎 ൌ 0, we can determine the 
unknown parameter 𝛽ଵ exactly because the PDF is infinity at 𝑦 ൌ 𝑦ଵ and zero everywhere else.  
 It is also interesting to note that the PDF in Figure 2-13(a) is a probability distribution of a random 
variable 𝑦, which is often known as aleatory uncertainty. That means, different samples will have 
different values every time when the sample is drawn. On the other hand, the distribution in Figure 2-
13(b) does not represent any randomness. The model parameter 𝛽 is not random, but uncertain. This type 
of uncertainty is called epistemic uncertainty. It means, the parameter is deterministic but we do not know 
its value exactly. The top point 𝐴 in Figure 2-13(b) means that the probability that the actual parameter 
value being 𝛽ଵ is highest, while the point 𝐶 means that the probability that the actual parameter value 
being 𝛽ଷ is low based on the proof that sample has a value of 𝑦ଵ. Therefore, the distribution in Figure 2-
13(b) should be understood as the probability that the parameter value is an accurate one given sample 𝑦ଵ. 
If the likelihood has a narrow distribution, it means the information is accurate and uncertainty in the 
parameter is low. On the other hand, if the likelihood is widely distributed, it means that the information 
is vague and it is difficult to identify accurate parameters.  
 When multiple samples are present, the individual likelihood functions are multiplied together. For 
example, when two samples, 𝑦ଵ and 𝑦ଶ, are present, the PDF in Figure 2-13(a) becomes a two-
dimensional joint PDF (the plot will be a three-dimensional bell shape). However, the likelihood function 
in Figure 2-13(b) will still be a one-dimensional function of 𝛽. If two samples 𝑦ଵ and 𝑦ଶ are close 
together, the distribution in Figure 2-13(b) will be narrowed, which means the information is accurate. If 



 2-57

two samples are significantly different, the likelihood plot will be wide and the parameter cannot be 
estimated accurately. On the other hand, when multiple parameters are present in the PRS model, the 
likelihood function in Figure 2-13(b) will be a multi-dimensional bell-shaped plot. Therefore, the 
likelihood function given in Eq. (2.51) can be viewed as a mapping from 𝑛௬-dimensional joint PDF to 𝑛ఉ-
dimensional likelihood function.  
 Even if the likelihood function in Figure 2-13(b) is given in the form of distribution, it is still valuable 
to obtain a single value of the parameter that can represent the best estimate. In fact, this estimate 
corresponds to the mode of the distribution in Figure 2-13(b). That is, the peak of the distribution is the 
best deterministic estimate of the parameter. Since the peak value corresponds to the maximum likelihood 
function, it is referred to as the maximum likelihood estimate. It is possible that the likelihood function in 
Eq. (2.51) is differentiated to obtain the maximum point, it would be better to work with a logarithm of it, 
which is called the log-likelihood function. This is because the product of exponential likelihood 
functions increases very fast and becomes a highly nonlinear function. The log-likelihood function can be 
defined as 

𝐿 ൌ log 𝑝ሺ𝐲|𝐗, 𝛃, 𝜎ሻ ൌ െ
1

2𝜎ଶ ෍|𝑦௜ െ 𝑓ሺ𝐱௜; 𝛃ሻ|ଶ

௡೤

௜ୀଵ

െ 𝑛௬ log 𝜎√2𝜋 (2.52)

Since logarithm is a monotonic function, even if the likelihood function in Eq. (2.51) and the log-
likelihood function in Eq. (2.52) may have different values, the parameters, 𝛃 and 𝜎, that maximize both 
functions are the same.  
 In order to have the maximum likelihood estimate, the true function is expressed as a linear 
combination of basis functions as𝑓ሺ𝐱௜; 𝛃ሻ ൌ 𝛏ሺ𝐱௜ሻ்𝛃. Then, the sum in the first term on the right-hand 
side of Eq. (2.52) becomes ሺ𝐲 െ 𝐗𝛃ሻ்ሺ𝐲 െ 𝐗𝛃ሻ. Then, the maximum likelihood estimate determines the 
model parameter by differentiating the log-likelihood function as  

𝜕𝐿
𝜕𝛃

ൌ
1

𝜎ଶ ሺ𝐗்𝐲 െ 𝐗்𝐗𝛃ሻ ൌ 𝟎 (2.53)

It is interesting to note that even if 𝜎 is also considered a model parameter, the determination of parameter 
𝛃 is independent of 𝜎. This is because 𝜎 is the same for all samples. Also, it can be seen from Figure 2-
13(b) that the large 𝜎 may cause a wide distribution, but the peak value will be the same.  
 An important conclusion from Eq. (2.53) is that the parameters obtained from the maximum 
likelihood estimate are identical to the parameters obtained from linear regression in Eq. (2.14), as 

𝐛ሚ ൌ ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 (2.54)

Here 𝐛ሚ  is used instead of 𝛃 because the right-hand side includes the random variable 𝐲. Therefore, 𝐛ሚ  is an 
uncertain variable with a joint PDF given as ~𝑁ሺ𝐛, 𝚺𝐛ሻ. Equation (2.54) shows how aleatory uncertainty 
(randomness) in samples is converted into epistemic uncertainty in the regression coefficients. In addition, 
the variance of noise can be estimated by differentiating the log-likelihood function with respect to 𝜎, as 

𝜎ොଶ ൌ
1

𝑛௬
൫𝐲 െ 𝐗𝐛ሚ ൯

்
൫𝐲 െ 𝐗𝐛ሚ ൯ ൌ

𝑆𝑆௘

𝑛௬
 (2.55)

which is the same as Eq. (2.20) except that the free degrees-of-freedom 𝑛௬ െ 𝑛ఉ is used for the unbiased 
estimate. 
 The second-order derivative of the log-likelihood function with respect to parameter 𝛃 is called the 
Hessian matrix or information matrix. By differentiating Eq. (2.53), the information matrix can be 
obtained as 
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𝜕ଶ𝐿
𝜕𝛃𝜕𝛃

ൌ െ
1

𝜎ଶ 𝐗்𝐗 (2.56)

 The uncertainty in the regression coefficients can be defined as a covariance matrix. The definition of 
a covariance matrix is 𝑐𝑜𝑣ൣ𝐛ሚ ൧ ൌ 𝚺𝐛 ൌ 𝐸ൣ𝐛ሚ 𝐛ሚ ்൧ െ 𝐸ൣ𝐛ሚ ൧𝐸ൣ𝐛ሚ ்൧. The first term on the right-hand side can be 
expanded using the estimated coefficient in Eq. (2.54): 𝐸ൣ𝐛ሚ 𝐛ሚ ்൧ ൌ ሺ𝐗்𝐗ሻିଵ𝐗்𝐸ሾ𝐲𝐲்ሿ𝐗ሺ𝐗்𝐗ሻିଵ. This is 
because only 𝐲 is random in Eq. (2.54), all other terms can come out of the expectation operator. The 
mean of sample matrix term can be simplified as 𝐸ሾ𝐲𝐲்ሿ ൌ 𝐸 ቂ൫𝐗𝐛ሚ െ 𝛜൯൫𝐗𝐛ሚ െ 𝛜൯

்
ቃ ൌ 𝐗𝐛𝐛்𝐗் ൅ 𝜎ଶ𝐈. 

The second term is straightforward as 𝐸ൣ𝐛ሚ ൧𝐸ൣ𝐛ሚ ்൧ ൌ 𝐛𝐛். Therefore, combining these two terms, the 
covariance matrix of the coefficients becomes 

𝚺𝐛 ൌ 𝜎ଶሺ𝐗்𝐗ሻି𝟏 (2.57)

which is identical to the one given in Eq. (2.38). It is interesting to note that the covariance matrix is the 
negative of the inverse of the information matrix in Eq. (2.56). 
 The last uncertainty that we used is the prediction variance. From the statistical viewpoint, the 
surrogate prediction can be written as 𝑦ොሺ𝐱ሻ ൌ 𝛏ሺ𝐱ሻ்𝐛ሚ . In this expression, the prediction is also an 
uncertain variable because of 𝐛ሚ . However, since 𝛏ሺ𝐱ሻ் is a deterministic function, the variance of 𝑦ොሺ𝐱ሻ 
can be written as 

𝑉ሾ𝑦ොሺ𝐱ሻሿ ൌ 𝛏ሺ𝐱ሻ்𝚺𝐛𝛏ሺ𝐱ሻ ൌ 𝛏ሺ𝐱ሻ்𝜎ଶሺ𝐗்𝐗ሻି𝟏𝛏ሺ𝐱ሻ (2.58)

Therefore, the standard error of prediction can be written as 

𝜎௬ሺ𝐱ሻ ൌ 𝜎ොඥ𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻି𝟏𝛏ሺ𝐱ሻ (2.59)

which is identical to the one given in Eq. (2.41). In general, the standard error of prediction is used to find 
the confidence intervals of the prediction. For example, 95% confidence intervals can be written as 

𝐶𝐼ଽହ ൌ 𝑦ොሺ𝐱ሻ േ 2𝜎௬ሺ𝐱ሻ (2.60)

 
Example 2-13 
Generate 50 equally spaced samples in the design space 𝑥 ∈ ሾെ5, 5ሿ from the true function 𝑦ሺ𝑥ሻ ൌ 5𝑥ଷ െ
𝑥ଶ ൅ 𝑥 and add random noise from a normal distribution ~𝑁ሺ0,100ଶሻ. Fit the samples using linear, cubic, 
6th-order, and 10th-order PRS. Plot the mean prediction with 95% confidence intervals.  
 
Solution: 
The following MATLAB code is used to fit the PRS surrogate model and plot the prediction and 
confidence intervals. The code requires removing the comment symbol % in front of the design matrix 𝐗 
for the corresponding order of PRS. First, random noises are generated from a normal distribution. They 
are shifted such that their mean is zero. Even if the standard deviation of 100 is used to generate noise 
samples, the sample standard deviation turns out to be 126.3. MATLAB function regress is used to 
calculate the regression coefficients 𝐛 as well as residuals 𝐫. The standard error of noise is calculated 
using the residuals, and the standard error of prediction is calculated at all sample points. Figure 2-14 
shows the PRS predictions and 95% confidence intervals for linear, cubic, 6th-order, and 10th-order PRS. 
It is obvious that the linear PRS failed to follow the trend of the true function, and the estimated 
uncertainty is not consistent (30 samples were out of 95% confidence intervals). The cubic and 6th-order 
PRS seem to follow the trend of true function well, while the 10th-order PRS seems overfitting samples. 
In order to compare these surrogates 𝑅ଶ and 𝑅௔

ଶ are calculated in Table 2-2. When 𝑅ଶ is considered, it 
looks that the 10th-order PRS fits the best. But this is due to the fact that more coefficients are used. 
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Based on 𝑅௔
ଶ, the cubic PRS turns out to be the best, which has the same order of polynomials with the 

true function. 
 
Table 2-2: Comparison of 𝑅ଶ and 𝑅௔

ଶ for four PRS surrogates. 
 1st-order PRS 3rd-order PRS 6th-order PRS 10th-order PRS 

𝜎ො 186.3 120.8 123.5 122.3 

𝑅ଶ 0.57 0.8267 0.8306 0.8494 

𝑅௔
ଶ 0.561 0.8154 0.8070 0.8108 

 
rng default;                               % Control random number sequence 

x=linspace(-5,5,50)';                     % Equally spaces sample locations 

ytrue=5*x.^3 - x.^2 + x;                                    % True function 

noise=100*randn(50,1); noise=noise-mean(noise);     % Unbiased random noise 

y=ytrue+noise;                                           % Generate samples 
%X=[ones(50,1) x];                                  
X=[ones(50,1) x x.^2 x.^3];                                 % Design matrix 
%X=[ones(50,1) x x.^2 x.^3 x.^4 x.^5 x.^6]; 
%X=[ones(50,1) x x.^2 x.^3 x.^4 x.^5 x.^6 x.^7 x.^8 x.^9 x.^10]; 

[b,bint,r,rint,stats]=regress(y,X);                           % Fitting PRS 

yfit=X*b;                                     % Prediction at sample points 

s=sqrt(r'*r/(50-size(X,2));                       % Standard error of noise 

sy=s.*diag(sqrt(X*inv(X'*X)*X'));             %Standard error of prediction 

plot(x,y,'+',x,yfit,'b',x,yfit-2*sy,'k',x,yfit+2*sy,'k');        % Plotting 

 

 
Figure 2-14: Confidence intervals of different surrogate models.  
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2.9.Exercise 

 
1. Fit a linear function in Figure 2-1 with 10, 30, 50, and 100 equal-interval samples. Show that 𝑒ோெௌ of 

the fitted curve converges to zero as the number of samples increases. Explain why that happens using 
the mean of noise samples.  

2. Generate 21 equal-interval samples for 𝑥 ∈ ሾ0, 2ሿ from the true function 𝑦ሺ𝑥ሻ ൌ 𝑥ଶ and add random 
noise from the standard normal distribution ~𝑁ሺ0,0.1ଶሻ. Shift the noise samples such that the 
samples have a zero mean. Fit these samples using a linear polynomial 𝑦ොሺ𝑥ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥 and estimate 
𝑒ோெௌ of the fitted model. Discuss the reason for the difference between the standard deviation of noise 
and 𝑒ோெௌ. 

3. In a curve-fitting example with a true function 𝑦 ൌ 𝑥, noisy data are fitted to a linear polynomial 𝑦ො ൌ
1.06𝑥. In addition, the data at 𝑥 ൌ 10 was 𝑦ଵ଴ ൌ 11. What are (a) 𝜖, (b) 𝜖ଵ଴, and (c) the surrogate 
error at 𝑥 ൌ 10? 

4. Generate 30 equal-interval samples for 𝑥 ∈ ሾ1, 30ሿ using a true function 𝑦ሺ𝑥ሻ ൌ 𝑥 and add random 
noise from ~𝑁ሺ0,1ଶሻ. Using the three error metrics in Eqs. (2.7)-(2.9) to fit a linear PRS. Compare 
the three PRSs using the three error metrics as in Table 2-1. Hint: use the fminsearch function in 
Matlab. 

5. Repeat Problem 4 with the surrogate 𝑦ොሺ𝑥ሻ ൌ 𝑏𝑥. 
6. Repeat Problem 4 with 10 points and compare the accuracy of the fit with respect to the true function. 
7. Find other error metrics for a fit besides the three discussed in Eqs. (2.7)-(2.9). 

For 𝑝 ൌ 1, it becomes absolute error norm, for 𝑝 ൌ 2, it becomes RMS error, and as 𝑝 approaches 
infinity, the p-normal approaches the maximum norm ‖𝐞‖ஶ ൌ max|𝑒௜|. Therefore, a large 𝑝 can be 
used to approximate the maximum error norm.  

8. Check the accuracy of the quadratic PRS in Example 2-2 in the region 1.5 ൑ 𝐷 ൑ 3.5, 3 ൑ 𝐻 ൑ 7. 
Find the maximum error, average error and RMS error (a) for the 9 sample points, and (b) for the 
entire region (using the analytical expression from Example 2-2). You may cover the domain with a 
grid of (20 ൈ 20) points and calculate the error in each one of the 400 points. (c) Calculate the error 
using the PRESS procedure and compare it to the result of part (b) 

9. Using the samples in Example 2-2, use backward elimination to find an incomplete quadratic PRS 
with the highest 𝑅௔

ଶ. Then, check for accuracy of the fit compared to the analytical profit per can over 
the entire region, and compare to the results obtained in Problem 8.  

10. Consider the following experimental samples ሺ𝑥, 𝑦ሻ ൌ ሺ1,1ሻ, ሺ2,2ሻ, ሺ3,5ሻ, ሺ4,9ሻ. (a) Construct a linear 
PRS 𝑦ොሺ𝑥ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥. (b) Estimate 𝑅௔

ଶ and 𝑒௉ோாௌௌ. (c) If the quadratic PRS is 𝑦ොሺ𝑥ሻ ൌ 1.25 െ
1.05𝑥 ൅ 0.75𝑥ଶ, compare the quality of quadratic PRS with linear PRS using 𝑒௉ோாௌௌ. For quadratic 
PRS, use the following idempotent matrix: 
 

𝐸 ൌ 𝐗ሺ𝐗்𝐗ሻିଵ𝐗் ൌ ቎

. 95 . 15

. 15 . 55
െ.15 . 05
. 45 െ.15

െ.15 . 45
. 05 െ.15

. 55 . 15

. 15 . 95

቏ 

11. A function is given at 3 data points: 𝑦ሺെ1ሻ ൌ 0, 𝑦ሺ0ሻ ൌ 0, and 𝑦ሺ1ሻ ൌ 3. Fit a least square constant 
and linear polynomials to the data. Calculate the RMS error of the two curve fits. The linear curve fit 
has a smaller error but check whether it could be expected to be a better predictor of the true function. 
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12. A function 𝑦 ൌ 𝑏𝑥 is fitted using two sample points, 𝑦ଵ ൌ 𝑦ሺ1ሻ ൌ 10, 𝑦ଶ ൌ 𝑦ሺ2ሻ ൌ 25. (a) Calculate 
the cross-validation error at the first point from the definition. (b) If the true value of the coefficient 𝑏 
is 11 ሺ𝑦୲୰୳ୣ ൌ 11𝑥ሻ and the fitted value is 12, 𝑦ො ൌ 12𝑥, calculate the value of 𝜖, 𝑒, and the surrogate 
error at 𝑥 ൌ 1. (c) Calculate the coefficient 𝑏 to check that its value is indeed 12. 

13. A function 𝑦 ൌ 𝑏/ሺ1 ൅ 𝑥ሻ is fitted using two sample points, 𝑦ଵ ൌ 𝑦ሺ0ሻ ൌ 10, 𝑦ଶ ൌ 𝑦ሺ1ሻ ൌ 4. (a) 
Estimate the coefficient 𝑏 using linear regression. (b) Calculate the cross-validation error at the first 
point from the definition. (b) The noise in the samples has been determined to be normally distributed 
with a standard deviation of 1.1. Use that to estimate the standard error in 𝑏. (c) Provide a better 
choice of 𝑏 if the objective is to minimize the maximum error rather than the regression fit. 

14. A function 𝑦 ൌ 𝑏ሺ1 െ 𝑥ሻ/ሺ1 ൅ 𝑥ሻ is fitted using two sample points, 𝑦ଵ ൌ 𝑦ሺ0ሻ ൌ 0, 𝑦ଶ ൌ 𝑦ሺ2ሻ ൌ
െ20. (a) Estimate the coefficient 𝑏 using linear regression. (b) Calculate the cross-validation error at 
𝑥 ൌ 2 from definition. 

15. In Example 2-3, calculate the RMS error between the true function and fitted function with 50 
equally spaced points (a) in 𝑥 ∈ ሾ0, 10ሿ and (b) in 𝑥 ∈ ሾെ2, 12ሿ. Discuss why the RMS error in (b) is 
larger than (a). 

16. Generate 20 equally-spaced samples of the true function 𝑦ሺ𝑥ሻ ൌ 𝑥ଷ െ 𝑥 in the design space 𝑥 ∈
ሾെ1.5, 1.5ሿ with random noise ~𝑁ሺ0,0.5ଶሻ. Fit the samples using (a) linear PRS and (b) cubic PRS. 
Compare the two surrogates in terms of the RMS error between the predictions and samples as well as 
the RMS error between the predictions and the true function. 

17. Prove the relationship in Eq. (2.24). 
18. The sample pairs (0, 0), (1, 1), and (2,1) represent strain (millistrains) and stress (ksi) measurements. 

(a) estimate Young’s modulus using regression, and (b) calculate the error in Young’s modulus using 
cross-validation both from the repeated fitting and from the formula with one fitting. 
This yields 𝑒௣ଷ ൌ 𝑦ଷ െ 𝑦ොሺ2ሻ ൌ െ1.0. Therefore, the prediction errors 𝐞௣ ൌ ሼ0, 0.5, െ1ሽ் is identical 
to the one-fit case. Therefore, 𝑒௉ோாௌௌ ൌ 0.7606 will be the same as well. 
 

19. The pairs ሺ1,1ሻ, ሺ2,2ሻ, ሺ4,3ሻ represent strain (millistrains) and stress (ksi) measurements. The 
relationship is given as stress = E*strain, where E is Young’s modulus. Estimate Young’s modulus 
using the three error measures: 𝑒ோெௌ, 𝑒௔௩, and 𝑒୫ୟ୶. Estimate the error in Young’s modulus using 
cross-validation of the three error measures. Use the range of Young’s modulus 0.75 ൑ 𝐸 ൑ 1. 
 

20. Two samples (1, 1) and (4, 3) represent strain (millistrains) and stress (ksi) measurements. For the 
material tested 𝜎 ൌ 𝑘√𝜖, (a) estimate 𝑘 using regression, (b) estimate noise in samples, (c) estimate 
the standard error in the estimate of 𝑘, and (d) compare the standard error to the estimate 𝑘 by cross-
validation. 
 

21. Two samples 𝑦ሺ0ሻ ൌ 10.0, 𝑦ሺ1ሻ ൌ 4.0 are fitted by 𝑦ොሺ𝑥ሻ ൌ 𝑏/ሺ1 ൅ 𝑥ሻ. (a) Estimate the coefficient 𝑏 
via regression. (b) The noise in the samples has been determined to be normally distributed with a 
standard deviation of 1.1. Use that to estimate the standard error of the coefficient. (c) If the 
maximum error is used for the fitting process, estimate a better coefficient than (a). Explain how you 
obtain the coefficient.  

22. Two samples 𝑦ሺ0ሻ ൌ 0.0, 𝑦ሺ2ሻ ൌ െ10.0 are fitted by 𝑦ොሺ𝑥ሻ ൌ 𝑏ሺ1 െ 𝑥ሻ/ሺ1 ൅ 𝑥ሻ. (a) Estimate the 
coefficient 𝑏 via regression. (b) Calculate the cross-validation error at 𝑥 ൌ 2 from the definition (not 
using E).  

23. Repeat Example 2-7 using only data at 𝑥 ൌ 3, 6, 9, ⋯ , 30. 
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24. We are trying to estimate the average cost of a gadget based on three sample points $110, $120, and 
$130. You can think of it as a simple regression problem of fitting a polynomial 𝑦ො ൌ 𝑏, to three 
sample points. (a) Perform the linear regression fit to the samples, which is to estimate 𝑏 from the 
regression equations. (b) Calculate the cross-validation error for the third sample from the definition 
(not the formula). (c) If the true average (from a very large number of samples) is $125, calculate the 
values of noise 𝜖, residual 𝑒, and the surrogate error for the third sample in Part (a). 

25. A PRS is given in the following model form: 𝑦ොሺ𝑥ሻ ൌ 𝑏𝑥. Two samples are given as 𝑦ሺ1ሻ ൌ
10, 𝑦ሺ2ሻ ൌ 25. (a) Calculate the cross-validation error at the first point from the definition, not the 
formula. (b) If the true value of 𝑏 is 11 (𝑦௧௥௨௘ሺ𝑥ሻ ൌ 11𝑥) and the fitted value is 12, 𝑦ොሺ𝑥ሻ ൌ 12𝑥, 
calculate the values of 𝜖, 𝑒, and the surrogate error at 𝑥 ൌ 1. (c) Calculate 𝑏 to check that its value is 
indeed 12. 

26. The pairs (1,1) and (3, 2) represent strain (millistrains) and stress (ksi) measurements. Denoting the 
strain by 𝑥, the stress by 𝑦, and Young’s modulus by 𝑏, we assume that the true relationship between 
the stress and strain is 𝑦 ൌ 𝑏𝑥. (a) Calculate the linear regression fit to the samples; that is, what the 
estimate of 𝑏 is. (b) Calculate the cross-validation errors, from the definition (not the formula). (c) If 
the true value of Young’s modulus is 1, calculate the values of 𝜖, 𝑒, and the surrogate error at 𝑥 ൌ 3. 

27. The following table shows 15 test results with two variables. Since the magnitudes of the two 
variables are significantly different, it is a good idea to scale them such that െ1 ൑ 𝑥෤ଵ, 𝑥෤ଶ ൑ 1 where 
𝑥෤௜ ൌ ൫𝑥௜ െ ሾ𝑥௜

௠௔௫ ൅ 𝑥௜
௠௜௡ሿ/2൯/൫ሾ𝑥௜

௠௔௫ െ 𝑥௜
௠௜௡ሿ/2൯.  

(a) Construct a linear response surface using scaled variables: 𝑦ොሺ𝑥෤ଵ, 𝑥෤ଶሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥෤ଵ ൅ 𝑏ଷ𝑥෤ଶ . 
(b) Calculate root-mean-square, average, and maximum errors. 
(c) Estimate the variance of random noise, coefficient of multiple determination, adjusted multiple 
determination, and PRESS.  
(d) Construct a quadratic response surface: 𝑦ොሺ𝑥෤ଵ, 𝑥෤ଶሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥෤ଵ ൅ 𝑏ଷ𝑥෤ଶ ൅ 𝑏ଷ𝑥෤ଵ

ଶ ൅ 𝑏ସ𝑥෤ଶ𝑥෤ଵ ൅ 𝑏ହ𝑥෤ଶ
ଶ. 

(e) Evaluate the quality of the quadratic PRS compared with the linear PRS. 
(f) Perform backward elimination once for the least confident coefficient. 
 

Observation x1 x2 y 
1 195 4.0 1004 
2 255 4.0 1636 
3 195 4.6 852 
4 255 4.6 1506 
5 225 4.2 1272 
6 225 4.1 1270 
7 225 4.6 1269 
8 195 4.3 903 
9 255 4.3 1555 

10 225 4.0 1260 
11 225 4.7 1146 
12 225 4.3 1276 
13 225 4.72 1225
14 230 4.3 1321

28. Repeat Example 2-10 when the four sample locations are not at the corners but at ሺേ0.7, േ0.7ሻ. 
Discuss the difference from the results in Example 2-10.  

29. For a grid of 3 ൈ 3 sample points in a two-dimensional design space 𝑥ଵ, 𝑥ଶ ∈ ሾെ1, 1ሿ, compare the 
contours of the standard error of prediction for linear and quadratic PRS. 

30. The Branin-Hoo function is a popular analytical function that is used for testing surrogate models 
[21]. The functional form is defined in 𝑥ଵ ∈ ሾെ5,10ሿ and 𝑥ଶ ∈ ሾ0,15ሿ.  
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𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ ൬𝑥ଶ െ
5.1
4𝜋ଶ 𝑥ଵ

ଶ ൅
5

𝜋ଶ 𝑥ଵ െ 6൰
ଶ

൅ 10 ൬1 െ
1

8𝜋
൰ cosሺ𝑥ሻ ൅ 10 

(a) Generate an equally-spaced 6 ൈ 6 grid in the design space, among which use only internal 
4 ൈ 4 ൌ 16 points as samples. Use the analytical function above to evaluate the samples. No need to 
add random noise.  
(b) Fit the samples using cubic PRS with 10 coefficients. Evaluate the accuracy of the surrogate using 
𝑒௠௔௫, 𝑒௔௩, 𝑒ோெௌ, 𝑅ଶ, 𝑅௔

ଶ, and 𝑒௉ோாௌௌ. 
31. Tensile tests of composite plates with a hole are performed at different configurations as shown in the 

table. Multiple nominally identical specimens were tested for different ratios of plate width 𝑤 to hole 
diameter 𝐷 and for different fractions 𝑅ସହ of the thickness of the plate occupied by േ45° plies. The 
results were collected for 12 combinations of the two variables, and the failure stress (based on the 
cross-section without the hole) is given in the table. The standard deviation between nominally 
identical specimens is given for information only. For fitting a surrogate use only the mean. (a) Fit the 
samples using a linear and quadratic PRS. (b) Compare the two surrogates on the basis of global 
measures (𝑅௔

ଶ, 𝜎ො, and 𝑒௉ோாௌௌ) and the maximum prediction variance in the domain. 

 

 
32. Assuming a linear model; i.e., 𝑦 ൌ 𝑦ො ൅ 𝜖 ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥 ൅ 𝜖, where 𝑦ො is the regression model and 𝜖 is 

the error with independent normal distribution; i.e., 𝜖~𝑁ሺ0, 𝜎ଶሻ. (a) Compute 95% confidence 
interval of 𝐛; i.e., computer 2.5% and 97.5% percentiles of 𝐛. (b) Compute a 95% confidence interval 
of 𝑦ො at 𝑥 ൌ 0.2. (c) Plot 𝑦ො and confident interval of 𝑦ො in the same graph ∈ ሾ0,1ሿ. Samples are given as 

x=[0 0.2 0.4 0.6 0.8 1.0]'; 

y=[0.4662, 0.5844, 0.7845, 0.8007, 0.9028, 0.8995]'; 

  
33. In order to fit a linear polynomial 𝑦ሺ𝑥ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥, six equally-spaced samples are generated in the 

design space of 𝑥 ∈ ሾ0,1ሿ. From the true model, the samples have normally distributed noise with a 
mean of zero and a standard deviation of 0.1. The random number generator in Matlab generates the 
following noise samples ሺ𝑥, 𝜖ሻ ൌ ሺ0,0.119ሻ, ሺ0.2, െ0.04ሻ, ሺ0.4,0.033ሻ, ሺ0.6,0.017ሻ, ሺ0.8,0.019ሻ,
ሺ1.0, െ0.072ሻ. Add the noise samples to the function 𝑦 ൌ 𝑓ሺ𝑥ሻ ൌ 𝑥, and fit it to a linear polynomial. 
Calculate the error measures 𝑒ோெௌ, 𝑅ଶ, 𝑅௔

ଶ, 𝑒௉ோாௌௌ and compare 𝑒ோெௌ and 𝑒௉ோாௌௌ to the RMS error 
calculated analytically between the line 𝑦 ൌ 𝑥 and the fitted line. 

34. Repeat Problem 33 when the true function is 𝑦 ൌ 𝑥ଶ. (a) use a linear PRS. (b) use a quadratic PRS. 
35. . 
 
36. . 
 


