% Example 3.5 a=sqrt(2); b=2; X=[1 -1 -1 1 1 1; 1 1 -1 1 -1 1; 1 1 1 1 1 1; 1 -1 1 1 -1 1; 1 a 0 b 0 0; 1 -a 0 b 0 0; 1 0 a 0 0 b; 1 0 -a 0 0 b; %1 0 0 0 0 0; %1 0 0 0 0 0; %1 0 0 0 0 0; %1 0 0 0 0 0; 1 0 0 0 0 0]; XTX=X'*X; XTXi=inv(XTX); [X, Y]=meshgrid(-1:.1:1, -1:.1:1); Z=zeros(size(X)); [n, m]=size(X); for i=1:n for j=1:m xi=[1 X(i,j) Y(i,j) X(i,j).^2 X(i,j).*Y(i,j) Y(i,j).^2]; Z(i,j)=sqrt(xi*XTXi*xi'); end end v=linspace(min(min(Z)),max(max(Z)),10); [C,h]=contour(X,Y,Z,v); clabel(C,h) Zmax=max(max(Z)) Zmin=min(min(Z)) stability=Zmax/Zmin %----------------------------------------------------------------------------- % % Figure 3.10 dCC = ccdesign(2,'type','circumscribed'); plot(dCC(:,1),dCC(:,2),'ro','MarkerFaceColor','b') X = [1 -1 -1 -1; 1 1 1 -1]; Y = [-1 -1 1 -1; 1 -1 1 1]; line(X,Y,'Color','b') axis square equal off %----------------------------------------------------------------------------- % % Example 3.8 ny=6; %With 6 samples: [dce,X]=cordexch(2,ny,'quadratic'); scatter(dce(:,1),dce(:,2),200,'filled') D6=det(X'*X) % ny=12; %With 12 samples: [dce,X]=cordexch(2,ny,'quadratic'); scatter(dce(:,1),dce(:,2),200,'filled') D12=det(X'*X) %----------------------------------------------------------------------------- % % Example 3.10 X=[0 0;1 0;1 1]; % D-optimal design %X=[0 0;1 0;0 1]; % A-optimal design %X=[0 0;1 0;0.5 1]; % G-optimal design % XTX=X'*X; XTXi=inv(XTX); [X, Y]=meshgrid(0:.1:1, 0:.1:1); Z=zeros(size(X)); [n, m]=size(X); for i=1:n for j=1:m xi=[X(i,j) Y(i,j)]; Z(i,j)=sqrt(xi*XTXi*xi'); end end v=linspace(min(min(Z)),max(max(Z)),10); [C,h]=contour(X,Y,Z,v); clabel(C,h) Zmax=max(max(Z)) Zmin=min(min(Z)) %----------------------------------------------------------------------------- % % Example 3.12 rng default; x=rand(20,2); subplot(2,2,1); plot(x(:,1), x(:,2), 'o'); subplot(2,2,2); hist(x(:,2),20); subplot(2,2,3); hist(x(:,1),20); %----------------------------------------------------------------------------- % % Figure 3.17 x=lhsdesign(10,2); plot(x(:,1), x(:,2), 'o'); xr=lhsdesign(10,2,'criterion','correlation'); hold on; plot(xr(:,1), xr(:,2), 'r+'); r=corrcoef(x) %r = 1.0000 -0.6999 % -0.6999 1.0000 r=corrcoef(xr) %r = 1.0000 -0.0545 % -0.0545 1.0000 %-----------------------------------------------------------------------------