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3. Design of Experiments 
 
3.1. Introduction 

 
In Chapter 2, we assumed that the sample locations are fixed and studied how to fit a good polynomial 
response surface (PRS) through the given samples. We showed that different basis functions can affect the 
accuracy of the prediction, which was evaluated using prediction variance. We also studied a method of 
eliminating unimportant basis functions to improve the accuracy of the prediction. However, the choice of 
sample locations where experiments (whether numerical or physical) are performed has very large effects 
on the quality of the surrogate. A partial result was shown in Example 2-10 and Exercise Problem 28 of 
Chapter 2, where the prediction variance changes significantly depending on the locations of the samples. 
As the purpose of surrogate modeling is to approximate a quantity of interest (QoI) using a set of samples, 
the goal is to make the surrogate model as accurate as possible using as few samples as possible. To 
achieve this goal, the first important task is to determine how many samples to use and where to locate the 
samples. 
 In this chapter, we will explore methods for selecting a good set of sample locations for carrying out 
experiments. The selection of these sample locations is known as the design of experiments (DoE) or 
experimental designs. This terminology was developed because the PRS was initially designed to 
approximate the QoI from experiments. It is generally accepted that DoE is as important as the surrogate 
itself because the accuracy of the surrogate depends on the number and location of samples. In addition, 
there is no single DoE scheme that is the best for all surrogates. Various DoE techniques cater to different 
sources of errors, in particular, errors due to noise in samples or errors due to an improper surrogate 
model. 
 Although DoE is used to find sample locations to build a surrogate in this text, DoE was originally 
developed in agricultural applications to identify the effect of input variables (factors) on the output QoI 
[22]. DoE is defined as a branch of applied statistics that deals with planning, conducting, analyzing, and 
interpreting controlled tests to evaluate the factors (i.e., input variables) that control the value of a 
parameter or group of parameters. It is used (a) to determine if input variables have an effect on QoIs, (b) 
to determine if multiple inputs interact in their effect on the QoIs, (c) to model the behavior of the QoI as 
a function of input variables, and (d) to optimize the QoI. It is noted that DoE is used for defining sample 
locations for surrogate modeling in this text.  
 It would be beneficial to understand common DoE terms and concepts before we study detailed DoE 
methods. The most commonly used terms in the DoE include input variables, uncontrollable parameters, 
and output QoI. Figure 3-1 illustrates the relationship between these terms. Input variables are those 
variables that can be varied in experiments or numerical simulations (the process in the figure). In DoE 
literature, input variables are referred to as factors. It is assumed that input variables are deterministic and 
the users have full control of them. Input variables include dimensions of test specimens, applied loads, 
mass, time, etc. Output QoI is the response of the model or measurement from the experiment. It is 
assumed that the output QoI varies depending on input variables. Since the QoI is the output from an 
experiment or simulation, it may include measurement error or simulation error. It is also assumed that the 
output QoI is a continuous and smooth function of input variables. Uncontrollable parameters are those 
parameters that cannot be controlled by the user, such as ambient temperature during the experiment. In 
practice, variation of these parameters during the process can cause random noise in the output QoI. Even 
if these parameters affect the output QoI, their contribution is not modeled as a functional relationship in 
the surrogate. The process represents physical experiments or numerical simulations that can produce 
output QoI for given input variables and uncontrollable parameters. In some sense, the process is 
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considered a black box to the user. That means the user does not need to know the complex process within 
the experiment or simulation. As long as the user can provide different input variables and obtain output 
QoI, the surrogate model can be generated. In this sense, the surrogate model is considered a data-driven 
approach as it can be applied to any physical model or process. The main purpose of DoE is to determine 
input variables such that their effects on the output QoI can be identified in the best way.  
 

 
Figure 3-1: The effect of input variables on the quantity of interest in a numerical model or experiment.  
 
 As mentioned before, in this textbook, DoE is used for the purpose of generating sample locations to 
build a surrogate. In that sense, DoE is inherently a multi-objective optimization problem. We would like 
to select points so that we maximize the accuracy of the information that we get from the experiments. As 
shown in Chapter 2, however, the accuracy can be improved by increasing the number of samples as well. 
On the other hand, we also would like to minimize the number of experiments, because they are 
expensive. In some cases, the objective of the experiments is to estimate some physical characteristics, 
and in these cases, we would like to maximize the accuracy of these characteristics. However, in the 
design applications, which are of primary interest in this textbook, we would like to construct a surrogate 
that could be used to predict the performance at unsampled locations. In this case, our primary goal is to 
choose the points for the experiments to maximize the predictive capability of the model. Therefore, we 
focus on how to reduce/minimize the prediction variance at unsampled locations. 
 Samples do not need to be generated simultaneously. Initially starting from a small number of 
samples, additional samples can be added sequentially to improve the accuracy of surrogate prediction. 
The strategy of adding additional samples is called adaptive sampling, sequential design, or active 
learning. Usually, the adaptive sampling strategies require a criterion to determine the next sample 
locations. Many criteria have been proposed, such as D-optimal design and minimum bias design. These 
criteria are often based on a trade-off between minimizing bias (i.e., error) and/or minimizing variance 
(i.e., uncertainty). 
 When a surrogate model is flexible enough, a better surrogate can be obtained with more samples. 
With a fixed size of design space, the distance between samples decreases as the number of samples 
increases. Therefore, the meaning of the number of samples is equivalent to the distance between the 
samples. It is easy to imagine that if the distance between samples is short, the surrogate approximate can 
be accurate because the samples can capture the trend of functional behavior well. At the same time, for a 
fixed number of samples, it is better to locate the samples such that they are more or less uniformly 
distributed to the entire sampling space, which is called ‘space-filling design’. In order to have a space-
filling design, some sampling strategies minimize the maximum distance between samples. Or, some 
strategies uniformly divide the sampling space and put a sample in each segment. Section 3.4 introduces 
two important space-filling DoEs: Latin hypercube sampling and orthogonal arrays. 
 A lot of work has been done on experimental designs in regular design domains. Such domains occur 
when each design variable is bounded by simple lower and upper limits so that the design domain is box-
like. Occasionally, spherical domains are also considered. Sometimes each design variable can take only 
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two or three values, often called levels. These levels are termed low, nominal and high. In other cases, the 
design space is approximately box-like, but it is possible to carry out experiments with the design 
variables taking values outside the box for the purpose of improving the properties of the surrogate. In 
Section 3.2, we will summarize briefly some of the properties of experimental design in box-like 
domains, and present some of the more popular experimental designs in such domains. The readers are 
referred to Myers and Montgomery (1995) [4] for the in-depth analysis of this subject. 
 For design optimization, however, it is common for us to try and create surrogates in irregularly 
shaped domains. In that case, we have to create our own experimental design. Section 3.3 will discuss 
several techniques available for finding good designs in a generally shaped domain. These strategies 
mostly use an optimization technique based on different criteria. Since additional sample locations can be 
found based on pre-existing sample locations, these strategies are good for an adaptive sampling scheme.  
 
3.2. Design of experiments in boxlike domains 

 

Scaling of input variables 
When the design space of input variables is given in a box-like shape, the design space is defined by 
simple lower and upper limits on each of the input variables 

𝑥௜
௟ ൑ 𝑥௜

ᇱ ൑ 𝑥௜
௨, 𝑖 ൌ 1, ⋯ , 𝑛 (3.1)

where 𝑥௜
௟ and 𝑥௜

௨ are the lower and upper bounds, respectively, of the input variable 𝑥௜
ᇱ. The prime 

indicates that the design variable has not been normalized. For convenience, we scale the design variable 
as 
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The normalized variables are then all bound in the cube 

െ1 ൑ 𝑥௜ ൑ 1, 𝑖 ൌ 1, ⋯ , 𝑛 (3.3)

Such normalization is useful when different input variables have different dimensions with different 
orders of magnitude. For example, the thickness of a plate may vary in 𝑥ଵ

ᇱ ∈ ሾ0.5, 1.5ሿ ൈ 10ିଷ𝑚, while 
Young’s modulus of the material may vary in 𝑥ଶ

ᇱ ∈ ሾ190, 210ሿ ൈ 10ଽ𝑃𝑎. Therefore, using the original 
variables can cause numerically ill-conditioning of the moment matrix during the regression process. The 
normalization in Eq. (3.2) should not affect the PRS with linear regression because of the linear 
relationship between the original and normalized variables. 
 Although the main purpose of surrogate models in this text is optimization, they are also frequently 
used for uncertainty quantification, where input variables follow a specific probability distribution, and 
the probability distribution of output QoI needs to be evaluated. In such a case, it would be better to scale 
the input variables based on their distribution. For example, when the user wants the design space to cover 
six times the standard deviation, input variables can be scaled by 

𝑥௜ ൌ
𝑥௜

ᇱ െ 𝜇௫೔

𝜎௫೔

 (3.4)

where 𝜇௫೔
 and 𝜎௫೔

 are, respectively, the mean and standard deviation of the input variable 𝑥௜
ᇱ. Then, the 

scaled variables are all bound in the cube 

െ6 ൑ 𝑥௜ ൑ 6, 𝑖 ൌ 1, ⋯ , 𝑛 (3.5)
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When the mean and standard deviation of input variables are not available, the mean and standard 
deviation of samples can also be used as an approximation.  
 It is also possible that the output QoI can be normalized in a similar way to the input variables. 
Unfortunately, the output QoI is not what the user can control, it is not possible to establish the lower and 
upper bounds of the output QoI. Instead, the minimum and maximum of samples can be used to normalize 
the output QoI, as 

𝑦௜ ൌ
𝑦௜

ᇱ െ 𝑦௠௜௡

𝑦௠௔௫ െ 𝑦௠௜௡
 (3.6)

where 𝑦௠௜௡ and 𝑦௠௔௫ are, respectively, the minimum and maximum samples. 
 
Example 3-1 
Consider the quadratic PRS in Example 2-5 with five samples. Normalize the input variable based on Eq. 
(3.2) and the QoI based on Eq. (3.6) and show that the resulting surrogate is identical to the one given in 
Example 2-5 after conversion.  
 
Solution: 
With the original samples before scaling, the quadratic PRS was 

𝑦ොᇱሺ𝑥ሻ ൌ െ0.1071 ൅ 0.925𝑥ᇱ ൅ 0.0536𝑥ᇱଶ 

Note that the notation ′ is used for the variables in the original domain. Since the lower and upper bounds 
of input variables are not given in the example, the minimum and maximum values of the samples are 
used as the two bounds: 𝑥௟ ൌ െ2, 𝑥௨ ൌ 2, 𝑦௠௜௡ ൌ െ1.5, 𝑦௠௔௫ ൌ 1.75. Then the input variables and 
output QoI are converted to  

𝑥 ൌ
1
2

𝑥ᇱ, 𝑦௜ ൌ
𝑦௜

ᇱ ൅ 1.5
3.25

 

Then, the five samples are scaled by ሺെ1,0ሻ, ሺെ0.5, 0ሻ, ሺ0, 6/13ሻ, ሺ0.5, 11/13ሻ, ሺ1, 1ሻ. The PRS is of the 
form 𝑦ොሺ𝑥ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥 ൅ 𝑏ଷ𝑥ଶ, and we can define the following matrices and vectors for regression: 
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1
0.25

1
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0
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0
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⎥
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⎥
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⎩
⎪
⎨

⎪
⎧

0
0

6/13
11/13

1 ⎭
⎪
⎬

⎪
⎫

,    𝐗்𝐗 ൌ ൥
5 0 2.5
0 2.5 0

2.5 0 2.125
൩,    𝐗்𝐲 ൌ ൝

2.3077
1.4213
1.2115

ൡ  

By solving the regression equation in Eq. (2.14), the unknown regression coefficients are identified as 
𝑏ଵ ൌ 0.4286, 𝑏ଶ ൌ 0.5692, and 𝑏ଷ ൌ 0.0659. Therefore, with the normalized variables, the quadratic 
PRS can be written as 

𝑦ොሺ𝑥ሻ ൌ 0.4286 ൅ 0.5692𝑥 ൅ 0.0659𝑥ଶ  

Now, after applying the conversion relationship, the above quadratic PRS can be converted into 

𝑦ොሺ𝑥ሻ ൌ
𝑦ො′ሺ𝑥ሻ ൅ 1.5

3.25
ൌ 0.4286 ൅ 0.5692 ൬

1
2

𝑥ᇱ൰ ൅ 0.0659 ൬
1
2

𝑥ᇱ൰
ଶ

  

         𝑦ොᇱሺ𝑥ሻ ൌ െ0.1071 ൅ 0.925𝑥′ ൅ 0.0536𝑥′ଶ  

Therefore, the same surrogate model is obtained after converting it to the original variables. 
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Interpolation, extrapolation, and prediction variance 
The simplest experimental design for the cube of design space is one experiment at each one of the 2௡ 
vertices. This design is called a two-level full factorial design, where the word ‘factorial’ refers to 
‘factor’, a synonym for design variable, rather than the factorial function. This means that two samples are 
generated in each design variable at its minimum and maximum. Such two-level DoE is good when the 
functional relationship between the design variables and the QoI is linear with possible interactions (i.e., 
including 𝑥௜𝑥௝, 𝑖 ് 𝑗 terms). If three samples are used in each design variable, it is called a three-level. A 
three-level full factorial design would require 3௡ numbers of samples. A three-level DoE is good when 
the functional relationship is quadratic. 
 For a small number of design variables (a low dimensional problem), the number of samples 2௡ or 3௡ 
can be a manageable number of experiments. However, for larger values of 𝑛, we usually cannot afford 
the full factorial design. For example, for 𝑛 ൌ 10, the number of samples becomes 2௡ ൌ 1,024 for two-
level, and 3௡ ൌ 59,049 for three-level DoE. Therefore, the number of samples increases exponentially 
proportional to the number of dimensions, which is called the ‘curse of dimensionality.’ This is 
considered a major bottleneck of surrogate modeling for applications with many input variables. 
Therefore, full factorial design is limited only to low-dimensional problems ሺ𝑛 ൑ 4ሻ. For high values of 
𝑛, it may be necessary to consider fractional factorial designs, which do not include all the vertices. 
Different DoE methods are available depending on how to choose sample locations in fractional factorial 
designs. 
 If we want to fit a linear PRS to samples, it certainly appears that we will not need anywhere near 2௡ 
samples for a good fit. For example, for 𝑛 ൌ 10, the linear PRS has 11 unknown coefficients to fit, and 
using 1,024 experiments to fit these 11 coefficients may appear excessive even if we could afford that 
many experiments. Theoretically, 11 samples should be good enough if we know that the functional 
relationship is linear and samples do not include measurement noise or error. In practice, however, we do 
not know the exact functional relationship, and therefore, we need more samples than the number of 
unknown coefficients. In general, it is acceptable that the number of samples is about two or three times 
more than that of the unknown coefficients. 
 However, with fewer samples, we lose an important property of using the surrogate as an 
interpolation tool rather than as a tool for extrapolation. To understand that, we will first define what we 
mean by interpolation and extrapolation. Intuitively, we say that a surrogate will interpolate samples at a 
point if that point is ‘completely surrounded’ by sample points. In one-dimensional space, as shown in 
Figure 3-2(a), this means that there is a sample to the right of the interpolated point, as well as a sample to 
the left of it. In two-dimensional space, as shown in Figure 3-2(b), we would like the point to be 
surrounded by at least three samples so that it falls inside the triangle defined by these three samples. 
Similarly, in three-dimensional space, we would like the point to be surrounded by at least four samples; 
that is, the point lies inside the tetrahedron defined by these four samples. In 𝑛-dimensional space, we 
would like the point to be surrounded by 𝑛 ൅ 1 sample points, or in other words, fit inside the simplex 
defined by the 𝑛 ൅ 1 samples. A simplex is the generalization of a triangle and a tetrahedron; a shape in 
𝑛-dimensional space defined by linearly 𝑛 ൅ 1 independent points.  
 Given a set of 𝑛 ൅ 1 points in 𝑛-dimensional space, 𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡ାଵ, the simplex defined by these 
points includes all the points that can be obtained by a convex sum of these points. That is, it includes any 
point 𝐱, which may be written as 

𝐱 ൌ ෍ 𝛼௜𝐱௜

௡ାଵ

௜ୀଵ

 (3.7)

with 
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෍ 𝛼௜

௡ାଵ

௜ୀଵ

ൌ 1 (3.8)

and 𝛼௜ ൒ 0, 𝑖 ൌ 1, ⋯ , 𝑛 ൅ 1. Given a set of 𝑛௬ sample points, the set of points where the surrogate 
performs interpolation is the union of these simplices, which is called the convex hull of the sample 
points.  
 

 
Figure 3-2: Interpolation versus extrapolation in one- and two-dimensional design space.  
 
 In general, surrogate prediction is more accurate in the interpolation region than in the extrapolation 
region. As shown in Example 2-10, when three samples were used, the standard error of prediction at the 
extrapolated point ሺ1,1ሻ was highest 𝜎௬ ൌ √3𝜎ො. On the other hand, the centroid of the three samples has 
the lowest standard error 𝜎௬ ൌ 𝜎ො/√3. Therefore, it is best to locate samples such that the convex hull of 
samples can cover the design space as much as possible. However, as shown in Figure 1-5, the volume of 
the convex hull of samples becomes very small compared to that of the design space as the dimension of 
the design space increases. We showed that in 10-dimensional space if two samples were generated at the 
center of each orthant (𝑥௜ ൌ െ0.5, 0.5 in the normalized space), 1,024 samples from the two-level full 
factorial design can only cover 0.1% volume of the design space. Therefore, most prediction points 
belong to the extrapolation region, where the prediction accuracy of the surrogate deteriorates quickly. 
 One may argue that what if we generate samples at all vertices (𝑥௜ ൌ െ1.0, 1.0 in the normalized 
space) instead of the center of each orthant. In such a case, the entire design space becomes the 
interpolation region. However, in such a choice of sample locations, the distance between samples 
increases rapidly. In two-dimensional space, if all four samples are located at vertices, the maximum 
distance between samples is 2√2. In three-dimensional space, it becomes 2√3. Therefore, the distance 
between samples increases along with the dimension of the design space. Even if surrogate prediction in 
the interpolation is better than in the extrapolation region, the prediction deteriorates quickly as the 
distance between samples increases. Instead of discussing the accuracy of surrogate prediction 
qualitatively, it would be necessary to define a quantitative measure to assess the quality of prediction 
accuracy of a surrogate. 
 One measure that we can use to estimate the loss of prediction accuracy incurred when we use 
extrapolation is the prediction variance. In the case of PRS, we developed the prediction variance in 
Chapter 2. In summary, the PRS assumes that (a) the true function is described by a linear combination of 
monomials with unknown coefficients, (b) samples are obtained by adding random noise to the true 
function, where the noise follows a Gaussian distribution~𝑁ሺ0, 𝜎ଶሻ, and (c) noises at different sample 
points have the same standard deviation and are not correlated. Under these assumptions, the noise 
standard deviation (standard error of noise) was estimated by 
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𝜎ො ൌ ඨ
𝐞்𝐞

𝑛௬ െ 𝑛ఉ
 (3.9)

where 𝑛௬ and 𝑛ఉ are, respectively, the number of samples and the number of model parameters, and 𝑒௜ ൌ
𝑦௜ െ 𝑦ො௜ is the residual at 𝑖th sample location. 
 Recall that the linear regression PRS model that we used in Eq. (2.10) can be written as 𝑦ොሺ𝐱ሻ ൌ
𝛏ሺ𝐱ሻ்𝐛, where 𝛏ሺ𝐱ሻ is the vector of monomial basis functions and 𝐛 is the vector of regression 
coefficients. With noise in the samples, 𝐛 has some uncertainty to it, while 𝛏ሺ𝐱ሻ is deterministic. At 
prediction point 𝐱, the prediction variance is given as 𝑉ሾ𝑦ොሺ𝐱ሻሿ ൌ 𝜎ොଶ𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱ሻ. The square root 
of the prediction variance is called the standard error of prediction, defined as 

𝜎௬ሺ𝐱ሻ ൌ 𝜎ොඥ𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱ሻ (3.10)

The standard error gives us an estimate of the sensitivity of the surrogate prediction at different points. 
From a statistical perspective, when the surrogate prediction at unsampled point 𝐱 is 𝑦ොሺ𝐱ሻ, the true 
function at that point is unknown (i.e., uncertain) and the probability of the true function can be given as 
~𝑁ሺ𝑦ො, 𝜎௬

ଶሻ. In the extreme case, if 𝜎௬ሺ𝐱ሻ ൌ 0 at a point, it means the surrogate prediction 𝑦ොሺ𝐱ሻ is exact 
and there is no uncertainty. Therefore, a surrogate prediction is considered accurate when 𝜎௬ሺ𝐱ሻ is small. 
Note that 𝜎௬ሺ𝐱ሻ varies at different locations.  
 The main goal of DoE is that we would like to select sample locations to make the prediction variance 
as small as possible anywhere in the domain where we would like to estimate the QoI. Intuitively, it 
appears that this would be helped if the standard error did not vary much from one point to another. This 
property is called stability, which is defined as the ratio, 𝜎௬

௠௔௫/𝜎௬
௠௜௡. The following example 

demonstrates the effect of using extrapolation on the stability of the standard error. 
 
Example 3-2 
Consider the problem of fitting a linear PRS 𝑦ොሺ𝐱ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ to samples in the square domain 
െ1 ൑ 𝑥ଵ, 𝑥ଶ ൑ 1. Compare the maximum value of the prediction variance for two cases: (a) a full 
factorial design (samples at all four vertices), and (b) a fractional factorial design including three vertices, 
obtained by omitting the vertex ሺ1,1ሻ.  
 
Solution: 
Full factorial design: We number the four sample locations as 𝐱ଵ ൌ ሾെ1, െ1ሿ், 𝐱ଶ ൌ ሾെ1,1ሿ், 𝐱ଷ ൌ
ሾ1, െ1ሿ், and 𝐱ସ ൌ ሾ1,1ሿ். For this case, the moment matrix can be obtained as 

𝛏ሺ𝐱ሻ ൌ ൝
1
𝑥ଵ
𝑥ଶ

ൡ ,   𝐗 ൌ ቎

1 െ1 െ1
1 െ1 1
1
1

1
1

െ1
1

቏, 𝐗்𝐗 ൌ ൥
4 0 0
0 4 0
0 0 4

൩, ሺ𝐗்𝐗ሻିଵ ൌ
1
4

൥
1 0 0
0 1 0
0 0 1

൩  

The standard error of prediction in Eq. (3.10) is given as 

𝜎௬ ൌ 𝜎ොඥ𝛏்ሺ𝐗்𝐗ሻିଵ𝛏 ൌ 𝜎ොට0.25ሺ1 ൅ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶሻ 

Therefore, the minimum standard error occurs at the origin ሺ𝑥ଵ ൌ 𝑥ଶ ൌ 0ሻ, 𝜎௬ ൌ 𝜎ො/2, while the 
maximum occurs at the vertices, 𝜎௬ ൌ √3𝜎ො/2. This case represents a fairly stable variation of the 
standard error of only √3 between the smallest and highest value in the domain of interest. 
 
Fractional factorial design: Without sample at (1, 1), we have 
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𝐗 ൌ ൥
1 െ1 െ1
1 െ1 1
1 1 െ1

൩,   𝐗்𝐗 ൌ ൥
3 െ1 െ1

െ1 3 െ1
െ1 െ1 3

൩, ሺ𝐗்𝐗ሻିଵ ൌ
1
4

൥
2 1 1
1 2 1
1 1 2

൩  

Therefore, the standard error of prediction is given as 

𝜎௬ ൌ 𝜎ොට0.5ሺ1 ൅ 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଵ
ଶ ൅ 𝑥ଵ𝑥ଶ ൅ 𝑥ଶ

ଶሻ 

At the origin, the standard error is  𝜎௬ ൌ 𝜎ො/√2, which is increased from the full factorial design. At the 
three vertices with samples, the standard error of prediction is the same as the standard error of noise: 
𝜎௬ ൌ 𝜎ො. This is expected, with only three sample points, the PRS passes through the samples so that the 
error at the sample points should be the same as the measurement error. Therefore, the standard error 
increases slightly at the origin and the sample locations. However, at the fourth vertex ሺ1,1ሻ, where the 
PRS represents extrapolation, the standard error becomes 𝜎௬ ൌ √3𝜎ො, much increased from the case of full 
factorial design. This is because this is the farthest extrapolation point from the convex hull of the three 
samples. By setting the derivatives of the prediction error to zero, we easily find that the minimum error is 
at the centroid of the three sample points, at ሺെ1/3, െ1/3ሻ. At the centroid 𝜎௬ ൌ 𝜎ො/√3. Now the ratio 
between the smallest and highest standard errors is 3, with the highest errors in the region of 
extrapolation. Therefore, the full factorial design is more stable than the fractional factorial design. 
 

 
 It can be checked that when we use a full factorial design for a linear PRS with 𝑛 variables, the 
moment matrix becomes diagonal, 𝐗்𝐗 ൌ 2௡𝐈, where 𝐈 is a unit matrix of order 𝑛 ൅ 1. Therefore, the 
standard error of prediction becomes 

𝜎௬ ൌ
𝜎ො

2௡/ଶ ට1 ൅ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൅ ⋯ , 𝑥௡
ଶ (3.11)

In such a case, the maximum prediction error (achieved at any vertex) is 𝜎ොඥሺ𝑛 ൅ 1ሻ/2௡. That is, the 
quality of the fit becomes very good with increasing 𝑛. This reflects the fact that we use 2௡ points to 
calculate 𝑛 ൅ 1 coefficients so that we filter out the effect of noise. This estimate is misleading in actual 
situations, however, because rarely do we have a true linear model. When the response we measure is not 
linear, we will have modeling errors, also called bias errors which are not averaged out. 
 On the other hand, if the number of samples becomes the same as 𝑛 ൅ 1 unknown coefficients, it is 
called a saturated design. In that case, the standard error progressively increases along with the dimension 
𝑛, because the portion of design space covered by the simplex containing the sample points becomes 
progressively smaller. For example, in Example 3-2 the three points used for the saturated design form a 
triangle covering half of the design domain. For a three-dimensional cube, four vertices will span a 
tetrahedron with a volume of one-sixth of the volume of the enclosing cube. For the 𝑛 dimensional case, 
the full-factorial design is the vertices of a cube of volume 2௡, while 𝑛 ൅ 1 vertices obtained by 
perturbing one variable at a time from one vertex span a simplex of volume 2ଶ/𝑛!. Therefore, the fraction 
of the extrapolation region rapidly increases with the dimension. As the extrapolation region increases so 
does the prediction variance. For example, for a three-dimension design space, the maximum prediction 
error with a full-factorial design is √0.5𝜎, while the maximum prediction error for the saturated four-
point fractional factorial design is √7𝜎 (see Exercise Problem 3). 
 

Designs for linear polynomial response surfaces 
For fitting linear PRS, we typically use designs with only two levels for each design variable, and the 
most popular fractional designs are the so-called orthogonal designs. An orthogonal design means that 
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different coefficients in linear regression are uncorrelated; that is, 𝐶𝑜𝑉൫𝑏௜, 𝑏௝൯ ൌ 0. It means that the 
uncertainty in one coefficient is not related to the uncertainty in other coefficients, which is a desirable 
property as the effect of different basis functions can be determined individually. An orthogonal design is 
one where the moment matrix 𝐗்𝐗 is diagonal, which is equivalent to the inner product of two different 
columns of the design matrix being zero, which means they are orthogonal. Since each column of the 
design matrix represents the basis function, the orthogonality means that the coefficient of each basis 
function can be estimated independently from other coefficients. The popularity of orthogonal designs is 
partly based on the following theorem (see Myers and Montgomery, 1995 p. 284 [4]): 
 

For the first-order model (linear PRS) and fixed sample size, if all variables lie between െ1 and 1, 
then the variance of the coefficients is minimized if the design is orthogonal, and all the variables are 
at their outer positive or negative limits (i.e., െ1 or ൅1). 

 
 It is easy to check that the full factorial design is orthogonal, but it is not trivial to produce orthogonal 
designs with a smaller number of samples. Various orthogonal designs can be found in books on the 
design of experiments (see Myers and Montgomery, 1995 [4]). Important orthogonal designs will be 
presented as a part of the orthogonal array in Section 3.4. To demonstrate the beneficial properties of 
orthogonal designs, we will consider the two-dimensional case that we have studied in Example 3-2. In 
that example, we fitted a two-variable linear PRS first with a full factorial design (four samples at corners) 
and then with only three samples (simplex in two-dimension). Fitting a linear PRS in 𝑛 variables on the 
basis of 𝑛 ൅ 1 points requires the points to be linearly independent, so that they form a simplex. There is 
no redundancy in the design, in that the number of points is equal to the number of coefficients, and this is 
called a saturated design. In order to get an orthogonal design with three samples in two-dimensional 
space, we have to give up on having the variables only at the corners. Instead, a perfect simplex is used, 
where the distances between all points are the same. 
 
Example 3-3 
Consider the equilateral triangle which results in a scalar matrix (a scalar matrix is a scalar multiple of the 
unit matrix) 𝐗்𝐗. It includes the points ሺඥ3/2, െ1/√2ሻ, ሺെඥ3/2, െ1/√2ሻ, ሺ0, √2ሻ. Check for the 
stability of the prediction variance and its maximum value in the unit square for the linear model 𝑦ොሺ𝐱ሻ ൌ
𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ. 
 

 
Figure 3-3: Design space and sample locations for Example 3-3.  
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Solution: 
First, it is noted that the three samples are the corners of an equilateral triangle whose centroid is the same 
as that of the design space; i.e., the origin. In order to calculate the standard error of prediction in Eq. 
(3.10), the inverse of the moment matrix needs to be calculated first using the three samples. 

𝐗 ൌ ൦
1 ඥ3/2 െ1/√2

1 െඥ3/2 െ1/√2

1 0 √2

൪, 𝐗்𝐗 ൌ ൥
3 0 0
0 3 0
0 0 3

൩, ሺ𝐗்𝐗ሻିଵ ൌ
1
3

൥
1 0 0
0 1 0
0 0 1

൩  

Therefore, the three samples proved to be an orthogonal design. Then, the standard error of prediction in 
Eq. (3.10) becomes 

𝜎௬ሺ𝐱ሻ ൌ 𝜎ොටሺ1 ൅ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶሻ/3 

Therefore, the standard error of prediction becomes 𝜎௬ ൌ 𝜎ො/√3 at the origin and 𝜎௬ ൌ 𝜎ො at the vertices. 
That is, the stability ratio is 𝜎௬

௠௔௫/𝜎௬
௠௜௡ ൌ √3, which is an improvement from 3 in Example 3-2. Also, 

𝜎௬
௠௔௫ is reduced from √3𝜎ො to 𝜎ො. However, this has come at the price of obtaining the samples outside the 

unit square as shown in Figure 3-3.  
 As will be shown later, this reduces the variance error but increases the so-called bias error. A bias 
error is the error introduced when the model that we try to fit is different from the true function. For 
example, if the model is linear and the true function is quadratic, the simplex model that we have used in 
this example is likely to increase the error rather than decrease it. 
 

 

Designs for quadratic polynomial response surfaces 
Quadratic PRS with 𝑛 variables have 𝑛ఉ ൌ ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ/2 coefficients as shown in Eq. (2.16). To fit 
quadratic PRS, we need at least that many samples, and at least three levels for each design variable in 
order to capture a quadratic functional change. For 𝑛 ൐ 3 it is possible to have the requisite number of 
samples with only two levels. For example, a quadratic PRS with four variables has 15 coefficients, and a 
full factorial design in two levels has 2ସ ൌ 16 points. Therefore, theoretically, it is possible to identify 
unknown coefficients with a two-level full factorial design. However, if we let only one design variable 
vary at a time, we can easily check that we are left with three coefficients and we need three different 
levels of that design variable. That is, a quadratic PRS with 𝑛 ൌ 2 can be defined as 𝑦ොሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑏ଵ ൅
𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ ൅ 𝑏ସ𝑥ଵ

ଶ ൅ 𝑏ହ𝑥ଵ𝑥ଶ ൅ 𝑏଺𝑥ଶ
ଶ. When 𝑥ଵ is fixed, the PRS becomes one-dimension and can be 

simplified as 𝑦ොሺ𝑥ଶሻ ൌ 𝑏෨ଵ ൅ 𝑏෨ଶ𝑥ଶ ൅ 𝑏෨ଷ𝑥ଶ
ଶ with three coefficients. Therefore, it would make a sense to have 

three levels in each design variable.  
 We can use a full-factorial three-level design for a quadratic PRS, which will have 3௡ samples, as 
shown in Figure 3-4. In addition to samples in all vertices (either െ1 or ൅1 location in the normalized 
design space), the full-factorial three-level design has a sample at the center of each design variable (i.e., 
0 location). In most cases, however, we cannot afford such many samples even for fairly small values of 
𝑛. For example, for 𝑛 ൌ 6, we require 3଺ ൌ 729 samples, which is too many to identify 𝑛ఉ ൌ 28 
coefficients. In general, in order to have a stable estimation, the number of samples needs to be two or 
three times more than that of the unknown coefficients. Therefore, 80 samples should be good enough 
instead of 729. Many alternative DoEs are proposed that can still capture a quadratic change of the 
function with a much smaller number of samples than the full-factorial design.  
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Figure 3-4: Sample locations for full factorial designs.  
 
 A popular compromise that reduces the number of samples to close to the two-level full factorial 
design is the central composite design (CCD). The CCD is a fractional factorial design with center points, 
augmented with a group of axial points that allows for estimating curvature. The CCD is composed of the 
2௡ points of the full-factorial two-level design, with all the variables at their extremes, plus a number of 
repetitions 𝑛௖ at the center of design space, and the 2𝑛 points obtained by changing one design variable at 
a time by a distance 𝛼 ൒ 1, which are referred to as axial points. Therefore, the total number of samples 
for CCD is 𝑛௬ ൌ 2௡ ൅ 2𝑛 ൅ 𝑛௖. In determining the range of design space, the center point is often close 
to or near the local optimum. The replicate center points are used to test if the curvature near the design 
point is significant, which is important for design exploration. For this reason, the two-level factorial 
design is augmented with the design center to capture the second-order behavior of QoI. In addition to the 
center points, it is necessary to have some axial points in order to construct the second-order model and to 
estimate the parameters related to each second-order term. Without the axial points, the variation due to 
the second-order terms cannot be orthogonally decomposed into the variations of each second-order term. 
If quadratic coefficients 𝑏௜௜ turn out to be all negative or positive, then we can ensure that the center point 
is in the vicinity of the local optimum. If the center point is the current operating condition, the estimates 
of the second-order term give information on whether the region of exploration is close to the local 
optimum (maximum or minimum). The unique feature of the CCD is that the 2𝑛 axial samples at the 
distance 𝛼 ൒ 1 are out of the design space. This can be a limitation of the CCD because, in some 
situations, we may not allow generating samples out of the design space. 
 Figure 3-5 shows the central composite design for 𝑛 ൌ 2 and 𝑛 ൌ 3. The value of 𝛼 chosen in the 
figures are such that all the points outside the origin are of the same distance from the origin so that we 
have a spherical design. This placement of the points is at the higher end of the typical choice for 𝛼 ൌ √𝑛. 
A more popular choice is based on the concept of rotatability. The property of rotatability requires that the 
prediction variance is dependent only on the distance from the origin and not on the orientation with 
respect to the coordinate axes [23]. 
 It can be shown that for the central composite design, the rotatability requirement will be satisfied for 

𝛼 ൌ 2௡/ସ (3.12)

This equation gives  𝛼 ൌ √2 for 𝑛 ൌ 2, which is the same as the spherical design, however, for 𝑛 ൌ 3 we 
get 𝛼 ൌ 1.682, which is slightly smaller than the equal-distance of √3. According to Myers and 
Montgomery (2002) [4], it is not necessary to have exact rotatability in a second-order design in the 
practical sense. 
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Figure 3-5: Central composite designs for two- and three-dimensional design spaces.  
 
Example 3-4 
When input variables are temperature and pressure in the injection-molding process of plastic material, 
generate a table of input variables using the central composite design. The temperature varies ∈
ሾ190°, 210°ሿ, while the pressure varies ∈ ሾ50MPa, 100MPaሿ. Use 𝑛௖ ൌ 5. 
 
Solution: 
Including four vertices, four faces, and five repetitions at the center, the total number of samples is 13. 
The following table shows sample locations. First, 13 sample locations are determined in the normalized 
design space, and then, they are transformed to the original design space using the inverse relationship of 
Eq. (3.2), as 

𝑥௜
ᇱ ൌ

1
2

ሺ1 ൅ 𝑥௜ሻ𝑥௜
௨ ൅

1
2

ሺ1 െ 𝑥௜ሻ𝑥௜
௟ 

 

Sample ID Temperature Pressure 

1 190° 50MPa 

2 210° 50MPa 

3 210° 100MPa 

4 190° 100MPa 

5 185.9° 75MPa 

6 214.1° 75MPa 

7 200° 39.6MPa 

8 200° 110.4MPa 

9, 10, 11, 12, 13 200° 75MPa 

 

 
 It may sound like we waste many samples by using 𝑛௖ repeated samples at the origin. The reason that 
repeated samples are used at the origin is related to reducing the prediction variance. When we choose 
sample locations, the objective is to maximize the prediction accuracy; that is, to minimize prediction 
variance everywhere in the design space. If a single center point is used in the CCD, the prediction 
variance at the origin is highest. This is unfortunate because normally we choose the center of the design 
space as the best candidate for optimization, where we need the most accuracy. We want the prediction to 
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be reliable throughout the region, especially near the center since we hope the optimum is near the center 
of the design space. By picking five to six center points, the prediction variance at the center is the 
smallest. At the same time, the prediction variance on the edge is also reduced compared to a single 
sample at the center. If one or two center points are used in CCD, then the prediction variance at the 
origin is higher than that of the edges. The prediction variance increases again beyond the edge of the 
design space. Therefore, the main reason for repeated samples at the origin is to balance the precision at 
the edge of the design relative to the center. With either a spherical design or a rotatable one, we find that 
we need a number of replicate center points (points at the origin) to obtain good prediction variance 
stability. 
 
Example 3-5 
In a two-dimensional quadratic PRS with CCD, calculate the minimum and maximum standard error of 
prediction in Eq. (3.10) by gradually increasing the number of samples at the center from 𝑛௖ ൌ 1 to 𝑛௖ ൌ
5. Plot the contour plots of standard error of prediction and discuss the difference between 𝑛௖ ൌ 1 and 
𝑛௖ ൌ 5. 
 
Solution: 
With two input variables, the CCD uses four corner points, ሺെ1, െ1ሻ, ሺ1, െ1ሻ, ሺ1, 1ሻ, ሺെ1,1ሻ, and four-
axial points, ൫െ√2, 0൯, ൫√2, 0൯, ൫0, െ√2൯, ሺ0, √2ሻ, and 𝑛௖ repetitions of the center point ሺ0,0ሻ. For a 
quadratic PRS, the moment matrix with these sample locations becomes 

𝐗்𝐗 ൌ

⎣
⎢
⎢
⎢
⎢
⎡
8 ൅ 𝑛௖ 0

0 8
0 8
0 0

0 0
0 0

0 0
8 0

8 0
0 12

0 0
0 4

0 0
8 0

0 0
0 4

4 0
0 12⎦

⎥
⎥
⎥
⎥
⎤

 

Therefore, the effect of repeated samples at the center occurs at the first diagonal element of the moment 
matrix. The following Matlab code is used to calculate the standard error of prediction at a 21 ൈ 21 grid 
and plot the contours. The users can remove the Matlab comment ‘%’ in the design matrix in order to 
change the number of repetitions. The code also calculates the maximum and minimum standard errors of 
prediction along with their ratios (stability). 
 

a=sqrt(2); b=2; 

X=[1 -1 -1  1  1  1; 

   1  1 -1  1 -1  1; 

   1  1  1  1  1  1; 

   1 -1  1  1 -1  1; 

   1  a  0  b  0  0; 

   1 -a  0  b  0  0; 

   1  0  a  0  0  b; 

   1  0 -a  0  0  b; 

%   1  0  0  0  0  0; 

%   1  0  0  0  0  0; 

%   1  0  0  0  0  0; 

%   1  0  0  0  0  0; 

   1  0  0  0  0  0]; 

XTX=X'*X; 

XTXi=inv(XTX); 

[X, Y]=meshgrid(-1:.1:1, -1:.1:1); 
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Z=zeros(size(X)); 

[n, m]=size(X); 

for i=1:n 

    for j=1:m 

        xi=[1 X(i,j) Y(i,j) X(i,j).^2 X(i,j).*Y(i,j) Y(i,j).^2]; 

        Z(i,j)=sqrt(xi*XTXi*xi'); 

    end 

end 

v=linspace(min(min(Z)),max(max(Z)),10); 

[C,h]=contour(X,Y,Z,v); 

clabel(C,h) 

Zmax=max(max(Z)) 

Zmin=min(min(Z)) 

stability=Zmax/Zmin 

 
The following table shows the minimum and maximum of the standard error of prediction along with 
their ratios. 
 

𝑛௖ 𝜎௬
௠௜௡ 𝜎௬

௠௔௫ 𝜎௬
௠௔௫/𝜎௬

௠௜௡ 

1 0.6657 1.0000 1.5021 

2 0.5825 0.7906 1.3572 

3 0.5216 0.7906 1.5157 

4 0.4743 0.7906 1.6667 

5 0.4361 0.7906 1.8127 

 
 It is interesting to note that the maximum standard error 𝜎௬

௠௔௫ ൌ 1.0 occurs at the center of the design 
space when 𝑛௖ ൌ 1. When 𝑛௖ ൒ 2, the maximum standard error occurs at the corners 𝜎௬

௠௔௫ ൌ 0.7906, 
and a further increase of 𝑛௖ does not change the maximum standard error. On the other hand, the increase 
in 𝑛௖ reduces the minimum standard error. Therefore, even if the stability ratio 𝜎௬

௠௔௫/𝜎௬
௠௜௡  increases, the 

prediction accuracy is improved as the maximum is fixed, while the minimum is reduced.  Figure 3-6 
shows contour plots of prediction variance with one central point and five central points. It is obvious that 
more center samples can increase the area of the region that has a low standard error of prediction.  
 

 
Figure 3-6: Contour plots of 𝜎௬/𝜎ො for 𝑛 ൌ 2, 𝛼 ൌ √2, (a) 𝑛௖ ൌ 1 and (b) 𝑛௖ ൌ 5.  
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 The sampling strategy of replicating central points with rotatable CCD can cause a problem with 
numerical simulations that give exactly the same answer when the simulation is repeated at the same 
point. This is because the source of error in numerical simulation is modeling error, not random noise. 
Fortunately, however, with 𝛼 ൌ 1 there is no need for repeated central points. The case of 𝛼 ൌ 1, which is 
called the face-center central composite design, is very attractive in many applications because it does not 
require using any other levels except ሺെ1,0,1ሻ. Therefore, all samples are within the design space. Figure 
3-7 shows the contours of the standard error of prediction for the face-center CCD in a two-dimensional 
design space. In the case of a two-dimensional space, the face-center CCD becomes identical to a three-
level full factorial design. As shown in the figure, the standard error of prediction at the center of the 
design space is 𝜎௬ሺ0,0ሻ ൌ 0.7454, while at the four corners 𝜎௬ሺേ1, േ1ሻ ൌ 0.8975, which is the 
maximum value (see Exercise Problem 11). The minimum standard error of prediction occurs at 
𝜎௬൫േ√0.4, േ√0.4൯ ൌ 0.5980. The stability of face-center CCD is 𝜎௬

௠௔௫/𝜎௬
௠௜௡ ൌ 1.50. Therefore, while 

the design is not rotatable, the stability is quite good. This performance is better than the CCD with 𝑛௖ ൌ
1 in Example 3-5 in terms of the maximum standard error of prediction. 
 

 
Figure 3-7: Contour plots of 𝜎௬/𝜎ො for face-center central composite design for a single center point.  

 
 Even if CCD requires a smaller number of samples than the full factorial design, it is still no longer 
practical for high dimensional design space, because the number of samples increases too fast. CCD is 
popular for 3 ൑ 𝑛 ൑ 6, where it gives reasonable ratios between the number of points and the number of 
coefficients of a quadratic polynomial. For example, when 𝑛 ൌ 10, the number of samples from CCD is 
𝑛௬ ൌ 2ଵ଴ ൅ 2 ൈ 10 ൅ 𝑛௖ ൌ 1,044 ൅ 𝑛௖, while the number of unknown coefficients for a quadratic PRS is 
𝑛ఉ ൌ 66. Therefore, 𝑛௬ ൎ 200 should be enough. One possible solution is to keep the 2𝑛 axial samples 
that perturb a single variable but have a fractional factorial design to replace the 2௡ vertices. However, 
while the number of vertices increases as 2௡, the number of polynomial coefficients increases as 𝑛ఉ ൌ
ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ/2. Consequently, the type of fractional design used has to be modified as 𝑛 increases.  
 There is a block design, first introduced by Box and Behnken (1960) [24], where the number of 
samples increases at the same rate as the number of polynomial coefficients. The two-variable block 
design is based on perturbing only two variables from the nominal value. That is, at each point, we have a 
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pair ሺ𝑖;  𝑗ሻ, such that |𝑥௜| ൌ 1, ห𝑥௝ห ൌ 1, and 𝑥௞ ൌ 0 for all 𝑘 ് 𝑖, 𝑗. The two variables are perturbed in all 
four combinations of േ1. For example, for 𝑛 ൌ 3 we will have the following sample locations: 

𝑥ଵ
െ1
െ1

𝑥ଶ
െ1
1

𝑥ଷ
0
0

1
1

െ1

െ1
1
0

0
0

െ1
െ1
1
1
0
0
0
0
0

0
0
0

െ1
െ1
1
1
0

1
െ1
1

െ1
1

െ1
1
0

 

where the last point is the central point, which may be repeated. Figure 3-8 shows the sample locations of 
two-variable block designs for three-dimensional design space. Unfortunately, the block design cannot 
work for two-dimensional design space because two-dimensional block design yields a total of five 
samples (four edges points and one center point), while there are six unknown coefficients in a quadratic 
PRS.  
 

 
Figure 3-8: Sample locations of two-variable block design for three-dimensional space.  
 
 For the general case, we can select two variables out of 𝑛 in 𝑛ሺ𝑛 െ 1ሻ/2 ways. For each such 
combination of two variables, we have four design points, with each one of the variables taking the values 
of േ1. Therefore, the total number of points in this block design is 𝑛௬ ൌ 𝑛௖ ൅ 2𝑛ሺ𝑛 െ 1ሻ. For large 
values of 𝑛 this tends asymptotically to be 4 times larger than the number of coefficients that we need to 
fit. However, this happens for very large values of 𝑛. For example, for 𝑛 ൌ 10 the number of coefficients 
is 66, while the number of points in the block design with one center point is 181 (for comparison, the 
number of points in the CCD is 1,045). Block designs are spherical, in that all the points are at the same 
distance from the origin. For example, all the two-variable block design points are at a distance of √2 
from the origin. For large values of 𝑛, this distance can be much smaller than the distance of the vertices 
(which is √𝑛). Therefore, extrapolating to the vertices based on the block design may be risky. 
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Example 3-6 
Although the box design does not work for a quadratic PRS in two-dimension, it is still possible for a 
linear PRS. Calculate the minimum and maximum standard error of prediction for the two-variable block 
design in a two-dimensional design space and compare it with that of the full factorial design in Example 
3-2.  
 
Solution: 
In a two-dimensional design space, the sample locations for the block design are 𝐱ଵ ൌ ሺെ1,0ሻ, 𝐱ଶ ൌ
ሺ1,0ሻ, 𝐱ଷ ൌ ሺ0, െ1ሻ, 𝐱ସ ൌ ሺ0,1ሻ, 𝐱ହ ൌ ሺ0,0ሻ. Therefore, the design matrix and the moment matrix can be 
defined as 

𝐗 ൌ

⎣
⎢
⎢
⎢
⎡
1 1 0
1 െ1 0
1
1
1

0
0
0

1
െ1
0 ⎦

⎥
⎥
⎥
⎤

, 𝐗்𝐗 ൌ ൥
5 0 0
0 2 0
0 0 2

൩ , ሺ𝐗்𝐗ሻିଵ ൌ ൥
1/5 0 0

0 1/2 0
0 0 1/2

൩ 

Since the moment matrix is diagonal, the box design yields an orthogonal design. The standard error in 
Eq. (3.10) can be calculated as 

𝜎௬ሺ𝐱ሻ ൌ 𝜎ොඨ
1
5

൅
1
2

ሺ𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶሻ 

The minimum standard error of prediction occurs at the center of the design space 𝜎௬ሺ0,0ሻ ൌ 1/√5 ൌ
0.4472, while the maximum standard error or prediction occurs at the four corner points 𝜎௬ሺേ1, േ1ሻ ൌ
ඥ6/5 ൌ 1.0954. Therefore, stability becomes 𝜎௬

௠௔௫/𝜎௬
௠௜௡ ൌ 2.4495. Compared to the full factorial 

design, the block design has a lower minimum standard error, but the maximum standard error increases 
significantly. This happens because the corner points become an extrapolation region for the block design. 
Figure 3-9 shows the contour plot of the standard error of prediction for block design. Note that the block 
design satisfies the property of rotatability, where the prediction variance is dependent only on the 
distance from the origin and not on the orientation with respect to the coordinate axes.  
 

 
Figure 3-9: Contour plot of the standard error of prediction for block design.  
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 Matlab software provides some useful functions for full and fractional factorial designs. Matlab 
function ff2n(n) generates samples from a two-level full factorial design of 𝑛 input variables. The 
output is 𝑛௬ ൈ 𝑛 matrix, where each row represents the sample location in normalized space. The total 
number of samples will be 𝑛௬ ൌ 2 ൈ 2 ൈ ⋯ ൈ 2 ൌ 2௡. Since the two-level full factorial design has sample 
location only at lower and upper bounds, the matrix is composed of zero (lower bound) and one (upper 
bound). For a more general full factorial design, the Matlab function fullfact([l1 … ln]) can be 
used, where each variable can have different levels. That is, variable 𝑥ଵ has 𝑙ଵ levels, 𝑥ଶ has 𝑙ଶ levels, etc. 
The total number of samples will be 𝑛௬ ൌ 𝑙ଵ ൈ 𝑙ଶ ൈ ⋯ ൈ 𝑙௡. The output is 𝑛௬ ൈ 𝑛 matrix, where each row 
represents the level of samples.  
 For central composite design, Matlab function ccdesign(n,‘Name’,value) can be used for 𝑛 
design variables with options in ‘Name’ and value. The number of repeated center points can be 
specified as ‘center’, 𝑛௖. In addition, three different types of CCD can be specified: 
‘circumscribed’, ‘inscribed’, and ‘faced’. Figure 3-10 shows these three types of CCD. It 
is noted that the last option ‘faced’ yields face-centered CCD. The following Matlab code can generate 
samples using CCD and plot them: 
 

dCC = ccdesign(2,'type','circumscribed'); 

plot(dCC(:,1),dCC(:,2),'ro','MarkerFaceColor','b') 

X = [1 -1 -1 -1; 1 1 1 -1]; 

Y = [-1 -1 1 -1; 1 -1 1 1]; 

line(X,Y,'Color','b') 

axis square equal off 

 

 
Figure 3-10: Three different central composite designs from Matlab.  
 
 For block design, Box-Behnken design [24] is implemented in the Matlab function bbdesign(n, 
‘Name’, value). The number of repeated center points can be specified as ‘center’, 𝑛௖. Matlab 
command dBB = bbdesign(3) will produce sample locations using block design as shown in Figure 
3-8. 
 
3.3. Optimal design of experiments 

The various DoE methods that we considered in the previous section, as well as other DoE methods 
available in the literature, may perform satisfactorily if the design space is in a box-like domain. After 
normalizing design variables, the design space will be a square in two-dimension and a cube in three-
dimension, etc. When the shape of the design space is fixed, it is possible to pre-determine the number 
and location of samples that can balance the number of samples and prediction variance. For example, the 
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full-factorial design is good for lowering prediction variance but requires a large number of samples for 
high dimensions. On the other hand, the box design can provide a reasonable number of samples for high 
dimensions but has a high prediction variance because of a large extrapolation region.   
 For design optimization, however, an optimization problem normally comes with various constraints, 
which limit the design variables in a certain region, which is referred to as a feasible design. For a given 
number of samples, the accuracy of PRS is improved as the volume of design space becomes smaller. 
Therefore, it is desirable to invoke as many constraints as we can to reduce the volume of the design 
domain. The difficulty is that the standard DoE methods in the previous section cannot be applied to 
irregular design spaces. Therefore, it would be necessary to develop non-standard DoE methods. 
 Not only an irregular design space but also a box-like design space may take an advantage of using a 
non-standard DoE Method. This is because, in the standard DoE methods, the users cannot choose an 
arbitrary number of samples. Different DoE methods have their own required number of samples. 
Therefore, if the users want to make a specific number of samples, there may not be any standard DoE 
methods that allow the same number of samples. In practice, the users may want to choose the best DoE 
method for a given amount of resources, which is equivalent to a given number of samples. In these cases, 
the users may have to create their own DoE; that is, to select the best set of sample locations for the given 
design space and the number of samples. 
 For a fixed number of samples 𝑛௬, non-standard DoE methods basically try to find the locations of 
samples to satisfy a certain criterion, which is often posed as an optimization problem. That is, the best 
locations of samples are sought by minimizing a criterion, which represents the quality of the surrogate 
prediction. Because these types of DoE require solving an optimization problem, they are often referred to 
as optimal DoE.  
 Since the optimality criterion of most optimal DoE is based on some function of the moment matrix, 
the ‘optimality’ of a given design is model-dependent. That is, the users must specify a model for the 
design (linear or quadratic PRS, etc.) and the number of samples 𝑛௬ desired before the ‘optimal design’ 
can be generated. Therefore, the generated DoE is ‘optimal’ only for the given model, the given criterion, 
and the given number of samples. 
 The optimization problem of optimal DoE has a considerable challenge in practice. In the case of 
determining the location of 𝑛௬ samples in 𝑛 dimensional space, there are 𝑛 ൈ 𝑛௬ number of variables. 
Finding an optimum 𝑛 ൈ 𝑛௬ variables can easily be impractical as the number of variables increases 
quickly. For example, in the case of a six-dimensional design space with 20 samples, there will be 120 
variables to optimize. Therefore, traditional optimization algorithms are not a good choice for optimal 
DoE. Instead, optimal DoE problems are commonly treated as combinatorial problems. A pool of 
candidate points is defined first, where the QoI can possibly be evaluated. Then, out of the pool, the ‘best’ 
𝑛௬ points are selected. For example, 3௡ samples from the full factorial design can be defined as the pool 
of candidate points, and then, 𝑛௬ ൌ 3 ൈ 𝑛ఉ best samples can be selected from them.   
 As mentioned before, since optimal DoE is an optimization problem, different optimal DoE can be 
obtained when different criteria are used. In the case of PRS, most of them are related to the moment 
matrix 𝐗்𝐗, because linear regression relies on it. The D-optimal design seeks to maximize |𝐗்𝐗|, the 
determinant of the moment matrix. This criterion results in minimizing the variance of the PRS 
coefficients. The A-optimal design seeks to minimize the trace of the inverse of the moment matrix. This 
criterion results in minimizing the average variance of the parameter estimates. The G-optimal design 
seeks to minimize the maximum prediction variance, i.e., minimize the maximum of 𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱ሻ, 
over a specified set of design points. There are other optimal designs that will not be covered in this text. 
Interested readers are referred to Atkinson et al. [25] 
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D-optimal design 
In Chapter 2, we discussed different types of uncertainty in linear regression. From the assumption that 
the model form of PRS is correct but samples have random noise, different realizations of noise can cause 
different fitting results, which is the source of uncertainty. This uncertainty first causes the uncertainty of 
the vector of regression coefficients 𝐛 in the form of covariance matrix as shown in Eq. (2.38): 𝚺𝐛 ൌ
𝜎ොଶሾ𝐗்𝐗ሿିଵ. Then, the uncertainty in the coefficients can cause the uncertainty in prediction, which is 
given in Eq. (3.10): 𝜎௬ሺ𝐱ሻ ൌ 𝜎ොඥ𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱ሻ. Most optimal design methods try to find sample 
locations to reduce these two types of uncertainty. Since the standard deviation of noise 𝜎ො depends on the 
samples, the users cannot control it. It is aleatory uncertainty, and we have to live with it. The vector of 
basis functions 𝛏ሺ𝐱ሻ is fixed when the model form of PRS is given. Therefore, the only term that can vary 
is the inverse of the moment matrix ሺ𝐗்𝐗ሻିଵ, which depends on the number and locations of samples. 
Therefore, most optimal DoE methods try to reduce ሺ𝐗்𝐗ሻିଵ so that the standard error of prediction can 
be reduced.  
 The idea behind the D-optimal design is that since the model form is accurate, if there is no 
uncertainty in the regression coefficients, the prediction will also be accurate. Therefore, a good design 
makes the covariance matrix 𝚺𝐛 small, which is equivalent to make ሺ𝐗்𝐗ሻିଵ small or to make the 
moment matrix 𝐗்𝐗 large. Since 𝐗்𝐗 is a matrix, the magnitude of the moment matrix is represented by 
the determinant of the matrix. Therefore, D-optimal DoE is to find ሺ𝐱ଵ, 𝐱ଶ, ⋯ , 𝐱௡೤

ሻ, such that 

maximize 𝐷 ൌ |𝐗்𝐗 | (3.13)

The determinant of the moment matrix can be shown to be directly related to the confidence region of the 
coefficients of the PRS (a confidence region for a coefficient is the region where the coefficient will lie 
with a given probability). In fact, it is inversely proportional to the square of the volume of the confidence 
region of the coefficients. Therefore, maximizing the determinant increases our confidence in the 
coefficients. Unlike traditional DoEs, D-optimal designs do not require orthogonal design matrices, and as 
a result, parameter estimates may be correlated. Parameter estimates may also be locally, but not globally, 
D-optimal. 
 The details of the D-optimal algorithm can be found in Atkinson et al. [25]. First, since the optimal 
designs depend on the surrogate model, it is necessary to specify an approximate mathematical model 
which defines the functional form of the relationship between the QoI and the independent variables (the 
design variables). Next, generate a set of possible candidate points based on this model. Finally, from 
these candidates select the subset that maximizes the determinant of the moment matrix |𝐗்𝐗 |. The 
number of possible designs grows rapidly as the complexity of the model increases. This number is 
usually so large that an exhaustive search of all possible designs for a given sample size is not feasible. 
The D-optimal algorithm begins with a randomly selected set of points. Points in and out of the current 
design are exchanged until no exchange can be found that increases the determinant of the moment 
matrix. To cut down on the running time, the number of points considered during any iteration may be 
limited. 
 Unfortunately, this method does not guarantee that the global maximum can be found. To overcome 
this, the algorithm is repeated several times in hopes that at least one iteration leads to the global 
maximum. For example, the algorithm can repeat 50 or 100 times by starting with a random initial 𝑛௬ set 
of samples. However, since the criterion is not convex and since the dimension is high, there is no 
guarantee to obtain the global maximum of the determinant.  
 Finding the D-optimal set of points from a given set of points is often a difficult combinatorial 
problem. For example, if we need to find 10 D-optimal points out of 50 sample locations, we can have 

𝐶ହ଴ଵ଴ ൎ 10ଵ଴ possible combinations. Therefore, the number of combinations becomes huge even for 
moderate-size problems. Solution algorithms can rarely find the D-optimal set and usually settle on a 
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suboptimal but good set. Some solution algorithms are based on replacing one point at a time and taking 
advantage of inexpensive expressions for updating the determinant when one point is changed. Genetic 
algorithms have also been used to find a good design based on D-optimality. 
 
Example 3-7 
In order to fit a linear PRS 𝑦ො ൌ 𝑏ଵ𝑥ଵ ൅ 𝑏ଶ𝑥ଶ, two sample locations were given as ሺ0,0ሻ and ሺ1,0ሻ. Find 
the third sample location using a D-optimal design in the design space 𝑥ଵ, 𝑥ଶ ∈ ሾ0,1ሿ. 
  
Solution: 
Let the third sample location be ሺ𝑝, 𝑞ሻ. Then the design matrix and the moment matrix are defined as 

𝐗 ൌ ൥
0 0
1 0
𝑝 𝑞

൩ , 𝐗୘𝐗 ൌ ൤
1 ൅ 𝑝ଶ 𝑝𝑞

𝑝𝑞 𝑞ଶ൨ , ห𝐗୘𝐗ห ൌ 𝑞ଶ 

For a given design space, the maximum of ห𝐗୘𝐗ห occurs at 𝑞 ൌ 1, while 𝑝 is arbitrary. Therefore, based 
on the D-optimal design, the third sample point is selected at ሺ𝑝, 1ሻ with 𝑝 being arbitrary. 
 It would be interesting to check how the D-optimal design actually reduces the uncertainty in the 
regression coefficients. Based on Eq. (2.38), the covariance matrix of regression coefficients can be 
calculated as 

𝚺𝐛 ൌ 𝜎ොሾ𝐗୘𝐗ሿି𝟏 ൌ 𝜎ො

⎣
⎢
⎢
⎡ 1 െ

𝑝
𝑞

െ
𝑝
𝑞

1
𝑞ଶ ൅

𝑝ଶ

𝑞ଶ⎦
⎥
⎥
⎤
 

Therefore, it is obvious that 𝑞 ൌ 1 gives lower variances (diagonal terms) and lower correlations (off-
diagonal terms). Although the D-optimal design concludes that 𝑝 can be arbitrary, the covariance matrix 
shows that when 𝑝 ൌ 0, the uncertainty in the coefficients is minimum. For example, when 𝑝 ൌ 0, the 
correlation between the two coefficients is zero, and the variance of 𝑏ଵ is minimum. Therefore, the D-
optimal design may not capture the true minimum of the covariance matrix. This is because a single scalar 
measure may not fully represent the complex behavior of the entire matrix. 
 

 
 Matlab provides various functions for D-optimal designs. Since D-optimal designs depend on the PRS 
model, either the users specify the PRS model or provide the design matrix. Also, as mentioned before, it 
is possible that the users generate candidate samples first and the Matlab function can choose the best 
sample locations out of all candidate locations. Otherwise, it is also possible that 𝑛௬ sample locations are 
randomly generated first, and then, they are moved to different locations to improve the D-optimality 
criterion. In order to specify the PRS model, the following options are available: ‘linear’, 
‘interaction’, ‘quadratic’, ‘purequadratic’. ‘linear’ and ‘quadratic’ are the standard 
linear and quadratic PRS surrogates, respectively. ‘interaction’ only includes interaction terms, such 
as 𝑥ଵ𝑥ଶ, 𝑥ଵ𝑥ଷ, etc. without squared terms, while ‘purequadratic’ only includes squared terms, such 
as 𝑥ଵ

ଶ, 𝑥ଶ
ଶ, etc., without interaction terms.  

 Matlab function rlist = candexch(C,nrows) uses a row-exchange algorithm to select 
nrows number of D-optimal designs from the candidate set. The matrix C is the candidate design matrix, 
and the output rlist is the list of selected rows. Possible options are how to choose initial nrows 
samples, the maximum number of iterations, and the number of times to try to generate a design from new 
starting locations. In order to find a better local optimum, the algorithm can repeat multiple times with 
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random starting locations. This function has the advantage of using non-standard basis functions (e.g., 
without a constant term), while the disadvantage is that the users need to generate the design matrix at all 
candidate points.  
 Matlab function [dRE,X] = rowexch(n,ny,model) uses a row-exchange algorithm to 
generate a D-optimal design with ny samples for a linear additive model with n design variables. The 
output dRE is a 𝑛௬ ൈ 𝑛 matrix of sample locations, and X is the design matrix. The rowexch function 
first generates candidate samples automatically and then utilizes candexch function to find the D-
optimal design. The only difference is that rowexch can only use specific polynomial forms that are 
specified in the model. Both candexch and rowexch can only find D-optimal design out of candidate 
sample locations. 
 Matlab function [dCE,X] = cordexch(n,ny,'model') is different from rowexch in the 
sense that it does not choose a D-optimal design from candidate locations. Instead, it starts with ny initial 
sample locations that are generated randomly and it moves the previous locations to new locations to 
increase the determinant of the moment matrix. At each step, the coordinate-exchange algorithm 
exchanges a single element of design matrix 𝐗 with a new element evaluated at a neighboring point in the 
design space. Since the algorithm searches a small neighborhood of the current sample location, the 
algorithm is more likely to become trapped in a local minimum. 
 
Example 3-8 
Use Matlab cordexch function to generate 6 and 12 samples for two-dimensional quadratic PRS using 
D-optimal design. Discuss the sample locations and the ratio of uncertainty between the two sample sets. 
 
Solution: 
Since two-dimensional quadratic PRS has six regression coefficients, a minimum of six samples are 
required. The following Matlab code can calculate D-optimal designs for six and twelve samples.  
 

ny=6;                     %With 6 samples: 

[dce,X]=cordexch(2,ny,'quadratic'); 

scatter(dce(:,1),dce(:,2),200,'filled') 

D6=det(X'*X) 

 

ny=12;                   %With 12 samples: 

[dce,X]=cordexch(2,ny,'quadratic'); 

scatter(dce(:,1),dce(:,2),200,'filled') 

D12=det(X'*X) 

 
With six samples, the determinant of the moment matrix was |𝐗்𝐗| ൌ 256, while that of twelve samples 
was |𝐗்𝐗| ൌ 30,320. Therefore, it is expected that the uncertainty in the regression coefficient is much 
lower for the twelve samples. In terms of the ratio between the two determinants, the twelve samples may 
have less than 1% of uncertainty than the six samples. The sample locations are shown in Figure 3-11, 
and the individual locations are shown in the following tables. 
 
Six sample locations: 

Sample No. 1 2 3 4 5 6 

𝑥ଵ 1 -1 -1 1 0 0 

𝑥ଶ -1 1 -1 1 0 -1 
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Twelve sample locations: 

Sample No. 1 2 3 4 5 6 7 8 9 10 11 12 

𝑥ଵ 1 -1 0 -1 1 -1 1 1 1 -1 0 0 

𝑥ଶ -1 -1 -1 1 1 0 1 0 -1 1 1 0 

 
It is noticed that all samples are on the edge of the design space, except for the center locations. In the 
case of six samples, four samples were located in the corners, and the fifth sample is at the center. The last 
sample was located at ሺെ1, 0ሻ, but it could have been positioned in either ሺ1,0ሻ, ሺ0, െ1ሻ, or ሺ0, 1ሻ. In the 
case of twelve samples, the nine samples were located in two-level full factorial designs. The remaining 
three samples actually overlapped with some of these nine samples (samples 7, 9, and 10).  
 

 
Figure 3-11: D-optimal DoEs for six and twelve samples.  
 

 

A-optimal design 
A-optimal design is similar to D-optimal design in the sense that both focus on the variance of regression 
coefficients. In order to reduce the covariance matrix of coefficients, the D-optimal design maximizes the 
determinant of the moment matrix. The A-optimal design tries to reduce the variance of individual 
coefficients. The variance of each coefficient relies on the diagonal terms of the inverse of the moment 
matrix ሺ𝐗்𝐗ሻିଵ. The A-optimal design seeks to minimize the sum of these elements, that is the trace of 
ሺ𝐗்𝐗ሻିଵ. Therefore, the A-optimal design is to find ሺ𝐱ଵ, 𝐱ଶ, ⋯ , 𝐱௡೤

ሻ, such that 

minimize ෍ሺ𝐗்𝐗ሻ௜௜
ିଵ

௡ഁ

௜ୀଵ

 (3.14)

 Jones et al. [26] showed that the A-optimal design is more consistent with the screening objective 
than the D-optimal design. An A-optimal design minimizes the average variance of the parameter 
estimates, which is directly related to that goal. While there are many cases where A- and D-optimal 
designs coincide, the A-optimal designs tend to have better statistical properties when the A- and D-
optimal designs differ. In such cases, A-optimal designs generally have more uncorrelated columns in 
their model matrices than D-optimal designs. Also, even though A-optimal designs minimize the average 
variance of the parameter estimates, various cases exist where they outperform D-optimal designs in 
terms of the variances of all individual parameter estimates. A-optimal designs can also substantially 
reduce the worst prediction variance compared with D-optimal designs. 
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Example 3-9 
Repeat Example 3-7 with an A-optimal design. 
 
Solution: 
From the covariance matrix given in Example 3-7, the sum of diagonal terms can be written as 

෍ሺ𝐗்𝐗ሻ௜௜
ିଵ

ଶ

௜ୀଵ

ൌ ቆ1 ൅
1 ൅ 𝑝ଶ

𝑞ଶ ቇ 

The above term has a minimum when 𝑝ଶ ൌ 0 and 𝑞ଶ ൌ 1. Therefore, the third sample location using the 
A-optimal design becomes ሺ𝑝, 𝑞ሻ ൌ ሺ0,1ሻ. Note that in the D-optimal design 𝑝 was arbitrary, while the A-
optimal design found the best location for minimizing the variance of the two coefficients.  
 

 

G-optimal design 
D-optimal and A-optimal designs try to reduce uncertainty in the covariance matrix of coefficients, which 
can indirectly reduce the prediction variance. However, it makes more sense if an optimal design tries to 
reduce prediction variance directly, which is called the G-optimal design. Since prediction variance is a 
function of the prediction point, the G-optimal design minimizes the maximum prediction variance as 

minimize max 𝑣ሺ𝐱ሻ ൌ 𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱ሻ (3.15)

It can be shown that under the standard statistical assumptions about the error that the maximum 
prediction variance in the domain defined by the sample points is always larger or equal to the number of 
terms in the response surface, 𝑛ఉ, (see Myers and Montgomery, 1995, p. 367). Therefore, with a G-
optimal design, we have a target to shoot for. We would like to seek a set of points that will bring the 
maximum close to 𝑛ఉ/𝑛௬. This value is achieved by a two-level full-factorial design for a linear model, 
see Example 3-2, where the prediction variance was 3𝜎ො/4 (four samples with three coefficients). 
 If all sample locations are sought, the total number of design variables would be 𝑛௬ ൈ 𝑛, which 
becomes impractical for a large number of samples or high-dimensional design space. In adaptive 
sampling, some sample locations are fixed, and additional 𝑘 samples can be sought. In such a case, the 
number of design variables would be 𝑘 ൈ 𝑛.  
 In general, finding 𝑛௬ sample locations such that the maximum prediction variance is minimized as in 
Eq. (3.15) is a two-level optimization problem. In the inner level, for a given set of sample locations, we 
need to find the location where the prediction variance is maximum and the maximum prediction variance 
value. This optimization problem is formulated as follows: find 𝐱 ൌ ሼ𝑥ଵ, ⋯ , 𝑥௡ሽ் to satisfy 

min 𝑓ሺ𝐱ሻ ൌ െ𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱ሻ 

such that െ 1 ൑ 𝐱 ൑ 1  
(3.16) 

In this equation, it is assumed that the design matrix is known (or the sample locations are known). The 
maximum prediction variance is then given as െ𝑓. The outer-level optimization is to find the sample 
locations; i.e., ሼ𝐱ሺଵሻ, 𝐱ሺଶሻ, ⋯ , 𝐱൫௡೤൯ሽ such that the maximum prediction variance is minimized. The 
optimization problem is formulated as 
 

min 𝑔 ቀ𝐱ሺଵሻ, 𝐱ሺଶሻ, ⋯ , 𝐱൫௡೤൯ቁ ൌ max ሺെ𝛏்ሺ𝐗்𝐗ሻିଵ𝛏ሻ (3.17) 
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                     |𝐗்𝐗| ൐ 0  

Last condition on the determinant of the function |𝐗்𝐗| is imposed to avoid the repetition of the points, 
which makes the matrix singular.  
 The optimization problem is difficult to solve because the lower-level optimum is not a smooth 
function of the upper-level design variables (the position of the sample points). This is because as the data 
points change, the position of the maximum variance can jump. Therefore, most gradient-based 
optimization ends up with a local optimum. Gradient-free global search algorithms, such as a genetic 
algorithm, can be computationally expensive. In practice, the inner-level optimization problem, finding 
the maximum prediction variance, is often replaced by grid evaluation, where the design space is 
discretized by a grid and the maximum prediction variance is sought among the grid.  
 
Example 3-10 
Repeat Example 3-7 with a G-optimal design. Compare the maximum standard error of prediction for D-
optimal, A-optimal, and G-optimal designs. 
 
Solution: 
Since Eq. (3.15) is a min-max problem, it would be difficult to solve it analytically. We will solve the 
problem heuristically with some reasonings. Using the inverse of the moment matrix in Example 3-7, the 
prediction variance term in Eq. (3.15) can be written as 

 𝑣ሺ𝐱ሻ ൌ 𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱ሻ ൌ ൬𝑥ଵ െ 2
𝑝
𝑞

𝑥ଶ൰
ଶ

൅
1 ൅ 𝑝ଶ

𝑞ଶ 𝑥ଶ
ଶ 

First, since 𝑞 only occurs in the denominator, if 𝑞 ൌ 0, the variance term goes to infinity. Therefore, it is 
obvious that 𝑞 must be in its upper bound to reduce the variance. Therefore, we heuristically determine 
𝑞 ൌ 1. Then, the variance can be simplified as 

𝑣ሺ𝐱ሻ ൌ ሺ𝑥ଵ െ 2𝑝𝑥ଶሻଶ ൅ ሺ1 ൅ 𝑝ଶሻ𝑥ଶ
ଶ 

Since the maximum variance normally occurs at corner points, we evaluate the variance at four corners: 

𝑣ሺ0,0ሻ ൌ 0
𝑣ሺ1,0ሻ ൌ 1
𝑣ሺ0,1ሻ ൌ 1 ൅ 𝑝ଶ

𝑣ሺ1,1ሻ ൌ 2 െ 2𝑝 ൅ 𝑝ଶ 

It is obvious that the maximum may occur either at ሺ0,1ሻ or ሺ1,1ሻ, depending on the value of 𝑝. When 
𝑝 ൒ 0.5, the maximum occurs at ሺ0,1ሻ, and the minimum of the maximum occurs at 𝑝 ൌ 0.5. When 𝑝 ൑
0.5, the maximum occurs at ሺ1,1ሻ, and the minimum of the maximum occurs at 𝑝 ൌ 0.5. Therefore, the 
G-optimal design yields ሺ𝑝, 𝑞ሻ ൌ ሺ0.5,1ሻ, which is the middle of the upper bound.  
 Note that the sample location of the D-optimal design in Example 3-7 is not fixed. For the purpose of 
comparison, however, we choose the third sample location of the D-optimal design at (1,1), just to make it 
different from the other two designs. With the third sample at ሺ0.5,1ሻ, the maximum standard error of 
prediction of G-optimal design becomes 𝜎௬

௠௔௫ ൌ √5𝜎ො/2. It is interesting to note that the maximum 
standard error of prediction from D-optimal and A-optimal designs are 𝜎௬

௠௔௫ ൌ √2𝜎ො. Therefore, G-
optimal design yields the sample location that has the smallest maximum standard error of prediction.  
 Figure 3-12 compares the location of the third sample and the standard error of prediction for D-
optimal, A-optimal, and G-optimal designs. When the third sample locates in one corner, the maximum 
standard error occurs in the other corner as this is the farthest extrapolation point. On the other hand, since 
the G-optimal design locates the third sample in the middle of the edge, the distance to the farthest 
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extrapolation point is shorter than the other two designs. It is noted that the minimum standard error of all 
three designs is zero at the origin. This happens because the linear PRS 𝑦ො ൌ 𝑏ଵ𝑥ଵ ൅ 𝑏ଶ𝑥ଶ does not have a 
constant term. The following Matlab code is used to plot the contour of the standard error of prediction: 
 

X=[0 0;1 0;1 1];     % D-optimal design 

%X=[0 0;1 0;0 1];     % A-optimal design 

%X=[0 0;1 0;0.5 1];   % G-optimal design 

% 

XTX=X'*X; 

XTXi=inv(XTX); 

[X, Y]=meshgrid(0:.1:1, 0:.1:1); 

Z=zeros(size(X)); 

[n, m]=size(X); 

for i=1:n 

    for j=1:m 

        xi=[X(i,j) Y(i,j)]; 

        Z(i,j)=sqrt(xi*XTXi*xi'); 

    end 

end 

v=linspace(min(min(Z)),max(max(Z)),10); 

[C,h]=contour(X,Y,Z,v); 

clabel(C,h) 

Zmax=max(max(Z)) 

Zmin=min(min(Z)) 

 
 It would be interesting to compare the covariance matrix of the three designs. Remember that D-
optimal and A-optimal designs are for minimizing the covariance matrix. The covariance matrices of the 
three designs are summarized in the following table: 
 

Designs D-optimal A-optimal G-optimal 

Covariance matrix 𝚺𝐛 ൌ 𝜎ො ቂ 1 െ1
െ1 2

ቃ 𝚺𝐛 ൌ 𝜎ො ቂ1 0
0 1

ቃ 𝚺𝐛 ൌ 𝜎ො ቂ 1 െ0.5
െ0.5 1.25

ቃ 

 
It turns out that the variance of regression coefficients is the smallest for the A-optimal design. In 
addition, the A-optimal design shows uncorrelated coefficients. Even if the D-optimal design is for 
minimizing the determinant of the moment matrix, it shows the largest variance among the three and also 
a significant correlation. G-optimal design is good for maximum prediction variance, but it has a 
relatively large variance and correlation between coefficients.  
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Figure 3-12: Comparison of sample locations and standard error of prediction for D-optimal, A-optimal, 
and G-optimal designs.  
 

 

Minimum bias design 
The three optimal designs that we discussed in the previous subsections only focus on reducing 
uncertainty in regression coefficients or prediction. Unfortunately, reducing uncertainty does not always 
guarantee prediction accuracy. It has an assumption that first, the model form is accurate, and second, the 
mean of regression coefficients is identical to the true coefficients. When the model form is not accurate 
or the regression process cannot estimate the coefficients accurately, there exists an error in surrogate 
prediction. This error is called modeling error by engineers and bias error by statisticians. 
 Bias measures the difference between surrogate prediction 𝑦ොሺ𝐱ሻ of QoI and the true QoI 𝑦ሺ𝐱ሻ. Since 
the true QoI is often unknown and measurements have random noise, the average of measurements is 
commonly considered the true QoI. On the other hand, variance measures how surrogate 𝑦ොሺ𝐱ሻ is affected 
by a particular dataset. Samples are assumed to be generated from the true QoI by adding random noise. If 
the surrogate fit is perfect, it filters out the random noises in the samples, and different datasets should 
yield the same surrogate prediction. However, this can be achieved when the number of samples 
approaches infinity. With a finite number of samples, different datasets will yield different surrogate 
predictions. This uncertainty in prediction is measured in terms of variance.  
 Unfortunately, variance and bias are competing objectives in DoE. The bias error can be reduced by 
fitting the surrogate close to samples (e.g., by adding more basis functions), but this cause a large 
variance. On the other hand, the variance error can be reduced by smoothing the surrogate model (e.g., by 
adding a penalty term as in Eq. (1.6)), but this smoothing penalty inevitably increases the bias error. 
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Therefore, it is necessary to balance the bias and variance errors by a trade-off. In theory, it is possible to 
improve the bias and variance error simultaneously by adding more samples and more basis functions.  
 For PRS surrogate models, using the assumption that the true model is also in a polynomial form, 
Myers and Montgomery [4] proposed minimum bias designs. To consider the model errors, it would be 
necessary to introduce the concepts of design moments. Let 𝑅 be the region of interest in terms of 
predicting QoI, and let 𝜇௜ be the first moments of the domain, which is defined as 

𝜇௜ ൌ
1
𝑉

න 𝑥௜ d𝑅
ோ

, 𝑖 ൌ 1, ⋯ , 𝑛 (3.18)

where 𝑉 is the volume of the domain 𝑅. Similarly, the second moment 𝜇௜௝ can be defined as 

𝜇௜௝ ൌ
1
𝑉

න 𝑥௜𝑥୨ d𝑅
ோ

, 𝑖, 𝑗 ൌ 1, ⋯ , 𝑛 (3.19)

Higher-order moments can also be defined in a similar way.  
 Since samples are given at discrete points, the above definition of moments needs to be extended to 
the case with discrete samples. First, let there are 𝑛௬ samples in 𝑛-dimensional design space. Then 
𝑥௜௞, ሺ𝑖 ൌ 1, ⋯ , 𝑛, 𝑘 ൌ 1, ⋯ , 𝑛௬ሻ represents the 𝑖-th component of the 𝑘-th sample. Therefore, the discrete 
counterpart of the moment is defined as  

𝑚௜ ൌ
1

𝑛௬
෍ 𝑥௜௞

௡೤

௞ୀଵ

, 𝑖 ൌ 1, ⋯ , 𝑛 (3.20)

Higher-order moments can also be fined in a similar way. 
 The concept of minimum bias design is based on the equivalence of the discrete moments with the 
continuous moments. Let us consider a PRS surrogate model given in the form of 𝑦ොሺ𝐱ሻ ൌ 𝛏ሺ𝐱ሻሺଵሻ்

𝐛ሺଵሻ, 
and it has a bias term. Assuming that the bias term is given in a polynomial form with higher orders, the 
true function can be defined as 𝑦ሺ𝐱ሻ ൌ 𝛏ሺ𝐱ሻሺଵሻ்

𝐛ሺଵሻ ൅ 𝛏ሺ𝐱ሻሺଶሻ்
𝐛ሺଶሻ, where the second term corresponds 

to the bias. With given 𝑛௬ samples, the relationship between the samples and regression coefficients can 
be written as 

𝐲 ൌ 𝐗ሺଵሻ𝐛ሺଵሻ ൅ 𝐗ሺଶሻ𝐛ሺଶሻ (3.21)

where 𝐗ሺଵሻ and 𝐗ሺଶሻ are the design matrices using 𝛏ሺ𝐱ሻሺଵሻ and 𝛏ሺ𝐱ሻሺଶሻ, respectively. The averaged 
moment matrix of the combined design matrix can be partitioned as  

𝐌 ൌ ൥
𝐌ଵଵ | 𝐌ଵଶ
െ െ | െ െ
𝐌ଶଵ | 𝐌ଶଶ

൩ ൌ
1

𝑛௬
൦

𝐗ሺଵሻ்
𝐗ሺଵሻ | 𝐗ሺଵሻ்

𝐗ሺଶሻ

െ െ െ െ െ െ | െ െ െ െ െ െ

𝐗ሺଶሻ்
𝐗ሺଵሻ | 𝐗ሺଶሻ்

𝐗ሺଶሻ

൪ (3.22)

On the other hand, the moment in the continuous domain can be defined using the basis functions as 

𝛍 ൌ ൥
𝛍ଵଵ | 𝛍ଵଶ
െ െ | െ െ
𝛍ଶଵ | 𝛍ଶଶ

൩ ൌ
1
𝑉

⎣
⎢
⎢
⎢
⎢
⎡න 𝛏ሺ𝐱ሻሺଵሻ𝛏ሺ𝐱ሻሺଵሻ்

d𝑅
ோ

| න 𝛏ሺ𝐱ሻሺଵሻ𝛏ሺ𝐱ሻሺଶሻ்
d𝑅

ோ
െ െ െ െ െ െ െ | െ െ െ െ െ െ െ

න 𝛏ሺ𝐱ሻሺଶሻ𝛏ሺ𝐱ሻሺଵሻ்
d𝑅

ோ
| න 𝛏ሺ𝐱ሻሺଶሻ𝛏ሺ𝐱ሻሺଶሻ்

d𝑅
ோ ⎦

⎥
⎥
⎥
⎥
⎤

 (3.23)

 Comparing the discrete moment in Eq. (3.22) with the continuous moment in Eq. (3.23), the 
regression process is nothing but approximating the integrals of basis functions by a sum over the sample 
points. Therefore, good samples make this approximation accurate. The idea of minimum bias design is to 
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choose sample locations such that the mean-squared-bias error of PRS is minimized, which can be 
achieved by making the discrete moment equal to the continuous moment. If there is enough freedom in 
selecting sample locations, it is possible to make the difference disappear. If that is not possible, 
optimization methods can be used to seek the best points to minimize the difference.  
 Box and Draper [29] proved that minimum bias designs satisfy the following relationship: 

𝐌ଵଵ
ିଵ𝐌ଵଶ ൌ 𝛍ଵଵ

ିଵ𝛍ଵଶ (3.24)

Box and Draper concluded that the following conditions 

𝐌ଵଵ ൌ 𝛍ଵଵ, 𝐌ଵଶ ൌ 𝛍ଵଶ (3.25)

are sufficient conditions for a minimum bias design (Myers and Montgomery [4], p. 411). When the true 
functional form is known, the vector of basis functions, 𝛏ሺ𝐱ሻሺଶሻ, is available. Without having the true 
functional form, however, the second condition in Eq. (3.25) cannot be imposed. Therefore, in most cases, 
the first condition is used to define sample locations with additional constraints. For a given vector of 
basis function, the continuous moment matrix, 𝛍ଵଵ, is calculated first. Then, the unknown sample 
locations are found by matching the discrete moment matrix, 𝐌ଵଵ, with 𝛍ଵଵ. 
 In contrast to the minimum variance designs that tend to put points in the periphery of the design 
domain, minimum bias designs tend to bring them closer to the centroid. In addition, minimum bias 
designs often have low prediction variance, but the reverse is not true. That is, minimum variance designs 
tend to have large bias errors. Compromise designs, in which 𝐌ଵଵ and 𝐌ଵଶ are slightly larger than 𝛍ଵଵ, 
and 𝛍ଵଶ, respectively, are occasionally used. 
 
Example 3-11 
The true function is a quadratic polynomial, given in the form 𝑦ሺ𝐱ሻ ൌ 𝑥ଵ

ଶ ൅ 𝑥ଶ
ଶ, which is only used to 

generate samples. A linear PRS, 𝑦ොሺ𝐱ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ, will be constructed in the design space 
𝑥ଵ, 𝑥ଶ ∈ ሾെ1,1ሿ. Find four symmetric sample locations using a minimum bias design. Compare 𝑒ோெௌ of 
minimum bias design with that of a two-level full factorial design. 
 
Solution: 
Since the true functional form is unknown, we will only use the condition, 𝐌ଵଵ ൌ 𝛍ଵଵ. For the linear 
model with the vector of basis functions, 𝛏ሺ𝐱ሻሺଵሻ ൌ ሼ1, 𝑥ଵ, 𝑥ଶሽ், the continuous moment matrix is 

𝛍ଵଵ ൌ
1
𝑉

න න ቎
1 𝑥ଵ 𝑥ଶ

𝑥ଵ 𝑥ଵ
ଶ 𝑥ଵ𝑥ଶ

𝑥ଶ 𝑥ଵ𝑥ଶ 𝑥ଶ
ଶ

቏ d𝑥ଵd𝑥ଶ

ଵ

ିଵ

ଵ

ିଵ
ൌ ቎

1 0 0
0 భ

య
0

0 0 భ
య

቏ 

Note that because of the symmetry of the domain, all the integrals with odd powers of either 𝑥ଵ or 𝑥ଶ are 
zero.  
 The discrete moment matrix 𝐌ଵଵ can be calculated from its definition in Eq. (3.22) 

𝐌ଵଵ ൌ
1

𝑛௬
𝐗ሺଵሻ்

𝐗ሺଵሻ ൌ
1

𝑛௬

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

෍ 1

௡೤

௞ୀଵ

෍ 𝑥ଵ௞

௡೤

௞ୀଵ

෍ 𝑥ଶ௞

௡೤

௞ୀଵ

෍ 𝑥ଵ௞

௡೤

௞ୀଵ

෍ 𝑥ଵ௞
ଶ

௡೤

௞ୀଵ

෍ 𝑥ଵ௞𝑥ଶ௞

௡೤

௞ୀଵ

෍ 𝑥ଶ௞

௡೤

௞ୀଵ

෍ 𝑥ଵ௞𝑥ଶ௞

௡೤

௞ୀଵ

෍ 𝑥ଶ௞
ଶ

௡೤

௞ୀଵ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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 If we pick four points that are symmetric with respect to both the 𝑥ଵ- and 𝑥ଶ-axis, there are two 
possibilities. One is the set of samples along the axis of each variable: ሺേ𝛼, 0ሻ, ሺ0, േ𝛼ሻ, where 0 ൑ 𝛼 ൑ 1 
is a constant. The second is the set of samples along േ45° lines: ሺേ𝛽, േ𝛽ሻ, where 0 ൑ 𝛽 ൑ 1 is a 
constant. Because of the symmetry, the sums involving odd powers will vanish, so that all the zeros in 
𝐌ଵଵ will match the zeroes in 𝛍ଵଵ. Only the diagonal terms are non-zero. The value of 𝛼 and 𝛽 is 
calculated by setting the diagonal terms in 𝐌ଵଵ matrix equal to the corresponding component in 𝛍ଵଵ. That 
is, 

1
4

෍ 1

ସ

௞ୀଵ

ൌ 1,
1
4

෍ 𝑥ଵ௞
ଶ

ସ

௞ୀଵ

ൌ
1
3

,
1
4

෍ 𝑥ଶ௞
ଶ

ସ

௞ୀଵ

ൌ
1
3

 

The first term is trivial. The remaining two terms are used to calculate 𝛼 or 𝛽. 
 For the first set ሺേ𝛼, 0ሻ, ሺ0, േ𝛼ሻ, these equations yield 

1
4

ሺ𝛼ଶ ൅ 𝛼ଶሻ ൌ
1
3

, → 𝛼 ൌ ඨ
2
3

ൌ 0.8165 

Therefore, the four sample locations are along each axis: ሺേ0.8165,0ሻ, ሺ0, േ0.8165ሻ. With these sample 
locations, the regression coefficients can be calculated as 

𝐗 ൌ ቎

1 െ𝛼 0
1 𝛼 0
1 0 െ𝛼
1 0 𝛼

቏ , 𝐲 ൌ ൞

𝛼ଶ

𝛼ଶ

𝛼ଶ

𝛼ଶ

ൢ , 𝐛 ൌ ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 ൌ ൝
𝛼ଶ

0
0

ൡ 

Therefore, the linear PRS becomes 𝑦ොሺ𝐱ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ ൌ 𝛼ଶ ൌ 2/3, which is a constant.  
 For the second set ሺേ𝛽, േ𝛽ሻ, these equations yield 

1
4

ሺ𝛽ଶ ൅ 𝛽ଶ ൅ 𝛽ଶ ൅ 𝛽ଶሻ ൌ
1
3

, → 𝛽 ൌ ඨ
1
3

ൌ 0.5774 

Therefore, the four sample locations are along each axis: ሺേ0.5774, േ0.5774ሻ. With these sample 
locations, the regression coefficients can be calculated as 

𝐗 ൌ ൦

1 െ𝛽 െ𝛽
1 െ𝛽 𝛽
1 𝛽 െ𝛽
1 𝛽 𝛽

൪ , 𝐲 ൌ

⎩
⎪
⎨

⎪
⎧2𝛽ଶ

2𝛽ଶ

2𝛽ଶ

2𝛽ଶ
⎭
⎪
⎬

⎪
⎫

, 𝐛 ൌ ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 ൌ ൝
2𝛽ଶ

0
0

ൡ 

Therefore, the linear PRS becomes 𝑦ොሺ𝐱ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ ൌ 2𝛽ଶ ൌ 2/3, which is a constant. Note 
that the two surrogates are identical.  
 Now let us compare these two sets to the full factorial design ሺേ1, േ1ሻ for fitting the function 𝑦ሺ𝐱ሻ ൌ
𝑥ଵ

ଶ ൅ 𝑥ଶ
ଶ. With these sample locations, the regression coefficients can be calculated as 

𝐗 ൌ ቎

1 െ1 െ1
1 െ1 1
1 1 െ1
1 1 1

቏ , 𝐲 ൌ ቐ

2
2
2
2

ቑ , 𝐛 ൌ ሺ𝐗்𝐗ሻିଵ𝐗்𝐲 ൌ ൝
2
0
0

ൡ 

Therefore, for the full factorial design, the surrogate model is also a constant function 𝑦ොሺ𝐱ሻ ൌ 2. 
Obviously, the surrogate 𝑦ොሺ𝐱ሻ ൌ 2/3 of the minimum bias design is better than that of the full factorial 
design. Figure 3-13 shows the sample locations of the minimum bias design. The circular markers are for 
the first design, while the square markers are for the second design. 
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 To appreciate that the fit is optimal, consider fitting the function by a general linear polynomial. 
Because of the double symmetry of the function, all the linear terms should vanish, so that the response 
surface should indeed be of the form 𝑦ොሺ𝐱ሻ ൌ 𝑏ଵ. The mean square error over the region is then 

𝑒ோெௌ
ଶ ൌ

1
4

න න ሺ𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ െ 𝑏ଵሻଶd𝑥ଵd𝑥ଶ

ଵ

ିଵ

ଵ

ିଵ
ൌ

28
45

െ
4
3

𝑏ଵ ൅ 𝑏ଵ
ଶ 

Differentiating the error with respect to 𝑏ଵ and setting it to zero confirms the fact that 𝑏ଵ ൌ 2/3 gives the 
minimum error, 𝑒ோெௌ

ଶ ൌ 8/45. In contrast, 𝑏ଵ ൌ 2 gives 𝑒ோெௌ
ଶ ൌ 88/45. 

 

 
Figure 3-13: Sample locations of minimum bias designs.  
 

 
If this example appears impressive, note that we did not have any noise at all in the function, and the 
example was selected to make the minimum bias design look good. In other cases, the results may be less 
dramatic, and a compromise between minimum bias and minimum variance may be called for. 
 
3.4. Space-filling design of experiments 

The optimal designs in the previous section are good for finding sample locations that minimize 
prediction uncertainty and/or bias error of surrogate prediction. The optimal designs are especially useful 
for adaptive sampling, where the locations of additional samples are sought in addition to pre-existing 
samples. The limitations of optimal designs are: (a) it can be computationally challenging if the 
dimension of design space is high and the number of samples is large, and (b) the optimal designs depend 
on the specific surrogate model and the number of samples. Especially, most optimal designs in Section 
3.3 are based on PRS surrogate, which uses linear regression with polynomial basis functions. Therefore, 
optimal designs are difficult to generalize for a general surrogate model with an arbitrary number of 
samples.    
 DoE methods that are independent of surrogate models are based on the simple fact that surrogate 
predictions are accurate when the prediction point is close to the sample location. Therefore, it is always a 
good idea to distribute samples regularly in the design space. But as shown in Section 3.2, it would 
require too many samples to construct dense full-factorial designs with many levels. Instead, fractional 
factorial designs are sought in order to reduce the required number of samples, and at the same time, 
satisfy the uniformity as much as possible. This can be achieved by either maximizing the minimum 
distance [27] or minimizing correlation measures among samples [28]. Clusters of samples can improve 
prediction accuracy but can be considered a waste of resources. A large empty space in the interpolation 
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region or a large extrapolation region can cause poor surrogate predictions. Therefore, a good DoE 
method means filling the design space as much as possible for a given number of samples. This strategy 
of sampling is referred to as space-filling DoE in this text.  
 In addition to the space-filling property, it would be beneficial if samples are randomly distributed. 
The traditional DoE in Section 3.2 has specific locations of samples. In addition, traditional DoE tends to 
locate samples on the boundary of the design space, either at corners or on the edges. Therefore, there is a 
chance that a surrogate might have a good performance at these sample locations but a bad performance at 
unsampled locations. Considering the fact that the optimal design normally presents at the center of the 
domain, these boundary samples can cause a bias error in the central region. If a space-filling DoE has 
randomness in selecting locations, it can provide a robust estimate of prediction accuracy. 
 The term ‘space-filling’ might mislead reality. It is appropriate only for low-dimensional spaces. For 
high-dimensional spaces, we cannot afford to ‘fill’ the design space. Therefore, it is inevitable to 
anticipate a large extrapolation region in a high-dimensional design space. In addition, space-filling DoE 
tends to put samples inside the design space instead of at boundaries. Therefore, in a low-dimensional 
design space, it would be useful to add additional samples at the corners of the design space. Adding 
samples at all corners is impractical for high-dimensional design space. 
  There are many different methods to generate space-filling DoEs. Among them, orthogonal arrays 
[30] (OA) and Latin Hypercube sampling [31] (LHS) are considered practical options. OA produces 
uniform designs but can generate particular forms of sample replications, while LHS does not produce 
replicates but can lack uniformity. As a result, OA-based LHS [32] and other optimal LHS schemes [33, 
34] have been proposed. Among many space-filling DoEs, we will only consider Monte-Carlo simulation, 
LHS, and OA designs in this section. 
 

Monte-Carlo simulation 
Monte Carlo simulation (MCS) is a popular method for generating random samples based on a probability 
distribution. Originally, this is a method to generate random samples for the purpose of uncertainty 
quantification, but it can be extended for the purpose of DoE. Normally, MCS assumes that a random 
variable 𝑋 has a probability density function 𝑓௑ሺ𝑥ሻ and generates samples that follow this distribution. 
The idea to extend MCS for the purpose of DoE is to use a uniform distribution for 𝑓௑ሺ𝑥ሻ such that 
samples are generated uniformly in the design space. Although the idea seems reasonable, in practice, 
uniformity can be achieved only with a large number of samples. It is likely that some regions will be 
poorly sampled, and some regions will be overly sampled. In five-dimensional space, for example, it will 
require 2ହ ൌ 32 samples if one sample is to be located at each orthant. However, the probability to have 
one sample at each orthant is 

31
32

ൈ
30
32

ൈ ⋯ ൈ
1

32
ൌ 1.8 ൈ 10ିଵଷ 

Therefore, it would be very unlikely to have evenly distributed samples.  
 
Example 3-12 
Generate 20 samples of ሺ𝑥ଵ, 𝑥ଶሻ ∈ ሾ0,1ሿ using MCS and plot the marginal histogram. Check if samples 
are uniformly distributed in the design space. 
 
Solution: 
The following Matlab code is used to generate 20 samples from uniform distribution and plot sample 
locations and marginal histogram of each variable:  
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rng default; 

x=rand(20,2); 

subplot(2,2,1); plot(x(:,1), x(:,2), 'o'); 

subplot(2,2,2); hist(x(:,2),20); 

subplot(2,2,3); hist(x(:,1),20); 

 
Matlab command rand generates random samples from a uniform distribution in the interval of ሾ0, 1ሿ. 
Therefore, if the range of input variables is different, it would be necessary to scale the samples 
appropriately. Figure 3-14 shows the sample locations and marginal histograms. The distribution of points 
shows both clusterings in the lower-right and upper-left corners and scattering in the lower-left corner. 
Obviously, the distribution of samples does not look like a uniform distribution. If the samples are 
uniformly distributed, it is expected that the marginal histograms show a uniform height. The histograms 
were divided into 20 bins, and therefore, if samples were uniformly distributed, it is expected to have one 
sample in each bin. However, as shown in the figure, with 20 samples, there is evidence of both clustering 
and scarcity of samples. 
 

 
Figure 3-14: Marginal histogram of 20 samples in two-dimensional design space.  
 

 

Latin hypercube sampling 
Latin Hypercube sampling (LHS) is a semi-random sampling scheme, where the design space is gridded, 
and samples are randomly located within the grid. The design range of each variable is divided by 𝑛௬ 
intervals depending on its probability distribution. In the case of space-filling designs (i.e., the design 
variable is assumed to be uniformly distributed), the design space is divided by uniform intervals of size 
1/𝑛௬. For example, Figure 3-15(a) shows seven LHS samples from a uniform distribution. First, the 
range of design is divided into seven intervals, and one sample is placed at each interval. However, the 
sample location is random in the sense that the sample location within an interval is randomly selected. 
 Although uniform distribution is mostly used here for space-filling DoE, LHS can generate samples 
from any distribution. For example, Figure 3-15(b) shows ten LHS samples from a normal distribution. In 
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order to do that, first the range of probability ሾ0, 1ሿ is equally divided by ten intervals (vertical axis). 
Second, as shown in the figure, the inverse transformation is performed to find the corresponding 
variable’s intervals (horizontal axis). Therefore, all intervals may have different sizes, but they have the 
same probability. Last, one sample is randomly generated at each interval. If the purpose of the surrogate 
is to propagate uncertainty from input to output, it makes sense to sample according to the distribution of 
the input variables. However, for the purpose of optimization, it would be better to fill the design space 
evenly, and therefore, a uniform distribution makes sense.  
 

 
Figure 3-15: Latin hypercube sampling scheme in one dimension.  
 
 In the case of a one-dimensional variable, the randomness in LHS is only from the fact that the 
sample location within an interval is random. However, in the case of multi-dimensional variables, there 
is another source of randomness in LHS, which is more significant than the first. In the case of two 
designs with three samples (i.e., 𝑛 ൌ 2, 𝑛௬ ൌ 3), as shown in Figure 3-16, each variable has three 
intervals. Because of two variables, the grid has a total of nine cells. Therefore, there is randomness 
associated with selecting three sample locations out of nine cells. However, this is not a pure combination 
problem of ଷ𝐶ଽ because LHS requires one sample at each column or row. More specifically, in the first 
column of the figure, LHS can select one row out of three. In the second column, LHS can select one row 
out of two because the row that was selected in the first column cannot be selected. Then for the last 
column, the row is fixed because two rows are already selected by the previous two columns. Therefore, 
the possibility of locating samples is 3! ൌ 3 ൈ 2 ൈ 1. This is the major source of uncertainty in LHS.  
 Often the distribution of sample locations in LHS is defined using a definition table. As shown in 
Figure 3-16, the first column defines the intervals for 𝑥ଵ, and the second column defines the intervals for 
𝑥ଶ where the sample is located. It is noted that the first column is in a sequence, but the second column is 
a random permutation of sequences 1,2,3. If there is a third variable, the definition matrix would have one 
more column with another random permutation of the three numbers. In general, for 𝑛௬ samples in 𝑛 
variables, the location of the samples will be defined by an 𝑛௬ ൈ 𝑛 definition matrix, with each column a 
random permutation of 1,2, … , 𝑛௬.  
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Figure 3-16: Latin hypercube samples and definition matrix ሺ𝑛 ൌ 2, 𝑛௬ ൌ 3ሻ.  

 
 In general, the samples from LHS will be better distributed for each individual variable than that of 
MCS, but still, there could be a large portion of the design space that is not sampled. An extreme example 
would be if all the permutations happen to be in a sequence, then all the samples will be aligned on one of 
the diagonals in the box. Due to the randomness in selecting intervals, there are many possible LHS 
designs that still satisfy the basic requirement of one sample in each interval of each design variable. 
Therefore, it makes sense to generate many LHS designs and pick the best one. In order to do that, it 
would require having criteria to choose the best LHS design. The desirable criteria would be maximizing 
the minimum size of the empty hyper-sphere (i.e., unsampled region) or minimizing correlation among 
samples. The first criterion tries to remove clustered samples. Unfortunately, since calculating the 
minimum size of an empty hyper-sphere is tricky, the minimum distance between samples is often used as 
an LHS design criterion that is easy and cheap to calculate. 
 Matlab command lhsdesign can either maximize the minimum distance (default option) or 
minimize correlation. The command iteratively generates samples to improve the criterion. Figure 3-17(a) 
shows 10 samples using LHS with two variables. The following Matlab code is used to generate samples 
and plot them. The variable x includes samples from the minimum distance option, while the variable xr 
includes samples from the minimum correlation option. 
 

x=lhsdesign(10,2);  plot(x(:,1), x(:,2), 'o'); 

xr=lhsdesign(10,2,'criterion','correlation'); 

hold on; plot(xr(:,1), xr(:,2), 'r+'); 

r=corrcoef(x) 

%r = 1.0000   -0.6999 

%   -0.6999    1.0000 

r=corrcoef(xr) 

%r = 1.0000   -0.0545 

%   -0.0545    1.0000 

 
 The blue circles in the figure are generated with the default option (maximizing the minimum 
distance) and have a correlation coefficient of െ0.7. The red crosses are obtained by minimizing the 
correlation option, and it is െ0.0545. Note that even though the minimum distance between the circles is 
larger than between the crosses, the circles have a much larger empty space in the lower-left corner. This 
is because Matlab uses only five iterations as default for optimizing the design. 
 Since the five default iterations in Matlab often yield a poor DoE, it makes sense to use more 
iterations. Figure 3-17(b) shows the results with 5,000 iterations. Maximizing the minimum distance (blue 
circles) actually reduces the correlation as well, where the correlation is dropped to 0.236. Of course, 
minimizing the correlation leads to a lower correlation of 0.042. With more iterations, maximizing the 
minimum distance eliminates the large unsampled region that was present in Figure 3-17(a). On the other 
hand, even with more iterations, minimizing the correlation did not change the minimum distance or 
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eliminated the unsampled region. Therefore, for the red crosses, there are still large empty spaces near 
ሺ0.45, 0.75ሻ, ሺ0,0ሻ, and ሺ0,1ሻ. This explains why the minimum distance is the default criterion in Matlab. 
 

 
Figure 3-17: Latin hypercube samples with different options ሺ𝑛 ൌ 2, 𝑛௬ ൌ 10ሻ.  

 
 If the sample location within an interval does not have to be random, the randomness of LHS can be 
reduced by putting the samples at the center of the intervals, using ‘smooth’ parameter in lhsdesign. 
Samples in Figure 3-17(c) are generated by the following command: x=lhsdesign(10, 2, 
'iterations',5000,'smooth','off'). With ten samples, each variable is divided into ten 
intervals, and the samples are located at the center of these intervals, such as 0.05, 0.15, 0.25, and so on. 
Therefore, in the figure, the circles (max minimum distance) and crosses (minimum correlation) are 
aligned, and one point even overlaps. 
 

Orthogonal arrays 
Orthogonal arrays are a type of general fractional factorial designs. It is a highly fractional orthogonal 
design that is based on a design matrix proposed by Dr. Genichi Taguchi [35]. DoE from orthogonal 
arrays allows an arbitrary number of variables with an arbitrary number of levels. Consider the matrix of 
samples in Figure 3-18(a), which has four samples ൫𝑛௬ ൌ 4൯ of three variables ሺ𝑛 ൌ 3ሻ with two levels. 
In the normalized design variables, the two levels mean that a design variable has a value of െ1 or ൅1; 
i.e., the lower- and upper-bound of design space. The notation of an orthogonal array is OA௡೤

ሺ𝑠௡ሻ, where 
𝑛௬ is the number of samples, 𝑛 the number of design variables, and 𝑠 the number of levels. Therefore, the 
orthogonal array in Figure 3-18(a) can be denoted as OAସሺ2ଷሻ. An orthogonal array is written in the form 
of 𝑛௬ ൈ 𝑛 matrix. For linear PRS, DoE from orthogonal arrays yield an orthogonal design; that is, the 
moment matrix becomes diagonal. 
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 Figure 3-18: Examples of orthogonal arrays.  
 
 Orthogonal arrays are balanced to ensure that all levels of all variables are considered equally. For 
this reason, the variables can be evaluated independently of each other despite the fractionality of the 
design. An important property of an orthogonal array is that in every pair of columns each of the possible 
ordered pairs of elements appears the same number of times. In Figure 3-18(a), for example, in every pair 
of columns each of the four ordered pairs ሺെ1, െ1ሻ, ሺെ1,1ሻ, ሺ1, െ1ሻ, and ሺ1,1ሻ appears exactly once. If 
we choose columns 1 and 2, they are ሺെ1, െ1ሻ, ሺെ1,1ሻ, ሺ1, െ1ሻ, and ሺ1,1ሻ. If we choose columns 1 and 
3, they are ሺെ1, െ1ሻ, ሺെ1,1ሻ, ሺ1,1ሻ, and ሺ1, െ1ሻ. Therefore, all possible pairs appear once. 
 Figure 3-18(b) shows an orthogonal array of OAଽሺ3ଷሻ. In this case, since each variable can have three 
levels: െ1, 0, ൅1, all possible pairs of levels are ሺെ1, െ1ሻ, ሺെ1,0ሻ, ሺെ1,1ሻ, ሺ0, െ1ሻ, ሺ0,0ሻ, ሺ0,1ሻ, ሺ1, െ1ሻ,
ሺ1,0ሻ, ሺ1,1ሻ. In every pair of columns, each of the nine ordered pairs appears exactly twice. Therefore, it 
is an orthogonal array OAଽሺ3ଷሻ. 
 It is interesting to note that 𝑠௡ is in fact the number of samples in the 𝑠-level full factorial design, 
while 𝑛௬ is the actual number of samples in the orthogonal array. Therefore, the ratio ሺ𝑛௬/𝑠௡ሻ is the 
fraction of full factorial design. For OAସሺ2ଷሻ in Figure 3-18(a), the ratio is 4/2ଷ ൌ 1/2 fraction of full 
factorial design, and for OAଽሺ3ଷሻ in Figure 3-18(b) the ratio becomes 9/3ଷ ൌ 1/3. 
 A sub-matrix formed by deleting some columns of an orthogonal array is also an orthogonal array. 
Thus, by deleting certain columns of a given orthogonal array, it is possible to generate many different 
plans for multifactor experiments. If the third column in Figure 3-18(a) is deleted, it becomes OAସሺ2ଶሻ 
and it is nothing but the two-level full factorial design. The same is true for Figure 3-18(b), when the third 
column is removed, it becomes the three-level full factorial design. In practice, since each column 
represents a design variable, the effect of the orthogonal array will be the same if any single column is 
removed. In Figure 3-18(a), for example, the resulting orthogonal array by deleting the third column will 
be identical to that by deleting the first column. They are only different by row indices.  
 A fractional factorial design that enables uncorrelated estimation of every factorial effect included in 
the underlying linear model assuming that all other effects are zero is called an orthogonal plan. 
Fractional factorial designs based on orthogonal arrays irrespective of the degree of fractionation are 
necessarily orthogonal plans. This is the primary reason for the popularity of fractional factorials based on 
orthogonal arrays. 
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 Since each row of an orthogonal array represents a sample, exchanging rows would not affect the 
property of DoE. Also, exchanging columns simply means relabeling variables. It would not affect the 
orthogonality of DoE either. Lastly, the levels of factors, െ1, 0, ൅1, can be changed to different orders, 
such as ൅1, െ1, 0 because all levels will appear the same number of times. Therefore, exchanging levels 
would not change the property either. In summary, two orthogonal arrays are defined to be equivalent if 
one can be obtained from the other via the following operations: (1) exchanging rows, (2) exchanging 
columns, and (3) exchanging labels of levels. 
 Although orthogonal arrays are a powerful tool to generate effective samples, it has limitations to 
using them for the purpose of DoE. First, it is not general enough to generate an arbitrary number of 
samples, variables, and levels. Only a limited number of combinations are available. For a list of available 
orthogonal arrays, theory and applications, see, for example, Owen [36], Hedayat et al. [37], and 
references therein.  Second, samples in some orthogonal arrays can be repeated. This is undesirable for 
numerical experiments where the QoI is also repeated. In such a case, it would be necessary to perturb the 
repeated sample locations slightly.  
 
Example 3-13 
Calculate the standard error of prediction for the orthogonal array shown in Figure 3-18(a) when a linear 
PRS 𝑦ොሺ𝑥ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ ൅ 𝑏ସ𝑥ଷ is fit with the four samples. 
 
Solution: 
For the linear PRS, the design matrix and the moment matrix at the four sample locations become 

𝐗 ൌ ቎

1 െ1
1 െ1

െ1 െ1
1 1

1 1
1 1

െ1 1
1 െ1

቏ , 𝐗்𝐗 ൌ ቎

4 0
0 4

0 0
0 0

0 0
0 0

4 0
0 4

቏ 

As expected, since the orthogonal array yields an orthogonal design, the moment matrix becomes 
diagonal. Using the inverse of the moment matrix, the standard error of prediction can be calculated as 

𝜎௬ሺ𝐱ሻ ൌ 𝜎ොඥ𝛏ሺ𝐱ሻ்ሺ𝐗்𝐗ሻିଵ𝛏ሺ𝐱ሻ ൌ
𝜎ො
2

ට1 ൅ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൅ 𝑥ଷ
ଷ 

The standard error of prediction has its minimum 𝜎௬
௠௜௡ ൌ 𝜎ො/2 at the origin, while its maximum 𝜎௬

௠௔௫ ൌ
𝜎ො at the corner of the design space. It is noted that the standard error of prediction is the same for both 
sampled or unsampled corners. This happened because the orthogonal array captures the behavior of an 
individual variable while fixing other variables.  
 

 
3.5.Review of various designs of experiments 

In this chapter, we discussed several different DoE methods. Some DoEs are well structured, while others 
have randomness embedded in the process. Also, different DoEs have different characteristics, and it is 
difficult to tell whether one DoE is better than others for all possible configurations. From the perspective 
of users, it might be necessary to provide a guideline to choose an appropriate DoE for their applications. 
In this section, different application conditions are considered and DoEs that are useful for such 
conditions are recommended.  
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Guideline for selecting designs of experiments 
 Since the condition of using DoE can be different in terms of the number of samples, the number of 
variables, and levels. There would not be a single DoE that works best for all possible conditions. In 
addition, the samples obtained from DoE can have different levels of noise. Therefore, it would be a good 
idea to find some recommendations for finding a good DoE for the given conditions. The conditions that 
we need to consider for choosing a good DoE are (a) the level of noise, (b) the number of variables, (c) 
the number of regression coefficients, and (d) the number of samples. Also, it is possible to consider if all 
the experiments are conducted simultaneously or sequentially. The latter does not require all sample 
locations in advance. Sample locations are sequentially determined based on previous sample results. 
 Low dimension with high noise: The first condition that we want to consider is the case of low 
dimension with a high level of noise. This corresponds to the case when the QoI depends on two or three 
input variables, but the experiments include a large level of noise. When the design space is box-like, the 
full-factorial design or CCD is recommended. This is because the number of required samples is relatively 
small in low dimensions. Both full factorial design and CCD are good to reduce the prediction variance. 
When the domain is irregular, either D-optimal or A-optimal design is recommended as these designs are 
optimized to reduce the uncertainty in coefficients. Since the domain is irregular, an adaptive sampling 
scheme can be a good strategy to add samples until the uncertainty reaches an acceptable level. 
 Low dimension with low noise: The second condition is the case of low dimension with a low level 
of noise. This corresponds to the case when the QoI depends on two or three input variables, but the level 
of noise in experiments is low. In such a case, the focus is on the accuracy of the surrogate rather than 
reducing prediction variance. When the design space is box-like, the minimum bias design, LHS design, 
and orthogonal arrays would be good choices for DoE. The LHS design can fill the low-dimensional 
space with a small number of samples. The orthogonal arrays can capture the trend of all design variables 
with a reasonably small number of samples. When the design space is irregular, MCS might be a good 
choice by removing samples that belong outside of the design space.  
 High dimension with high noise: This would be considered the most challenging case because it is 
difficult for samples to fill the design space, and the experimental result at each sample location is not 
accurate. When the design space is box-like, it would be good to use CCD, block design, and fractional 
factorial design. CCD would be a good choice if the number of design variables is not too many (i.e., 𝑛 ൌ
5~7) because the number of samples would be too many compared to the regression coefficients for large 
𝑛. For a large number of variables, block design or fractional factorial design are the only practical 
methods, but both may come with a large extrapolation region. For irregular domains, D-optimal and A-
optimal designs are recommended using the adaptive sampling option.  
 High dimension with low noise: When the number of input variables is large, but simulations and/or 
experiments are relatively accurate, it is better to use space-filling DoEs, such as LHS design. Especially, 
it would be good to use maximizing the minimum distance option in LHS design. However, due to the 
curse of dimensionality, it is inevitable to accept a large portion of the extrapolation region in DoE, which 
can lead to a large prediction variance.  
 

Good practices of designs of experiments 
 Although it is possible to choose different DOE methods as we discussed in this section, there are 
several good practices to follow in general.  
 
1. It is always good to normalize the design space to െ1 ൑ 𝑥௞ ൑ 1 such that the design space is a hyper-
cube. Theoretically, it is possible to have an arbitrary range of design variables. However, when the 
ranges of design variables are significantly different, a numerical difficulty can occur. For example, let us 
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consider the case that both Young’s modulus and Poisson’s ratio are design variables. In the MKS unit 
system, Young’s modulus of metal is in the order of 10ଵଵ Pa, while the Poisson’s ratio is 0 ൏ 𝜈 ൏ 0.5. 
Such a huge difference makes it difficult for measuring distance between sample locations. Therefore, it 
would be better to normalize all design variables with the same range using Eq. (3.2). When a design 
variable does not have lower- and/or upper-bounds, it is still required to select low or high values for the 
bounds. If a design variable varies different orders of magnitude, it is possible to use logarithmic scale. 
 
2. Similar to the normalization of design variables, it would be better to normalize QoI using Eq. (3.6), 
where the range of QoI becomes 0 ൑ y ൑ 1. If the QoI that is approximated varies over many orders of 
magnitudes, it would be better to use logarithm of function or similar transformation so that the region of 
small values of QoI is not ignored due to large values of QoI. 
 
3. If the design space is a box-like domain, it would be better to use a well-known pattern of sampling 
methods, such as the central composite design or fractional factorial design. These methods are well 
established along with in-depth error analysis. 
  
4. The most difficult part of design of experiments is the curse of dimensionality. Working with five 
design variables is much easier than six variables. Therefore, it is recommended to reduce the design 
domain and the number of design variables as much as possible. Not all variables significantly affect the 
QoI. Therefore, it would be better to fix those variables that do not change the QoI significantly. 
Sensitivity analysis or parameter study can be used to identify important/significant variables. 
 
5. As discussed in Chapter 2, the number of samples should be large enough so that the surrogate fitting 
process satisfies the regression property. In the case of polynomial response surfaces in Chapter 2, it is 
recommended that the number of samples should be at least two- or three times more than that of 
unknown model parameters. If the number of samples is not large enough, it is possible that the surrogate 
fits noise, not the trend. This phenomenon is called over-fitting. 
 
6. The basic assumption of polynomial response surfaces is that the functional form is correct, while 
samples have noise. Therefore, it would be best to start with an accurate functional form. Any domain 
knowledge or prior experience would be useful to find an appropriate functional form. Also, it would be a 
good strategy to start with a high-order polynomial and remove unimportant basis progressively. If the 
functional form of the surrogate model is significantly different from the true function, the estimated noise 
standard deviation includes not only the noise in data but also the bias error of the model. 
  
7. When backward elimination process is applied, it would be better to remove those coefficients that 
have low t-statistics. Also, during the backward elimination process, it would not be a good idea to 
eliminate more than one coefficient at a time. This is because the other coefficient might be significant 
after the previous coefficient is eliminated. 
 
3.6.Exercise 

 
1. Consider a surrogate model 𝑦ොሺ𝑥ሻ ൌ 𝑏ଵ ൅ 𝑏ଶሺ𝑥 ൅ 1ሻ ൅ 𝑏ଷሺ𝑥 ൅ 2ሻଶ with design space 𝑥 ∈ ሾെ2,2ሿ. Five 

samples are given to fit the surrogate: ሺെ2, െ1ሻ, ሺെ1, െ0.05ሻ, ሺ0, 1ሻ, ሺ1, 2ሻ, ሺ2, 3.5ሻ. (a) Fit the 
surrogate to the samples as they are. (b) Scale the input variables and output QoIs and then fit the 
surrogate to the samples. Check if the two surrogates are identical or not. 
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2. Consider the problem of fitting a linear PRS 𝑦ොሺ𝐱ሻ ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥ଵ ൅ 𝑏ଷ𝑥ଶ ൅ 𝑏ସ𝑥ଷ to samples in the 
square domain െ1 ൑ 𝑥ଵ, 𝑥ଶ, 𝑥ଷ ൑ 1. Compare the maximum value of the prediction variance of the full 
factorial design (samples at all eight vertices) with that of two-dimensional linear PRS in Example 
3-2. 

3. Find the maximum prediction variance in the unit cube for a linear PRS, when the samples are given in 
the four points ሺെ1, െ1, െ1ሻ, ሺെ1, െ1,1ሻ, ሺെ1,1, െ1ሻ, ሺ1, െ1, െ1ሻ. Compare this result with that of 
Exercise Problem 2. 

4. In Example 3-2,  it was shown that the two-level full-factorial design in a two-dimensional problem is 
an orthogonal design and the prediction variance is minimum at the origin. Show the same conclusion 
holds for a three-dimensional problem. 

5. In a three-dimensional design space, four non-planar samples are the minimum number of samples to 
define a simplex. Show that the following four samples yield an orthogonal design for a linear PRS 
and calculate the minimum and maximum standard error of prediction: 𝐱ଵ ൌ ሺെ1, െ 1, 1ሻ, 𝐱ଶ ൌ
ሺ1, െ 1, െ1ሻ, 𝐱ଷ ൌ ሺെ1, 1, െ1ሻ, 𝐱ସ ൌ ሺ1, 1, 1ሻ.  

6. In one-dimensional linear PRS, show that the two samples 𝑥ଵ ൌ െ𝛼 and 𝑥ଶ ൌ 𝛼 , 𝛼 ൐ 0, produce an 
orthogonal design. Discuss the value of 𝛼 when the standard error of prediction can be minimized. 

7. In Example 3-3, the three samples are given at ሺ𝛼ඥ3/2, െ𝛼/√2ሻ, ሺെ𝛼ඥ3/2, െ𝛼/√2ሻ, ሺ0, 𝛼√2ሻ with 
𝛼 ∈ ሾ0.1, 1.5ሿ. Show that these samples yield an orthogonal design. Plot the minimum and maximum 
standard error of prediction as a function of 𝛼.  

8. For two-dimensional quadratic PRS, use the three-level full-factorial design to calculate the minimum 
and maximum standard error of prediction and stability ratio.  

9. In Example 3-5, vary the location of axial point 𝛼 ∈ ሾ1.0,1.7ሿ in the increment of 0.1 and plot 𝜎௬
௠௜௡ 

and 𝜎௬
௠௔௫ as a function of 𝛼 when 𝑛௖ ൌ 1.  

10. Repeat Problem 9 when 𝑛௖ ൌ 5.  
11. For the face-center CCD design shown in Figure 3-7, calculate the minimum and maximum standard 

error of prediction along with its stability.  
12. For the three-dimensional central composite design with 𝑛௖ ൌ 1, calculate the minimum and 

maximum of the standard error of prediction along with its stability.  
13. For the three-dimensional block design shown in Figure 3-8, calculate the minimum and maximum 

standard error of prediction along with its stability. Compare the results with that of the central 
composite design in Exercise Problem 12. 

14. Find the maximum prediction variance in the unit cube for a linear polynomial, when the data is given 
in the four points ሺ1,1, െ1ሻ, ሺ1,1,1ሻ, ሺ1, െ1, െ1ሻ, ሺെ1,1, െ1ሻ. 

15. Repeat Problem 14 when samples are given in the four points ሺെ1, െ1, െ1ሻ, ሺെ1, െ1,1ሻ,
ሺെ1,1, െ1ሻ, ሺ1, െ1, െ1ሻ. 

16. When the first data point is given by ሺെ1, െ1ሻ, find additional two points in the unit square that will 
minimize the maximum prediction variance in the unit square for a linear response surface. 

17. Find the three points in the unit square that will minimize the maximum prediction variance in the 
unit square for a linear response surface. 

18. For Example 3-11, find the maximum prediction variance for the minimum bias designs and compare 
it to that of the full factorial design.  

19. Construct a minimum-bias central composite design by finding 𝛼 that minimizes the maximum 
standard error of prediction. Use 𝑛௖ ൌ 1. 

20. A linear response surface 𝑦ොሺ𝐱ሻ ൌ 𝑏ଵ𝑥ଵ ൅ 𝑏ଶ𝑥ଶ is fit using the following 4 DOEs: ሺെ1, െ1ሻ, ሺ1, െ1ሻ,
ሺെ1,1ሻ and ሺ1, 𝑝ሻ. (a) Determine unknown െ1 ൑ p ൑ 1 using the D-optimality criterion. (b) 
Calculate the prediction variance at the center location ሺ0,0ሻ.  
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21. Three LHS samples are given in the form of a definition matrix for two uniformly distributed 
variables 𝑥ଵ and 𝑥ଶ. The design space is given as 𝑥ଵ, 𝑥ଶ ∈ ሾ0,1ሿ. (a) Draw the intervals of the 
variables and one realization of this design, using the maximum minimum distance criterion to place 
them well in the cells. (b) Give the coordinates of these points and the value or the criterion. 

൥
1 2
2 3
3 1

൩ 

22. Find the minimum and maximum standard error of prediction for the orthogonal design given in 
Figure 3-18(b) when a linear PRS is used. 

23. Show that the four points: ሺേ0.1876, േ0.7947ሻ constitute a  minimum bias design for the one-
dimensional response surface 𝑦 ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥 ൅ 𝑏ଷ𝑥ଶ on the interval ሺെ1,1ሻ. Assume that the true 
model is a cubic polynomial. 

24. Find the D-optimal design for the one-dimensional response surface 𝑦 ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥 on the interval 
ሺെ1,1ሻ using 3 points. You can assume that 2 of the three points are 𝑥 ൌ 1 and 𝑥 ൌ െ1. 

25. For a linear model, with tests conducted at three vertices of the unit square ሺെ1,1ሻ, ሺ1, െ1ሻ, ሺെ1, െ1ሻ, 
verify that the prediction variance is given as Varሾ𝑦ሿ ൌ 𝜎ଶሺ1 ൅ 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଵ

ଶ ൅ 𝑥ଵ𝑥ଶ ൅ 𝑥ଶ
ଶሻ/2. Hint: 

You do not need to invert the matrix XTX. You can extract that matrix from the expression for the 
variance so that you will just need to check that it is the correct inverse 

26. If the region of interest includes only the triangle defined by the 3 points in Problem 25, formulate the 
optimization problem of finding the maximum variance in the triangle. Find where the variance is 
maximal in the triangle and check your answer from the Kuhn-Tucker conditions of the optimization 
problem you formulated. If you can add one more experiment, where would you add it to reduce the 
maximum prediction variance in the triangle. 

27. You need to fit a linear function 𝑦 ൌ 𝑏ଵ ൅ 𝑏ଶ𝑥 to data. You can run experiments in the interval 
ሺെ1,1ሻ, but you are interested only in results in the interval ሺെ1,0.5ሻ. For 3 experiments, find the D-
optimal design, and find the equations that the coordinates of the points need to satisfy for a minimum 
bias design. Find the minimum bias design, and compare the two for the function 𝑦 ൌ 𝑒௫ in the 
interval ሺെ1,0.5ሻ. 

28. A response surface can be constructed for the purpose of predicting the results of future experiments 
or for the purpose of evaluating some physical constants (that is the coefficients in the response 
surface could be these constants). In addition, a response surface could be constructed under 
conditions of high experimental noise or conditions of large modeling errors (the assumed model 
being different from the true model). Please indicate which optimality criterion you will use for 
selecting experimental points for each one of the four possible combinations of these conditions: (a) 
Physical constants, high noise. (b) Physical constants, large modeling error. (c) Predicting future 
experiments, high noise. (d) Predicting future experiments, large modeling error. 

 
 

 


