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4. Optimization Definition and Formulation 
 
4.1. Introduction 

 In Part 1 of this book, we discussed the basics of surrogate modeling using polynomial response 
surfaces. In most engineering applications, surrogate modeling is not a goal but a tool. The purpose of 
surrogate modeling is to construct an approximate model such that the cost of experiments or simulations 
can be reduced in subsequent analysis. Therefore, the effectiveness of a surrogate model is increased 
when an application requires numerous experiments or simulations with different values of input 
variables. Common applications include design optimization and uncertainty quantification, where 
hundreds or thousands of simulations are required. This book focuses on design optimization, where input 
variables represent design variables, and the quantity of interest (QoI) is either the objective or constraint 
function. Since an approximate model is used, it is referred to as surrogate-based analysis and 
optimization (SBAO) in this text. In addition to saving computational time, surrogates also allow for the 
optimization of applications with non-smooth or noisy responses and can provide insight into the nature 
of the design space [38].  
 In order to understand the basic procedure and concept of SBAO, it would be necessary to discuss 
design optimization first. Part 2 of this book will discuss the fundamentals of design optimization. The 
contents of this part are by far brief and incomplete. We will define basic terminologies that are used in 
design optimization and basic algorithms to solve optimization problems. For a comprehensive 
understanding of design optimization, users are referred to the books of Arora [39] and Haftka and Gürdal 
[40]. 
 As a first step toward design optimization, this chapter will present the definition of design 
optimization, optimization formulation, and optimality criteria. First, we will define the design 
optimization definition in Section 4.2, where various terminologies in optimization are defined. The 
definition of an optimization problem boils down to defining design parameters, objective functions, and 
constraint functions. When the number of design variables is less than two, graphical optimization is also 
presented. In Section 4.3, the standard form of an optimization problem is introduced, which makes it 
possible for engineers to focus on solving optimization problems in a unified fashion. The concept of 
convexity is briefly introduced as well, which can guarantee the global optimum design. In Section 4.4, an 
important topic of optimality criteria is presented, which leads engineers to find an optimum design. In 
practice, optimality criteria are used to determine if a given design is an optimum design or not.  
 
4.2. Design optimization definition 

 Design is a procedure to improve or enhance the performance of a system by changing its parameters. 
In the previous chapters, the performance of a system is referred to as a quantify of interest (QoI). A QoI 
can be quite general in engineering fields and can include: the weight, stiffness, and compliance of a 
structure; the fatigue life of a mechanical component; the noise in the passenger compartment; the 
vibration level; the output power of a generator; the safety of a vehicle in a crash, etc. However, aesthetic 
measures such as whether a design is attractive to customers are not considered. All QoIs are presumed to 
be measurable quantities. System parameters are variables that a design engineer can change during the 
design process. For example, the thickness of a vehicle body panel can be changed to improve vehicle 
performance. The cross-section of a beam can be changed in designing bridge structures. System 
parameters that can be changed during the design process are called design variables. 
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Design optimization process 
 The engineering design of a system in the simulation-based design process consists of design problem 
formulation, mathematical modeling, parameterization, simulation, and optimization. Figure 4-1 is a flow 
chart of the design optimization process in which computational simulation and mathematical 
programming (optimization algorithm) play essential roles. The success of the system-level, simulation-
based design process strongly depends on consistent design parameterization, an accurate simulation, and 
an efficient mathematical programming algorithm. 
 

 
Figure 4-1: Flowchart of the design optimization process.  
 
 A design engineer simplifies a physical engineering problem into a mathematical model that can 
represent the physical problem up to the desired level of accuracy. A mathematical model has parameters 
that are related to the parameters of the physical problem. Among them, the design engineer identifies 
those design variables to be used during the design process. Design parameterization, which allows the 
design engineer to define the properties of each design component of the system being designed, is one of 
the most important steps in the design process. The principal role of design parameterization is to define 
the system parameters that characterize the system model and to collect a subset of the parameters as 
design variables. Design parameterization forces engineering teams in design, analysis, and 
manufacturing to interact at an early design stage, and supports a unified design variable set to be used as 
the common ground to carry out all simulations, design, and manufacturing processes. Only proper design 
parameterization will yield a good optimum design since the optimization algorithm will search within a 
design space that is defined for the design problem. The design space is defined by the type, number, and 
range of design variables.  
 Simulation can be carried out using experiments on an actual or reduced scale, which is a 
straightforward and still prevalent method for industrial applications. However, the expense and the 
inefficiency involved in fabricating prototypes make this approach difficult to apply. An analytical model 
may resolve these difficulties since it approximates the physical problem as a mathematical model and 
solves it in a simplified form. However, the analytical method has limitations even for very simple 
problems. With the emergence of various computational capabilities, most analytical approaches to 
mathematical problems have been converted to numerical approaches, which can solve very complicated, 
real engineering applications. Finite element analysis (FEA), boundary element analysis, and 
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computational fluid dynamics (CFD) are a short list of numerical tools used in engineering analysis. 
However, the numerical models themselves can be computationally expensive and may include numerical 
errors. The main purpose of surrogate modeling is to replace the numerical simulation with a surrogate 
model such that the computational cost can be reduced significantly. 
 The selection of a design space and an analysis method must be carefully determined since the 
analysis, both in terms of accuracy and efficiency, must be able to handle all possible designs in the 
chosen design space. That is, the larger the design space, the more sophisticated the analysis capability 
must be. For example, if larger shape design changes are expected during design optimization, mesh 
distortion in FEA could be a serious problem and a finite element model that can handle large shape 
design changes must be used. 
 A performance measure in a simulation-based design is the result of numerical simulations. Based on 
the evaluation of simulation results, such engineering concerns as high stress, clearance, natural 
frequency, output torque, or mass can be identified as performance measures for design improvement. 
Typical examples of performance measures are mass, volume, displacement, stress, compliance, buckling, 
natural frequency, noise, fatigue life, and crashworthiness. It is expected that the users should define all 
relevant performances that are of concern during the design process. 
 Cost and constraints can be defined by combining certain performance measures with appropriate 
constraint bounds for interactive design optimization. The cost function, sometimes called the objective 
function, is minimized (or maximized) during optimization. The selection of a proper cost function is an 
important decision in the design process. A valid cost function has to be influenced by the design 
variables of the problem; otherwise, it is not possible to reduce the cost by changing the design. In many 
situations, an obvious cost function can be identified. In other situations, the cost function is a 
combination of different performance measures. This is called multi-objective cost functions. The 
contribution of different cost functions must be either weighted or traded-off.  
 Constraint functions are the criteria that the system has to satisfy for each feasible design. Among all 
design ranges, those that satisfy the constraint functions are candidates for the optimum design. For 
example, a design engineer may want to design a bridge whose weight is minimized and whose maximum 
stress is less than the yield strength. In this case, the cost function, or weight, is the most important 
criterion to be minimized. However, as long as stress, or constraint, is less than the yield strength, the 
stress level is not important. 
 Once the design variables, cost, and constraint functions are defined, an optimization engine starts 
changing the design variables to find the best cost function that satisfies all constraint functions. This is an 
iterative process, which requires numerous evaluations of functions. Surrogate models can play a critical 
role in this stage to approximate the expensive function evaluations with cheap surrogate models. In 
general, optimization algorithms are categorized into gradient-based and gradient-free algorithms. Most 
gradient-based optimization algorithms are based on the mathematical programming method, which 
requires the function values and gradient (i.e., sensitivity) information at given design variables. For a 
given design variable that defines the numerical model, simulation provides the values of the cost and 
constraint functions for the algorithm. The sensitivities of the cost and constraint functions must also be 
supplied to the optimization algorithm. Then, the optimization algorithms calculate the best possible 
design for the problem. Chapter 5 will introduce several numerical optimization algorithms. Each 
algorithm has its own advantages and disadvantages. The performance of an optimization algorithm 
critically depends on the characteristics of the design problem and the types of cost and constraint 
functions. Since most gradient-based algorithms try to improve the design by searching nearby designs 
starting from the current design using gradient information, the search is limited to finding local minima. 
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In addition, the mathematical programming algorithms assume that both the cost and constraint functions 
are smooth and continuous functions of design variables. 
 The main difference between gradient-based and gradient-free algorithms is the requirement of 
gradient information, which tends to be expensive and sometimes difficult to calculate. The gradient-free 
algorithms explore the design space to find a better design. Therefore, they have a better chance to find 
the global minimum. However, there is no guarantee that gradient-free algorithms can find the global 
minimum. The main bottleneck of gradient-free algorithms is that the number of function evaluations is 
often too many, which is the main advantage of surrogate modeling. Therefore, gradient-free algorithms 
are popular in conjunction with surrogate models. In Chapter 6, several popular gradient-free optimization 
algorithms will be introduced, such as the genetic algorithm, particle swarm optimization algorithm, and 
direct search algorithm. 
 

Design variables and feasible domain 
 Design variables are those system parameters that design engineers want to change during the 
optimization process. Theoretically, any system parameter can be a design variable, but the process and 
performance of optimization strongly depend on the types of design variables. The optimization engine 
generates a set of design variables that require performance values from simulation and sensitivity 
information to find an optimum design. Thus, the numerical model has to be updated for a different set of 
design variables supplied by the optimization engine. If the cost function reaches a minimum with all 
constraint requirements satisfied, then an optimum design is obtained. 
 Common design variables include material properties, boundary and loading conditions, the thickness 
of a plate, cross-sectional dimensions of a beam, and the shape of a domain. Many design variables are 
related to the geometry of a system, but there are also mathematical quantities, such as the stiffness of a 
spring, and the damping coefficient of a dashpot, which can be served as design variables. From the 
perspective of mathematical programming, the most important characteristic of design variables is 
continuous or discrete. A continuous design variable can take any value between the lower- and upper-
bounds in real space. However, discrete variables can only take a specific set of candidates. For example, 
if the number of students is a design variable, then it is inherently a discrete variable. Another important 
characteristic of design variables is independence; That is, design engineers can change all design 
variables independently. A common example is shown in Figure 4-2, where the cross-sectional 
dimensions of the tube are defined as design variables. In this case, three variables, 𝑟௢, 𝑟௜, and 𝑡, are not 
independent because there exists a relationship 𝑡 ൌ 𝑟௢ െ 𝑟௜. Therefore, design engineers cannot change all 
three variables independently.  
 

 
Figure 4-2: Independence of design variables.  
 
 The purpose of an optimization problem is to find the best design among many possible candidates. 
For this reason, design engineers have to specify the best possible design as well as the best possible 
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candidates. Although the design space is given, not all designs in the design space can be a candidate 
because some of them may not satisfy constraints. The subset of design space that satisfies all constraints 
is called a feasible set. Mathematically, the feasible set 𝑆 is defined as 

𝑆 ൌ ሼ𝐱 | 𝐱 satisfies all constraintsሽ (4.1)

A possible candidate must exist within a feasible design region to satisfy problem constraints. Every 
design in the feasible region is an acceptable design, even if it is not the best one. The best design is 
usually the one that minimizes (or maximizes) the cost function within the feasible set. Thus, the goal of 
the design optimization problem is to find a design that minimizes the cost function among all feasible 
designs.  
 
Example 4-1 
In Chapter 2, we discussed the least-squares method, where the error between the samples and surrogate 
prediction is minimized. This is indeed an optimization problem. Consider fitting the stress-strain 
relationship 𝜎 ൌ 𝐸𝜖 using the following three measured samples: 
 

Strain ሺ𝜇𝜖ሻ 1 2 4 

Stress ሺ𝑘𝑠𝑖ሻ 1 2 3 

 
Find Young’s modulus 𝐸 which minimizes the difference between the samples and the model using (a) 
the maximum difference and (b) the root-mean-squares (RMS) difference. 
 
Solution: 
The goal is to find Young’s modulus 𝐸 which minimizes the differences between the samples and the 
model. In this case, the design variable is Young’s modulus 𝐸, and the objective function is the goodness 
of fit. For a given Young’s modulus 𝐸, it is possible to define three errors between the samples and the 
curve. It is clear when we say the best fit, we want all three errors to be small. However, if we want a 
single measure of goodness, we need to obtain a single measure of the smallness of the three errors. As 
we discussed in Chapter 2, different measures can be used for the goodness of fit. Therefore, the 
following two different optimization problems can be formulated: 

Maximum 
difference 

𝑑௠௔௫ሺ𝐸ሻ ൌ max
௜ୀଵ,ଶ,ଷ

|𝜎௜ െ 𝐸𝜖௜| 

RMS 𝑑ோெௌሺ𝐸ሻ ൌ ඨ
ଵ
ଷ

෍ሺఙ೔ିாఢ೔ሻమ

య

೔సభ

 

 (a) In the case of maximum difference, the minimum 𝑑௠௔௫ሺ𝐸ሻ occurs when the maximum positive 
difference is in equal magnitude with the maximum negative difference. For the given samples, this 
occurs between the second and the third samples (the difference in the first sample is always less than that 
of the second sample). Therefore, the minimum 𝑑௠௔௫ሺ𝐸ሻ occurs when 2 െ 2𝐸 ൌ െሺ3 െ 4𝐸ሻ, which 
yields 𝐸௠௔௫ ൌ 5/6 𝑘𝑠𝑖/𝜇𝜖. 
 
 (b) In the case of RMS difference, the square of 𝑑ோெௌ can be written as 

𝑑ோெௌ
ଶ ሺ𝐸ሻ ൌ

1
3

ሾሺ1 െ 𝐸ሻଶ ൅ ሺ2 െ 2𝐸ሻଶ ൅ ሺ3 െ 4𝐸ሻଶሿ ൌ
1
3

ሺ14 െ 34𝐸 ൅ 21𝐸ଶሻ 
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The 𝑑ோெௌ
ଶ ሺ𝐸ሻ has its minimum when its derivative with respect to 𝐸 becomes zero; that is, 𝐸ோெௌ ൌ

17/21 𝑘𝑠𝑖/𝜇𝜖. 
 It is noted that the two formulations yield different optimum designs. Therefore, it is important to 
define the cost function carefully as the optimum design depends on how the cost function is defined. In 
practice, the RMS difference is popular because the cost function is a smooth (nonlinear) function of 
design variables such that the maximum/minimum can be found using gradient information. Figure 4-3 
shows the optimization results using the two different cost functions. 𝐸ோெௌ is slightly lower than 𝐸௠௔௫ 
because the first data does not have any role in the maximum difference cost function. Also, the figure 
shows that 𝑑௠௔௫ is not continuous at the optimum design, while 𝑑ோெௌ is continuous. The following 
Matlab code is used to generate the plot in Figure 4-3: 

eps=[1 2 4]; sig=[1 2 3]; 

e=linspace(0.5,1,101); 

sigmodel=e'*eps; 

sigr=ones(101,1)*sig; 

diff=abs(sigr-sigmodel);  maxdiff=max(diff'); 

sumsquares=diag(diff*diff');  rms=sqrt(sumsquares/3); 

plot(e,maxdiff); xlabel('E'); ylabel('cost function') 

hold on;  plot(e,rms,'r-'); legend('max error','RMS 

error','Location','North') 

 

 
Figure 4-3: Stress-strain curve and the variation of the cost function.  
 

 
Example 4-2 
The weight and value of the five items are shown in the table. We want to put items in the knapsack to 
maximize the total value while the total weight is less than 20 lbs. Define the optimization problem; i.e., 
define design variables and cost function. 
 

Item 1 2 3 4 5 

Weight (lb) 4 6 7 10 3 

Value ($) 12 12 12 27 5 

 
Solution: 
In this case, design variables would be if an item is chosen or not. Therefore, the design variables are not 
continuous, but discrete. Indeed, design variables are binary. If 𝑖th item is chosen, the design variable 
𝑥௜ ൌ 1, otherwise, 𝑥௜ ൌ 0. The cost function is the total value of the chosen items. However, since the 
total weight must be less than 20 lbs, the cost is reduced by $10 if the total weight is over 20 lbs. This 
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obviously may not prevent the total weight of over 20 lbs, but we will use this approach for the moment. 
Therefore, the objective function can be written as 

maximize
௫೔∈ሺ଴,ଵሻ

  value ൌ 12ሺ𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷሻ ൅ 27𝑥ସ ൅ 5𝑥ହ 

                                               െ10 ൈ sgnሺ4𝑥ଵ ൅ 6𝑥ଶ ൅ 7𝑥ଷ ൅ 10𝑥ସ ൅ 3𝑥ହ െ 20ሻ 
where sgnሺሻ is a signum function, whose value is one if the argument is greater than zero, otherwise zero. 
 

 
 The previous two examples are referred to as unconstrained optimization because the optimization 
problem has only an objective function, but no constraints. Of course, there is a constraint for a design 
variable, such as binary design or lower- and upper-bounds of design variables. However, these types of 
constraints can be handled directly when the design variable is changed. Therefore, they are referred to as 
side constraints. 
 The condition of the total weight being less than 20 lbs in Example 4-2 can be written in the form of 
a constraint. In this case, the constrained optimization problem can be written as 

maximize
௫೔∈ሺ଴,ଵሻ

  value ൌ 12ሺ𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷሻ ൅ 27𝑥ସ ൅ 5𝑥ହ 

subject to  4𝑥ଵ ൅ 6𝑥ଶ ൅ 7𝑥ଷ ൅ 10𝑥ସ ൅ 3𝑥ହ ൑ 20                       
 In practice, there are many different ways of formulating an optimization problem. For example, the 
optimization problem in Example 4-1 yields a smooth objective function in the case of RMS difference. 
However, in the case of maximum difference, the objective function becomes non-smooth. To avoid a 
non-smooth objective function, we can add a bound design variable 𝛼, as well as error bound constraints, 
such that the following constrained optimization problem is equivalent to the one that was defined in 
Example 4-1: 

minimize
ఈ,ா

𝛼  

subject to െ 𝛼 ൑ 𝜎௜ െ 𝐸𝜖௜ ൑ 𝛼,   𝑖 ൌ 1,2,3 
The optimization problem has three constraints. It is noted that the objective function is equal to one 
design variable, 𝛼, and the other variable 𝐸 appears only in the constraints. It is also noted that both the 
objective and constraint functions are smooth and linear. Since we know the sign of the differences, we 
can rewrite the optimization problem as 

minimize
ఈ,ா

  𝛼   (4.2)

subject to 𝜎ଵ െ 𝐸𝜖ଵ ൑ 𝛼, 𝜎ଶ െ 𝐸𝜖ଶ ൑ 𝛼, 𝜎ଷ െ 𝐸𝜖ଷ ൒ െ𝛼 
Therefore, by introducing an additional variable, 𝛼, it is possible to make the objective and constraint 
functions smooth. We will discuss how to define an optimization problem in Section 4.3 in detail.  
 

Graphical optimization 
 In general optimization problems, it is difficult to see the relationship between objective and 
constraint functions with respect to design variables because the number of design variables is usually 
large. Therefore, visualizing objective and constraint functions in high dimensions is a challenging task. 
However, when the number of design variables is one or two, it is possible to plot the objective and 
constraint functions and find the optimum design graphically. Since graphical optimization plots all 
functions in the entire design space, it is expensive but helps to visualize the design space and to 
understand the nature of the design problem. The procedures of graphical optimization are as follows: 
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 Draw the design space (lower- and upper-bounds of design variables) 

 Plot constraints on the graph and find the feasible set 

 Plot contour lines of the objective function 

 Find the optimum point (the objective function has the lowest value within the feasible set) 

 
 The following example illustrates the graphical optimization for finding Young’s modulus in 
Example 4-1 using the constrained optimization problem in Eq. (4.2). 
 
Example 4-3 
Find the optimum Young’s modulus of Example 4-1 using the constrained optimization problem in Eq. 
(4.2). 
 
Solution: 
The optimization problem in Eq. (4.2) is linear in the sense that both the objective function and constraint 
functions are linear functions of design variables. The three inequality constraints are shown in Figure 4-4 
where colored lines are constraint boundaries with hatching marking the region where the constraint is 
violated. This is a standard way of marking an inequality constraint. The feasible set 𝑆 is defined as the 
area that satisfies all constraints. Since the objective function is equal to 𝛼, there is no need for objective 
function contours. Within the feasible set, the optimum design that minimize 𝛼 is the lowest point in the 
vertical axis, which is Point A in the figure. At optimum design, 𝐸 ൌ 5/6 and the maximum error 
𝑑௠௔௫ ൌ 1/3. 
 It is seen that there are two active constraints at the optimum design at Point A; they are second (red) 
and third (green) constraints. It is easy to check that the error at the first constraint is half of that of the 
second constraint for any value of 𝐸, so that constraint is not binding. The optimum is found therefore at 
the intersection, where the differences between the model and the second and third constraints have the 
same magnitude and opposite signs. 
 

 

 
Figure 4-4: Graphical optimization of finding Young’s modulus.  
 

 
 Graphical optimization can provide additional benefits in understanding the optimization problem at 
hand. When the feasible domain is not well-defined, the optimization problem can have a problem. These 
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problems are often difficult to identify in a high-dimensional design space. However, using graphical 
optimization, the design space along with all constraints can be visualized, from which possible problems 
in the feasible domain can be identified first. The possible problems that are related to the feasible domain 
are (a) problems with unbounded feasible regions, (b) problems with multiple optima, (c) problems with 
empty feasible regions, and (d) problems with no active constraints. Figure 4-5 shows some examples of 
problems related to the feasible regions. The blue lines are the contour of the objective function whose 
values decrease in the direction of Δ𝑓 ൏ 0. The red lines are the constraint bounds where the design 
becomes infeasible on the hatched side. In Figure 4-5(a), the objective function is reduced as the design 
moves away from the constraint bounds. Therefore, in this problem, the optimum solution is unbounded, 
and the constraints do not play any role in the optimization problem. In Figure 4-5(b), two constraints 
conflict with each other, and there is no feasible domain at all. In this case, there is no optimal solution 
exists. The last difficulty in Figure 4-5(c) is when the contour line of the objective function is parallel to 
the constraint bound. In this case, all designs along the line PQ can be optimum designs as the objective 
function has the same value along the line. 
 

 
Figure 4-5: Examples of problems with feasible domains.  
 
4.3. Optimization problem formulation 

 Optimization exists in almost all engineering applications. Therefore, instead of developing 
optimization procedures for different applications, it makes sense to develop a unified optimization 
procedure that can be used for any application. Such unification can be possible by defining the standard 
form of optimization problem formulation. We first present the three-step optimization problem 
definition, which defines the three ingredients of optimization problems. Next, the standard form of an 
optimization problem is presented. As long as an optimization problem can be written in the standard 
form, the subsequent optimization procedures can be applied independently of applications. Lastly, the 
convex optimization problem is presented, which is an important property of an optimization problem.  
 

Three-step problem definition 
 Most engineering optimization problem formulation can be achieved in three steps: design 
parameterization, defining an objective function, and defining constraint functions. Design 
parameterization is to define/select design variables from system parameters. Although any parameter can 
be selected as a design variable, it is important to identify design variables clearly. In addition, as 
mentioned in the previous section, it is important that all design variables can maintain independence. In 
this text, the vector of design variables is defined as 𝐱 ൌ ሼ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡ሽ், where 𝑛 is the dimension of 
design variables. In general, design variables can be discrete or continuous. However, in the context of 
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surrogate modeling, since a surrogate model assumes that input variables are continuous and the QoI is a 
smooth function of input variables, design variables are considered continuous as well. In order to define 
the design space, it would be necessary to specify the lower- and upper-bounds of each design variable. 
These bounds are specified by side constraints, 𝐱௅ ൑ 𝐱 ൑ 𝐱௎, where 𝐱௅ and 𝐱௎ are, respectively, the 
lower- and upper-bounds of design variables.  
 An objective function must be a function of design variables. In the context of surrogate modeling, 
the objective function is a continuous and smooth function of design variables. In general, the objective 
function can be minimized or maximized. However, in the standard form of optimization, it is assumed 
that the objective function is minimized during the optimization process. When an objective function is 
supposed to be maximized, the negative objective function is minimized instead. That is,  

maximize
𝐱

𝐹ሺ𝐱ሻ → minimize
𝐱

𝑓ሺ𝐱ሻ ൌ െ𝐹ሺ𝐱ሻ 

 Constraint functions can be given in the form of equality or inequality constraints. The functional 
requirements of constraint functions are identical to that of the objective function: dependence on design, 
smoothness, and continuity. The standard form of inequality constraint is less than or equal to zero. That 
is, 𝑔ሺ𝐱ሻ ൑ 0. However, many engineering applications have constraints in the form that the constraint 
function is less than (or larger than) a threshold. In such a case, the constraint can be converted into  

𝑔ሺ𝑥ሻ ൑ 𝑔௠௔௫ → 𝑔ሺ𝑥ሻ െ 𝑔௠௔௫ ൑ 0
𝑔ሺ𝑥ሻ ൒ 𝑔௠௜௡ → 𝑔௠௜௡ െ 𝑔ሺ𝑥ሻ ൑ 0 

The standard form of equality constraint is ℎሺ𝐱ሻ ൌ 0. If the right-hand side is not zero, a similar 
conversion as in the inequality constraint can be done. Although there is no limit to the number of 
inequality constraints, the number of equality constraints must be less than the number of design 
variables.  
 

Standard form 
 From the viewpoint of algorithm development, it would be convenient if all optimization problems 
are written in a single form. Then, the developers do not need to consider solving different optimization 
problems. To facilitate the description of algorithms for solving optimization problems, there is a fairly 
standard notation for writing them. The letter 𝑓 is typically used for objective functions, 𝑔 for inequality 
constraints, and ℎ for equality constraints. Lower- and upper-bounds on design variables are often called 
side constraints and are written separately in different forms. The standard form of an optimization 
problem in this text is defined as 

minimize 𝑓ሺ𝐱ሻ
subject to 𝑔௜ሺ𝐱ሻ ൑ 0, 𝑖 ൌ 1, ⋯ , 𝐾
                 ℎ௝ሺ𝐱ሻ ൌ 0, 𝑗 ൌ 1, ⋯ , 𝑀
             𝑥௟

௅ ൑ 𝑥௟ ൑ 𝑥௟
௎, 𝑙 ൌ 1, ⋯ , 𝑛 

(4.3)

where 𝐱 ൌ ሼ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡ሽ் is the vector of design variables, 𝑓ሺ𝐱ሻ is the objective function, 
𝑔ଵሺ𝐱ሻ, ⋯ , 𝑔௄ሺ𝐱ሻ are inequality constraints, ℎଵሺ𝐱ሻ, ⋯ , ℎெሺ𝐱ሻ are equality constraints, and 𝐱௅ and 𝐱௎ are 
lower- and upper-bounds of design variables, respectively. Of course, not all optimization problems can 
be written in standard form. For a more general form of optimization problems, the readers are referred to 
the paper published by Svanberg [41]. Once the inequality and equality constraints are all defined, the 
feasible set in Eq. (4.1) can be written as 

𝑆 ൌ ൛𝐱| 𝑔௜ሺ𝐱ሻ ൑ 0, 𝑖 ൌ 1, ⋯ , 𝐾; ℎ௝ሺ𝐱ሻ ൌ 0, 𝑗 ൌ 1, ⋯ , 𝑀ൟ (4.4)
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Therefore, the optimization problem is to find the optimum design variable 𝐱∗ ∈ 𝑆 that minimizes the 
objective function 𝑓ሺ𝐱∗ሻ. 
 When an inequality constraint is strictly less than zero, i.e., 𝑔௜ሺ𝐱ሻ ൏ 0, the constraint is inactive. 
When the constraint is on the bound, 𝑔௜ሺ𝐱ሻ ൌ 0, it is active. Lastly, the constraint is violated when 
𝑔௜ሺ𝐱ሻ ൐ 0. On the other hand, an equality constraint can be either active, ℎ௝ሺ𝐱ሻ ൌ 0, or violated, ℎ௝ሺ𝐱ሻ ്
0. In general, when all constraints are linearly independent, the total number of active constraints should 
be less than or equal to the number of design variables. This can be understood from the basic law of 
linear algebra, where the number of independents equation cannot be more than the number of unknown 
variables.  
 Optimization problems can be categorized depending on the functional form of the objective and 
constraint functions. First, when both the objective function and all constraint functions are linear 
functions of design variables, it is called a linear programming (LP) problem. In such a case, many 
specialized numerical algorithms are available. A quadratic programming (QP) problem occurs when the 
objective function is a quadratic function of design variables, while all constraints are linear. As we will 
discuss in the next subsection, the global optimum design can be found when the optimization problem is 
LP or QP. When both objective function and constraint functions are a nonlinear function of design 
variables, it is called nonlinear programming (NLP) problem, which is the most general but at the same 
time most challenging to find the optimum design.  
 

Normalization 
 Even if an optimization problem is well defined in the standard form, it may cause some numerical 
difficulties to solve. This is because engineering optimization may cover a broad range of quantities of 
interest. Different objectives and constraints may have different orders of magnitude. For example, the 
allowable strength of steel is about 500 MPa, which is 5 ൈ 10଼ Pa. On the other hand, the allowable 
displacement can be in the order of 10ିଷm. When the objective and constraint functions have a huge 
difference in magnitude, the standard form has no problem from the mathematical viewpoint, but it is 
numerically difficult to handle such a huge difference in the orders of magnitude. Therefore, it makes 
sense to normalize the objective and constraints such that their magnitude is approximately in the order of 
one. For example, stress constraint is often given in the form of 𝜎௠௔௫ ൑ 𝜎௔௟௟௢௪௔௕௟௘. Then it is possible to 
normalize the constraint using 𝜎௔௟௟௢௪௔௕௟௘ and make it in the standard form as 

𝜎௠௔௫

𝜎௔௟௟௢௪௔௕௟௘
െ 1 ൑ 0 (4.5)

Since all constraints have their limits, they can be normalized using their limits. In the case of the 
objective function, it can be normalized using its initial value or using the target value. 
 
Example 4-4 
Write the standard form of the optimization problem in Example 4-3. 
 
Solution: 
The optimization problem formulation given in Eq. (4.2) is not the standard form. Without normalizing 
the objective and constraints, the standard form of the optimization problem can be written as 
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                     0.5 ൑ 𝐸 ൑ 1 

Note that the side constraint is added to limit Young’s modulus. Note that the normalization of this 
optimization problem can be tricky. Since the limit of inequality constraints, 𝛼, is not fixed but a design 
variable itself. Therefore, in this case, it would be better not to normalize the optimization problem. 
 

 
Example 4-5 
A tubular column is under the compressive load 𝑃 as shown in the figure. The height of the tube is fixed, 
and the mid radius 𝑅 and thickness 𝑡 are design variables. The goal is to minimize the weight of the tube, 
which is equivalent to the cross-sectional area of the tube. The following three failure modes are 
considered constraints. (a) Stress failure: the axial compressive stress should be less than the allowable 
strength 𝜎௔. (b) Global buckling: the tube should not buckle for the given applied load 𝑃. (c) Local 
buckling: the tube should not wrinkle into a diamond pattern as shown in the figure. The design variables 
have lower- and upper-bounds. Write the standard form of the optimization problem. 
 

   
Figure 4-6: A tube under compressive load.  
 
Solution: 
Assuming that the radius is much larger than the thickness, 𝑅 ≫ 𝑡, the cross-sectional area and the 
moment of inertial can be approximated as 𝐴 ൌ 2𝜋𝑅𝑡 and 𝐼 ൌ 𝜋𝑅ଷ𝑡. Then, the objective function can be 
defined using the density of the material and the volume of the tube as 

𝑚𝑎𝑠𝑠 ൌ 𝜌ሺℎ𝐴ሻ ൌ 2𝜋𝜌ℎ𝑅𝑡 

The equations for the three failure modes are given as 

Stress constraint: 𝜎 ൌ
𝑃

2𝜋𝑅𝑡
൑ 𝜎௔ 

Buckling load: 𝑃௖௥ ൌ
𝜋ଷ𝐸𝑅ଷ𝑡

4ℎଶ ൒ 𝑃 

Local buckling: 𝜎௦ ൌ
2𝐸𝑡

2𝑅ඥ3ሺ1 െ 𝜈ଶሻ
൑ 𝜎௔ 

Side constraints: 𝑅௠௜௡ ൑ 𝑅 ൑ 𝑅௠௔௫, 𝑡௠௜௡ ൑ 𝑡 ൑ 𝑡௠௔௫ 
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Each failure mode provides for different importance of the diameter and the thickness. The stress depends 
only on the area, which is also the objective function, and the area depends only on the product of the 
thickness and the diameter. This means that with a stress constraint only, any combination of the diameter 
and thickness that is at the stress limit 𝜎௔ will have the same weight. 
 The global buckling load depends on the Moment of inertia 𝐼 that depends on 𝐷 more strongly than 
on 𝑡. Therefore, it will drive the design toward a thin tube. Local buckling pushes in the other direction in 
that it benefits from large 𝑡 and small 𝐷. This indicates that if buckling is critical (happens if the column 
is slender enough, i.e. ℎ is large), both failure modes will happen simultaneously. 
 The standard formulation requires us to write the failure constraints so that all are of the form 
𝑔ሺ𝐷, 𝑡ሻ  ൑ 0. Therefore, the standard form of the optimization problem can be written as  
 

minimize
ோ,௧

  2𝜋𝜌ℎ𝑅𝑡

subject to  𝑔ଵሺ𝑅, 𝑡ሻ ൌ
𝜎
𝜎௔

െ 1 ൑ 0 

                     𝑔ଶሺ𝑅, 𝑡ሻ ൌ 1 െ
𝑃

𝑃௖௥
൑ 0 

                     𝑔ଷሺ𝑅, 𝑡ሻ ൌ
𝜎௦

𝜎௔
െ 1 ൑ 0 

                    𝑅௠௜௡ ൑ 𝑅 ൑ 𝑅௠௔௫, 𝑡௠௜௡ ൑ 𝑡 ൑ 𝑡௠௔௫ 

Also, all constraints are normalized by their limits. This provides a handy measure of constraint 
satisfaction. For example, if the constraint is equal to െ0.1, it tells us that we have a 10% margin between 
the response and the allowable response. If the constraint is equal to 0.05, it means we exceed the 
allowable by 5%. This normalized and non-dimensional formulation of constraints is also typically better 
for the numerical performance of optimization algorithms. That is, using an optimization routine, it is 
likely to lead to faster convergence and increase the chance that we will find the true optimum. 
 

 
Example 4-6 
A beer company wants to design a new can size so that the minimum amount of sheet metal can be used. 
This is equivalent to minimizing the manufacturing cost. The can is required to hold at least 400 ml of 
fluid. The diameter of the can should be no more than 8 cm. In addition, it should not be less than 3.5 cm 
for shipping and handling reasons. The height of the can should be no more than 18 cm and no less than 8 
cm. Write the standard form of the optimization problem and solve it using the graphical optimization 
method. 
 
Solution: 
As shown in Figure 4-7, the design variables are the diameter 𝐷 and the height 𝐻. The amount of sheet 
metal is the surface area of the can, which is 𝜋𝐷𝐻 ൅ 𝜋𝐷ଶ/2. The volume of the can is defined in terms of 
design variables as 𝜋𝐷ଶ𝐻/4. Therefore, the standard form of the optimization problem can be written as 

minimize
஽,ு

  𝜋𝐷𝐻 ൅ 𝜋𝐷ଶ/2

subject to  400 െ
𝜋𝐷ଶ𝐻

4
൑ 0  𝑐𝑚ଷ 

                     3.5 ൑ 𝐷 ൑ 8 𝑐𝑚
                     8 ൑ 𝐻 ൑ 18 𝑐𝑚 

Note that the inequality constraint is not normalized. Figure 4-7(b) shows the feasible set that satisfies the 
inequality constraint.  
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Figure 4-7: Beer can design parametrization and feasible set.  
 
The objective function is a quadratic function of 𝐷 and a linear function of 𝐻. As shown in Figure 4-8, the 
objective function gradually increases as both design variables increase. However, there is no feasible 
region for 𝑓 ൌ 200. When 𝑓 ൌ 300, the objective contour meets a corner of the feasible set the first time. 
This point ሺ𝐷, 𝐻ሻ ൌ ሺ8,8ሻ is indeed the optimum design. Therefore, the diameter is at its upper-bound, 
while the height is at its lower-bound.  
 

 
Figure 4-8: Graphical optimization of a beer can design problem.  
 

 

Convex function and convex problem 
 The optimization problem formulation defined in the previous subsection is general enough that it can 
be applied to many engineering applications. However, it does not guarantee that there is a single 
optimum design especially when the objective and constraints are a nonlinear function of design 
variables. In fact, an important challenge in numerical optimization is to find the global optimum design. 
As we will discuss in the next section, most optimization algorithms are designed to find a local optimum, 
not the global one. However, if a function is convex, it has a single minimum, and the local minimum is 
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the global minimum. Therefore, the concept of a convex function and a convex problem is important as it 
can provide a nice theoretical foundation to determine the uniqueness of the global optimum design.  
 A function is convex if a straight line connecting two points on its graph will not dip below the 
function values in between. That is, the straight line that connects two points on the function is always 
larger than the function itself. As shown in Figure 4-9(a), for 0 ൑ 𝛼 ൑ 1, 𝑥 ൌ 𝛼𝑥ሺଶሻ ൅ ሺ1 െ 𝛼ሻ𝑥ሺଵሻ is a 
point between two points 𝑥ሺଵሻ and 𝑥ሺଶሻ. Then a function is convex if it satisfies the following condition 
for all 𝑥: 

𝑓ሺ𝑥ሻ ൑ 𝛼𝑓൫𝑥ሺଶሻ൯ ൅ ሺ1 െ 𝛼ሻ𝑓൫𝑥ሺଵሻ൯ (4.6)

The left-hand side is the function value at 𝑥, while the right-hand side is the straight line that connects 
𝑓൫𝑥ሺଵሻ൯ and 𝑓൫𝑥ሺଶሻ൯. This can apply to 𝑛-dimensional function rather than just to a function of a single 
variable as shown in the figure. The weighted sum of all the quantities, where the sum of the weights is 
equal to one and all the weights are positive is called a convex combination. Therefore, the equation 
above says that the value of the function at a convex combination of two points cannot be larger than the 
convex combination with the same weights of the function values at these two points. 
 

 
Figure 4-9: Convex function and convex set.  
 
 Although the convexity of a function is defined using Eq. (4.6), it is not a convenient form to show 
convexity because it is impractical to show it for all arbitrary combinations of 𝑥ሺଵሻ and 𝑥ሺଶሻ. In practice, 
convexity is shown using the Hessian information. In multi-dimensional function, let the vector of input 
variables is defined as 𝐱 ൌ ሼ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡ሽ். Then, the gradients (first-order derivatives) of function 𝑓ሺ𝐱ሻ 
can be defined as 

∇𝑓ሺ𝐱ሻ ൌ ൜
𝜕𝑓
𝜕𝑥ଵ

,
𝜕𝑓
𝜕𝑥ଶ

, ⋯ ,
𝜕𝑓

𝜕𝑥௡
ൠ

்

 (4.7)

which is an 𝑛-dimensional vector. The gradients are the slope of the function in the direction of each 
variable. The second derivatives of function 𝑓ሺ𝐱ሻ are called the Hessian matrix, which is defined as 
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𝐇 ≡ ∇ଶ𝑓ሺ𝐱ሻ ൌ

⎣
⎢
⎢
⎢
⎢
⎡

𝜕ଶ𝑓
𝜕𝑥ଵ

ଶ ⋯
𝜕ଶ𝑓

𝜕𝑥ଵ𝜕𝑥௡
⋮ ⋱ ⋮

𝜕ଶ𝑓
𝜕𝑥ଵ𝜕𝑥௡

⋯
𝜕ଶ𝑓
𝜕𝑥௡

ଶ ⎦
⎥
⎥
⎥
⎥
⎤

 (4.8)

The Hessian matrix is symmetric. The Hessian matrix is related to the curvature of the function.  
 A symmetric matrix 𝐇 is positive definite if 𝐱்𝐇𝐱 ൐ 0 for all 𝐱 ് 0. A symmetric matrix is positive 
semi-definite if 𝐱்𝐇𝐱 ൒ 0 for all 𝐱 ് 0. This property is important for the Hessian matrix. If the Hessian 
matrix ∇ଶ𝑓 is positive semi-definite, then the original function 𝑓ሺ𝐱ሻ is convex. In addition, if the Hessian 
matrix is positive definite, then the function 𝑓ሺ𝐱ሻ is strictly convex. That is, the function has a single 
minimum, which is the global minimum.  
 In order to apply the above concept of convex function to an optimization problem, it is necessary to 
adopt the concept of a convex set as well because an optimization problem is to minimize the objective 
function within the feasible set. A feasible set is convex if for all 𝐱ሺଵሻ and 𝐱ሺଶሻ in the feasible set 𝑆, the 
convex combination 𝐱 ൌ 𝛼𝐱ሺଶሻ ൅ ሺ1 െ 𝛼ሻ𝐱ሺଵሻ also belong to 𝑆. This will happen if all the inequality 
constraints are convex and all the equality constraints are linear. If an equality constraint is nonlinear, then 
it is curved, and if we connect two points on the line by a straight segment, the interior of the segment will 
not satisfy the equality constraint, and this will violate the convexity requirement. Figure 4-9(b) shows 
examples of a convex set, while Figure 4-9(c) shows an example of a non-convex set. When the feasible 
set is convex and the objective function is convex, the optimization problem is called a convex problem. 
For a convex problem, a local minimum is also a global minimum.  
 
4.4. Optimality criteria 

 Once an optimization problem is formulated, it is often solved using numerical optimization 
techniques, which will be discussed in Chapters 5 and 6. If the graph of the objective function over the 
entire feasible set is known, it would be possible to find the optimum design graphically. However, this 
information is barely available for most applications, especially for high-dimensional design problems. 
Therefore, most optimization algorithms try to find the optimum design by moving from one design to 
another iteratively. In such an iterative process, it would be necessary to determine if a new design is 
optimum or not. Optimality criteria are conditions that an optimum design must satisfy. Optimality 
criteria are considered one of the most important concepts in design optimization. Therefore, it would be 
important to fully understand them.  
 

Global versus local optimum 
 Before discussing optimality criteria, it would be necessary to understand the local and global optima. 
The global optimum is the design that has the lowest value of objective function within the feasible set. 
The goal of an optimization problem is to find the global optimum. The issue related to the global 
optimum is that it is difficult to find it. For most engineering applications, the functional form of the 
objective function is usually unknown. Optimization algorithms iteratively improve the current design by 
moving to a new design that has a lower objective function. If there is no way to lower the objective 
function from the current design, this design should satisfy optimality criteria. However, even if the 
current design is the optimum design in the immediate neighborhood, it does not mean that it is the best 
design in the entire feasible set. Figure 4-10 shows an illustration of an objective function as a function of 
a design variable. The yellow circles represent local optima, which are the best designs in the immediate 
neighborhood. The red circle is indeed the global optimum design, which has the lowest value of the 
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objective function in the feasible set. If an optimization algorithm starts from different designs, it is 
possible that it may find different local optima or a global optimum. The challenge is that it is difficult to 
determine if the optimum design that is found by an optimization algorithm is a local or global optimum.  
 
 

 
Figure 4-10: Global versus local optima.  
 
 Mathematically, a design 𝐱∗ is called a global optimum for 𝑓ሺ𝐱ሻ if 

𝑓ሺ𝐱∗ሻ ൑ 𝑓ሺ𝐱ሻ, for all 𝐱 ∈ 𝑆 (4.9)

where 𝑆 is the feasible set that satisfies all constraints. The practical difficulty associated with the global 
optimum is that there is no mathematical method to find it. However, the existence of the global optimum 
can be provided by the Weierstrass theorem or the extreme value theorem [42]: If 𝑓ሺ𝐱ሻ is continuous and 
the feasible set 𝑆 is closed and bounded, then there is a global minimum. The unbounded feasible set was 
graphically illustrated in Figure 4-5(a). A bounded set means that the area (or volume in 3D or hyper-
volume in high dimension) that is covered by the feasible set is finite. The closed set means that the 
inequality constraints are in the form of less-than-or-equal-to (൑) so that the constraint boundary is 
included in the feasible set. 
 A design 𝐱∗ is called a local optimum for 𝑓ሺ𝐱ሻ if 

𝑓ሺ𝐱∗ሻ ൑ 𝑓ሺ𝐱ሻ, for all 𝐱 ∈ 𝑆 in a small neighborhood of 𝐱∗ (4.10)

In Figure 4-10, all yellow circles are local optima where they are the lowest points in a small 
neighborhood. Since it is impractical to search the entire feasible set, almost all numerical optimization 
algorithms can only guarantee a local optimum, not the global one. 
 

Unconstrained optimization 
 In order to develop the optimality criteria, the local and global optimal shown in Figure 4-10 give a 
clue. Both the local and global optima have their extreme value, where the slope becomes zero. That is, at 
optimum the function may satisfy d𝑓ሺ𝑥ሻ/d𝑥 ൌ 0; that is, the design is at a stationary point or an extreme 
value. However, this cannot be generalized for arbitrary functions. Figure 4-11(a) shows two functions 
𝑓ଵሺ𝑥ሻ ൌ |𝑥 െ 5| and 𝑓ଶሺ𝑥ሻ ൌ 0.2ሺx െ 5ሻଶ. Both functions have the global optimum at 𝑥 ൌ 5. However, 
d𝑓ଵሺ𝑥ሻ/d𝑥 ് 0 at 𝑥 ൌ 5. In fact, d𝑓ଵሺ𝑥ሻ/d𝑥 cannot be defined at 𝑥 ൌ 5. This is because 𝑓ଵሺ𝑥ሻ is not a 
smooth function of 𝑥 and non-differentiable. Therefore, optimality criteria assume that the function is 
smooth with respect to design variables. 
 Even if a function is smooth, the condition of d𝑓ሺ𝑥ሻ/d𝑥 ൌ 0 is not enough to determine if a design 𝑥 
is optimum or not. Figure 4-11(b) shows three functions. All three functions have d𝑓ሺ𝑥ሻ/d𝑥 ൌ 0 at 𝑥 ൌ
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5. Among the three, however, only 𝑓ሺ𝑥ሻ ൌ ሺ𝑥 െ 5ሻଶ has a minimum at 𝑥 ൌ 5. The other function 𝑓ሺ𝑥ሻ ൌ
10𝑥 െ 𝑥ଶ has its maximum, and 𝑓ሺ𝑥ሻ ൌ 0.2ሺ𝑥 െ 5ሻଷ has no minimum or maximum at 𝑥 ൌ 5. In fact, this 
point is an inflection point. In optimization theory, the requirement of d𝑓ሺ𝑥ሻ/d𝑥 ൌ 0 is called a necessary 
condition. If a design is optimum, it must satisfy the necessary condition. However, not all designs that 
satisfy the necessary condition are optimum. 
 

  
Figure 4-11: Optimum design of a smooth and non-smooth function.  
 
 Consider the following unconstrained optimization problem with a single variable: 

minimize
௫

𝑓ሺ𝑥ሻ (4.11)

If 𝑥∗ is a local minimum, for an arbitrary neighboring point 𝑥 ൌ 𝑥∗ ൅ Δ𝑥, the function must satisfy 
𝑓ሺ𝑥ሻ ൒ 𝑓ሺ𝑥∗ሻ. Using the Taylor series expansion, the function 𝑓ሺ𝑥ሻ can be expanded with respect to 
𝑓ሺ𝑥∗ሻ as 

𝑓ሺ𝑥ሻ ൌ 𝑓ሺ𝑥∗ ൅ Δ𝑥ሻ ൌ 𝑓ሺ𝑥∗ሻ ൅ 𝑓ᇱሺ𝑥∗ሻΔ𝑥 ൅ ଵ
ଶ
𝑓ᇱᇱሺ𝑥∗ሻΔ𝑥ଶ ൅ H. O. T. 

where H. O. T. represents high-order terms, and 𝑓′ and 𝑓′′ are respectively the first- and second-order 
derivatives. If 𝑓ሺ𝑥∗ሻ is a local minimum, then the following functional difference must be non-negative: 

Δ𝑓 ൌ 𝑓ሺ𝑥ሻ െ 𝑓ሺ𝑥∗ሻ ൌ 𝑓ᇱሺ𝑥∗ሻΔ𝑥 ൅ ଵ
ଶ
𝑓ᇱᇱሺ𝑥∗ሻΔ𝑥ଶ ൅ H. O. T. (4.12)

For 𝑥∗ to be a local minimum, it would be necessary that Δ𝑓 ൒ 0. Assuming Δ𝑥 is small, the term 
including Δ𝑥ଶ and higher-order terms can be ignored. Therefore, Δ𝑓 ൎ 𝑓ᇱሺ𝑥∗ሻΔ𝑥 ൒ 0 for arbitrary Δ𝑥. 
The only possibility that this inequality satisfies for arbitrary Δ𝑥 is that its coefficient 𝑓ᇱሺ𝑥∗ሻ must vanish. 
Otherwise, Δ𝑓 can be negative if െΔ𝑥 is used instead. Therefore, from this argument, it is possible to 
obtain the following first-order necessary condition of optimum design: 

𝑓ᇱሺ𝑥∗ሻ ≡
𝑑𝑓ሺ𝑥∗ሻ

𝑑𝑥
ൌ 0 (4.13)

This seemingly obvious condition is called Karush-Kuhn-Tucker (KKT) condition [43, 44], which is the 
most popular condition in optimum design. 
 Once 𝑓ᇱሺ𝑥∗ሻ ൌ 0 is satisfied, Eq. (4.12) becomes 

Δ𝑓 ൌ ଵ
ଶ
𝑓ᇱᇱሺ𝑥∗ሻΔ𝑥ଶ ൅ H. O. T. ൒ 0 (4.14)

Since Δ𝑥ଶ ൐ 0 always, the second-order necessary condition would be 
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𝑓ᇱᇱሺ𝑥∗ሻ ≡
𝑑ଶ𝑓ሺ𝑥∗ሻ

𝑑𝑥ଶ ൒ 0 (4.15)

Therefore, if a design 𝑥∗ is a local optimum, Eqs. (4.13) and (4.15) must satisfy. That is, they are first- 
and second-order necessary conditions. On the other hand, the sufficient condition is given as  

𝑓ᇱሺ𝑥∗ሻ ൌ 0 and 𝑓ᇱᇱሺ𝑥∗ሻ ൐ 0 (4.16)

The positiveness of the second-order derivative is an important property of a function. This is indeed the 
Hessian information in Eq. (4.8). The positive second-order derivative is equivalent to the positive 
definite matrix for a multi-variable function. Therefore, it is related to the convexity of a function. The 
curvature of a function is related to the second-order derivative. That is, the curvature 𝜅ሺ𝑥ሻ can be defined 
by 𝜅ሺ𝑥ሻ ൌ 𝑓ᇱᇱሺ𝑥ሻ/ሺ1 ൅ 𝑓ᇱଶሻଵ.ହ. Geometrically this makes sense as a function with a positive curvature 
has a minimum point.  
 
Example 4-7 
Consider a polynomial function 𝑓ሺ𝑥ሻ ൌ 𝑥ଷ െ 3𝑥 in the design space 𝑥 ∈ ሾെ2,2ሿ. Classify the stationary 
points of the function from the optimality criteria and check by plotting them. 
 
Solution: 
Since optimum designs must satisfy the KKT condition, it makes sense to find 𝑥 where the gradient 
vanishes.  

𝑓ᇱሺ𝑥ሻ ൌ 3𝑥ଶ െ 3 ൌ 0 → 𝑥 ൌ െ1 or 𝑥 ൌ 1 

That means both 𝑥 ൌ െ1 and 𝑥 ൌ 1 are candidate points for optima. At 𝑥 ൌ െ1, the second-order 
necessary condition 𝑓ᇱᇱሺ𝑥ሻ ൌ 6𝑥 ൌ െ6 ൏ 0 does not satisfy. In fact, this is the maximum point A as 
shown in Figure 4-12. The function has a maximum value 𝑓ሺെ1ሻ ൌ 2 at point A. At 𝑥 ൌ 1, 𝑓ᇱᇱሺ𝑥ሻ ൌ
6𝑥 ൌ 6 ൐ 0; that is the second-order necessary condition and sufficient condition are satisfied. Indeed, 
this is the minimum point B as shown in Figure 4-12.  
 In this particular problem, it is interesting to note that point C in Figure 4-12 is also a minimum point, 
while point D is a maximum point. However, these points do not satisfy both the necessary and sufficient 
conditions. This is because they are on the constraint bound. The optimality conditions with constraints 
will be discussed in the next subsection. 
 

 
Figure 4-12: Optimum points of a cubic function with design space 𝑥 ∈ ሾെ2,2ሿ.  
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 The optimality criteria for a single-variable optimization problem can be extended to multi-variable 
optimization problems. Let the multi-dimensional design variables be defined as 𝐱 ൌ ሼ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡ሽ். Let 
𝐱∗ be the optimum design and 𝐱 ൌ 𝐱∗ ൅ Δ𝐱 be an arbitrary neighborhood. Then the Taylor series can be 
used to expand the objective function 𝑓ሺ𝐱ሻ with respect to 𝑓ሺ𝐱∗ሻ as 

𝑓ሺ𝐱ሻ ൌ 𝑓ሺ𝐱∗ሻ ൅ ෍
𝜕𝑓ሺ𝐱∗ሻ

𝜕𝑥௜
Δ𝑥௜

௡

௜ୀଵ

൅
1
2

෍ ෍
𝜕ଶ𝑓ሺ𝐱∗ሻ
𝜕𝑥௜𝜕𝑥௝

Δ𝑥௜Δ𝑥௝

௡

௝ୀଵ

௡

௜ୀଵ

൅ H. O. T. 

          ൌ 𝑓ሺ𝐱∗ሻ ൅ Δ𝐱்∇𝑓ሺ𝐱∗ሻ ൅
1
2

Δ𝐱்𝐇ሺ𝐱∗ሻΔ𝐱 ൅ H. O. T. 

(4.17)

where ∇𝑓ሺ𝐱∗ሻ is the vector of gradients in Eq. (4.7) and 𝐇ሺ𝐱ሻ ൌ ∇ଶ𝑓ሺ𝐱ሻ is the Hessian matrix defined in 
Eq. (4.8). 
 In order to satisfy Δ𝑓 ൌ 𝑓ሺ𝐱ሻ െ 𝑓ሺ𝐱∗ሻ ൒ 0 for arbitrary 𝐱 in the neighborhood of 𝐱∗, it would be 
necessary that ∇𝑓ሺ𝐱∗ሻ ൌ 0. If 𝜕𝑓/𝜕𝑥௜ ് 0, it is possible to choose ሺ𝑥௜ െ 𝑥௜

∗ሻ in the opposite direction and 
other ൫𝑥௝ െ 𝑥௝

∗൯ ൌ 0 to make Δ𝑓 ൏ 0. Therefore, in order to satisfy 𝑓ሺ𝐱∗ሻ being the minimum, it would be 
necessary that 𝑓ሺ𝐱∗ሻ needs to be stationary; that is, ∇𝑓ሺ𝐱∗ሻ ൌ 0. 
 Now with ∇𝑓ሺ𝐱∗ሻ ൌ 0, the change of the objective function becomes Δ𝑓 ൌ భ

మ
Δ𝐱்𝐇ሺ𝐱∗ሻΔ𝐱 ൅ H. O. T. 

Therefore, the sufficient condition for 𝑓ሺ𝐱∗ሻ being the minimum is that 

Δ𝐱்𝐇ሺ𝐱∗ሻΔ𝐱 ൐ 0 for all Δ𝐱 ് 0 (4.18)

This means that the matrix of second-order derivatives (Hessian) is positive definite. In the same 
argument in Eq. (4.15), the second-order necessary condition would satisfy if the Hessian matrix is 
positive semi-definite. It would be impractical to check the positive definiteness for all Δ𝐱 ് 0. Instead, 
the simplest way to check positive definiteness is to check if all eigenvalues of the Hessian matrix are 
positive. On the other hand, if the Hessian matrix is positive semi-definite, then it is the second-order 
necessary condition. The eigenvalues of the positive semi-definite matrix are non-negative.  
 In summary, the following optimality criteria can be summarized for multi-variable optimization 
problems: 

KKT condition ∇𝑓ሺ𝐱∗ሻ ൌ 0 (4.19)

2nd-order necessary condition Δ𝐱்𝐇ሺ𝐱∗ሻΔ𝐱 ൒ 0 for all Δ𝐱 ് 0 (4.20)

Sufficient condition Δ𝐱்𝐇ሺ𝐱∗ሻΔ𝐱 ൐ 0 for all Δ𝐱 ് 0 (4.21)

 The positive definite matrix in Eq. (4.21) is indeed a quadratic form defined as 𝑞 ൌ Δ𝐱்𝐇ሺ𝐱∗ሻΔ𝐱. 
Assuming that the KKT condition is satisfied, the minimum or maximum of the function can be 
determined by the property of the quadratic form. The following table summarizes them: 
 

Quadratic form Hessian matrix Extreme 

𝑞 ൐ 0 Positive definite Minimum 

𝑞 ൒ 0 Positive semi-definite Possibly minimum 

𝑞 ൏ 0 Negative definite Maximum 

𝑞 ൑ 0 Negative semi-definite Possibly maximum 

𝑞 ൒ 0 or 𝑞 ൑ 0 Indefinite Saddle point 

 
Example 4-8 
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Find a stationary point of the following objective functions and determine if the stationary point is 
minimum, maximum, or saddle point: (a) 𝑓ଵሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ

ଶ ൅ 𝑥ଵ𝑥ଶ ൅ 𝑥ଶ
ଶ and (b) 𝑓ଶሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ

ଶ ൅
3𝑥ଵ𝑥ଶ ൅ 𝑥ଶ

ଶ. 
 
Solution: 
(a) For, 𝑓ଵሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ

ଶ ൅ 𝑥ଵ𝑥ଶ ൅ 𝑥ଶ
ଶ, the stationary points can be found using the KKT condition as 

∇𝑓ଵ ൌ ൜
2𝑥ଵ ൅ 𝑥ଶ
𝑥ଵ ൅ 2𝑥ଶ

ൠ ൌ 0 

By solving the system of equations, the stationary point turns out to be ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ0, 0ሽ. At this stationary 
point, the Hessian matrix becomes 

𝐇 ൌ ቂ2 1
1 2

ቃ 

The eigenvalue of the Hessian matrix can be obtained by solving |𝐇 െ 𝜆𝐈| ൌ 0, where 𝐈 is the identity 
matrix. The eigenvalues that make the determinant zero are 𝜆ଵ ൌ 1 and 𝜆ଶ ൌ 3. Since both eigenvalues 
are positive, the Hessian matrix is positive definite, and the stationary point ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ0, 0ሽ satisfies 
sufficient condition; i.e., it is a minimum point. Figure 4-13(a) shows the plot of 𝑓ଵ, which confirms that it 
is the global minimum. 
 
(b) For, 𝑓ଶሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ

ଶ ൅ 3𝑥ଵ𝑥ଶ ൅ 𝑥ଶ
ଶ, the stationary points can be found using the KKT condition as 

∇𝑓ଶ ൌ ൜
2𝑥ଵ ൅ 3𝑥ଶ
3𝑥ଵ ൅ 2𝑥ଶ

ൠ ൌ 0 

By solving the system of equations, the stationary point turns out to be ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ0, 0ሽ. At this stationary 
point, the Hessian matrix becomes 

𝐇 ൌ ቂ2 3
3 2

ቃ 

The eigenvalues that make the determinant zero are 𝜆ଵ ൌ െ1 and 𝜆ଶ ൌ 5. Since one eigenvalue is 
negative, while the other is positive, this stationary point is not a minimum or a maximum. In fact, this 
point is a saddle point as shown in Figure 4-13 (b). It is interesting to note that the saddle point is a 
minimum along the line 𝑥ଵ ൌ 𝑥ଶ, while it is a maximum along the line 𝑥ଵ ൌ െ𝑥ଶ. 
 

 
Figure 4-13: Surface plots of two functions in Example 4-8.  
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Constrained optimization 
 The necessary and sufficient conditions in the previous section are purely determined by the objective 
function because there was no constraint. However, as shown in Example 4-7, the two points C and D do 
not satisfy the optimality criteria but they were a minimum and a maximum point because of constraints. 
Therefore, it is obvious that constraints play an important role in optimality criteria. Before we formally 
develop optimality criteria for a constrained optimization problem, it would be beneficial to investigate 
the effect of constraints for optimum design. The following examples can provide useful insights into 
constrained optimization. 
 
Example 4-9 
First, let us consider the following optimization problem with an inequality constraint: 

minimize  𝑓ሺ𝐱ሻ ൌ ሺ𝑥ଵ െ 1ሻଶ ൅ ሺ𝑥ଶ െ 1ሻଶ

subject to 𝑔ሺ𝐱ሻ ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൑ 0 

The stationary point for the objective function can be obtained from 

∇𝑓 ൌ ൜
2ሺ𝑥ଵ െ 1ሻ
2ሺ𝑥ଶ െ 1ሻൠ ൌ 0 

which can be solved for ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ1, 1ሽ.  The Hessian matrix at this point is 𝐇 ൌ 2𝐈, which is positive 
definite. Also, at this point, the inequality constraint 𝑔ሺ𝐱ሻ ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൌ െ2 ൏ 0. Since this point 
satisfies the inequality, this point is an optimum point. As shown in Figure 4-14(a), the objective function 
has its minimum 𝑓∗ ൌ 0 at ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ1, 1ሽ, and it belongs to the feasible domain. In this case, the 
constraint does not play any role in optimum design. In general, when an optimum design is inside of the 
feasible domain, the constraint is inactive and does not play any role in optimum design.  
 As a second example, let us consider a different objective function but with the same inequality 
constraint: 

minimize  𝑓ሺ𝐱ሻ ൌ ሺ𝑥ଵ െ 3ሻଶ ൅ ሺ𝑥ଶ െ 3ሻଶ

subject to 𝑔ሺ𝐱ሻ ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൑ 0 

In this case, the stationary point of the objective function is at ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ3, 3ሽ, and the Hessian is also 
positive definite. However, the inequality constraint 𝑔ሺ𝐱ሻ ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൌ 2 ൐ 0 is violated at this point. 
Therefore, this point cannot be an optimum design. As shown in Figure 4-14(b), the stationary point is out 
of the feasible domain. The concentric circles in the figure are the contour of the objective function. The 
objective function has its minimum at ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ3, 3ሽ and gradually increases until it meets a point 
ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ2,2ሽ, where it is the lowest objective function while satisfying the inequality constraint. 
Therefore, this is an optimum point, although the gradient of the objective function ∇𝑓 ് 0. In this case, 
the inequality constraint is active and plays a critical role in determining the objective function. The 
optimum design is located on the boundary of the feasible domain. When an inequality constraint is 
active, it becomes equality; that is, 𝑔ሺ𝐱ሻ ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൌ 0.  
 Lastly, let us consider the same objective function with an equality constraint: 

minimize  𝑓ሺ𝐱ሻ ൌ ሺ𝑥ଵ െ 1ሻଶ ൅ ሺ𝑥ଶ െ 1ሻଶ

subject to 𝑔ሺ𝐱ሻ ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൌ 0 
(4.22)

Different from inequality constraints, an equality constraint is always active. As shown in Figure 4-14(c), 
the feasible domain is the line of constraint 𝑔ሺ𝐱ሻ ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൌ 0. The contour of the objective 
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function meets with the feasible set at ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ2,2ሽ first time, which is the optimum design. An 
equality constraint is always active, and the optimum design is located on the constraint boundary.  

 
Figure 4-14: The effect of constraints on optimum design.  
 

 
 It is interesting to note that an equality constraint can reduce the number of design variables. In the 
previous example, the relationship between the two design variables can be obtained using the equality 
constraint; that is, 𝑥ଶ ൌ 4 െ 𝑥ଵ. If this relationship is used to remove variable 𝑥ଶ from the objective 
function, the original constrained optimization problem becomes unconstraint one 𝑓ሺ𝑥ଵሻ ൌ ሺ𝑥ଵ െ 1ሻଶ ൅
ሺ3 െ 𝑥ଵሻଶ with a single design variable. In general, it may not be possible to reduce design variables 
explicitly because an equality constraint can be an implicit function of design variables. However, its 
effect should be the same as reducing design variables. 
 In the previous example, if an additional equality constraint exists, then the optimum design is 
nothing but the intersection of the two equality constraints because that is the only feasible point. This is 
basically the same as two equations in a two-dimensional domain, where a unique solution is expected. If 
there are three independent equality constraints, then the problem is overly constrained and does not have 
a solution. Therefore, the number of equality constraints should be less than the number of design 
variables. Considering the fact that an active inequality constraint plays the same role as an equality 
constraint, the total number of active inequality constraints and equality constraints should be less than 
the number of design variables. 
 Now, optimality criteria for a general constrained optimization problem are presented. First, only a 
single equality constraint is considered. Consider the following constrained optimization problem with an 
equality constraint: 

minimize 𝑓ሺ𝐱ሻ
subject to ℎሺ𝐱ሻ ൌ 0 (4.23)

Instead of solving the constrained optimization problem, it is converted into an unconstrained 
optimization problem by using the Lagrange multiplier method. That is, the constrained optimization 
problem in Eq. (4.23) is equivalent to the following unconstrained optimization problem: 

minimize 𝐿ሺ𝐱, 𝜆ሻ ൌ 𝑓ሺ𝐱ሻ ൅ 𝜆ℎሺ𝐱ሻ (4.24)

where 𝜆 is the Lagrange multiplier and 𝐿ሺ𝐱, 𝜆ሻ is referred to as the Lagrangian function. That is, the 
objective and constraint functions are linearly combined using the Lagrange multiplier. The main 
difference is that an additional variable 𝜆 is introduced in addition to design variables 𝐱. 
 Then, the necessary conditions for the stationary Lagrangian function are that the derivatives with 
respect to the design variables and the Lagrange multiplier are zero. That is, 
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∇𝐿ሺ𝐱, 𝜆ሻ ൌ 0 → ቐ
𝜕𝑓ሺ𝐱ሻ

𝜕𝐱
൅ 𝜆

𝜕ℎሺ𝐱ሻ

𝜕𝐱
ൌ 0

ℎሺ𝐱ሻ ൌ 0
 (4.25)

Therefore, in the case of a constrained optimization problem, the necessary conditions do not require the 
stationary condition of the objective function: ∇𝑓 ് 0. Instead, the linear combination of the gradient of 
the objective function and that of the constraint, scaled by the Lagrange multiplier, vanishes. Also, the 
equality constraint must satisfy at the optimum point. Because of the relation ∇𝑓ሺ𝐱ሻ ൌ െ𝜆∇ℎሺ𝐱ሻ, the 
Lagrange multiplier is often called “shadow prices”, which means the price of constraints. If ∇ℎሺ𝐱ሻ is 
small, a large value of 𝜆 is required to equilibrate it with the gradient of the objective function.  
 The KKT condition in Eq. (4.25) is for a single equality constraint. There are 𝑛 ൅ 1 variables, and Eq. 
(4.25) provides 𝑛 ൅ 1 equations. For a general optimization problem with 𝑀 equality constraints, we need 
the same number of Lagrange multiplier. Therefore, the equivalent unconstrained optimization problem 
can be written as  

minimize 𝐿ሺ𝐱, 𝛌ሻ ൌ 𝑓ሺ𝐱ሻ ൅ ෍ 𝜆௝ℎ௝ሺ𝐱ሻ
ெ

௝ୀଵ

 (4.26)

where 𝛌 ൌ ሼ𝜆ଵ, 𝜆ଶ, ⋯ , 𝜆ெሽ் is the vector of Lagrange multipliers. Each constraint has a Lagrange 
multiplier. The KKT condition becomes 

∇𝐿ሺ𝐱, 𝛌ሻ ൌ 0 →  

⎩
⎨

⎧ 𝜕𝑓ሺ𝐱ሻ
𝜕𝐱

൅ ෍ 𝜆௝
𝜕ℎ௝ሺ𝐱ሻ

𝜕𝐱

ெ

௝ୀଵ

ൌ 0

ℎ௝ሺ𝐱ሻ ൌ 0, 𝑗 ൌ 1, ⋯ , 𝑀

 (4.27)

The above KKT conditions have 𝑛 ൅ 𝑀 variables and 𝑛 ൅ 𝑀 equations.  
 
Example 4-10 
Find an optimum point that satisfies the KKT condition for the equality constraint in Example 4-9. 
 
Solution: 
For the constrained optimization problem in Eq. (4.22), the Lagrangian function can be defined as 

𝐿ሺ𝐱, 𝜆ሻ ൌ ሺ𝑥ଵ െ 1ሻଶ ൅ ሺ𝑥ଶ െ 1ሻଶ ൅ λሺ𝑥ଵ ൅ 𝑥ଶ െ 4ሻ 

The KKT condition is the stationary condition of the Lagrangian function as 

𝜕𝐿
𝜕𝑥ଵ

ൌ 2ሺ𝑥ଵ െ 1ሻ ൅ 𝜆 ൌ 0

𝜕𝐿
𝜕𝑥ଶ

ൌ 2ሺ𝑥ଶ െ 1ሻ ൅ 𝜆 ൌ 0 

𝜕𝐿
𝜕𝜆

ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൌ 0 

The above three equations can be solved for ሼ𝑥ଵ, 𝑥ଶሽ ൌ ሼ2,2ሽ, and 𝜆 ൌ െ2. 
 

 
Example 4-11 
Consider a quadratic objective function and a quadratic constraint that requires the design to be on a circle 
with a radius of 10 and a center at the origin. Find the points that satisfy the KKT condition and determine 
if they are minimum or maximum. 
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minimize 𝑓ሺ𝐱ሻ ൌ 𝑥ଵ
ଶ ൅ 10𝑥ଶ

ଶ

subject to ℎሺ𝐱ሻ ൌ 100 െ ሺ𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶሻ ൌ 0 
(4.28)

Solution: 
Since the objective function prefers 𝑥ଵ to 𝑥ଶ, the minimum may be expected for high 𝑥ଵ and low 𝑥ଶ. The 
Lagrangian function is defined as 

𝐿ሺ𝐱, 𝜆ሻ ൌ 𝑥ଵ
ଶ ൅ 10𝑥ଶ

ଶ ൅ λሺ100 െ 𝑥ଵ
ଶ െ 𝑥ଶ

ଶሻ 

Taking derivatives with respect to 𝑥ଵ, 𝑥ଶ, and 𝜆, we get three equations, with the last being the constraint 
equations. 

𝜕𝐿
𝜕𝑥ଵ

ൌ 2𝑥ଵ െ 2𝜆𝑥ଵ ൌ 0

𝜕𝐿
𝜕𝑥ଶ

ൌ 20𝑥ଶ െ 2𝜆𝑥ଶ ൌ 0 

𝜕𝐿
𝜕𝜆

ൌ 100 െ 𝑥ଵ
ଶ െ 𝑥ଶ

ଶ ൌ 0 

The first two equations will produce contradictory values for 𝜆 if both 𝑥ଵ and 𝑥ଶ are non-zero. That 
indicates that a minimum will be obtained when 𝑥ଶ ൌ 0 and a maximum when 𝑥ଵ ൌ 0. Since all the terms 
are quadratic, we can change the sign of 𝑥ଵ or 𝑥ଶ without changing the results. These correspond to 
moving 180-deg around the circle. Then, we have four points that satisfy the KKT conditions: 

𝑥ଵ ൌ 0, 𝑥ଶ ൌ േ10 ሺ𝑓 ൌ 1,000, maximaሻ
𝑥ଵ ൌ േ10, 𝑥ଶ ൌ 0 ሺ𝑓 ൌ 100, minimaሻ 

 

 
Figure 4-15: Maxima and minima of a quadratic objective function with a quadratic constraint.  
 

 
 The optimality criteria for inequality constraint are based on the fact that when the inequality 
constraint is inactive, it does not play a role in the optimum design, and when the inequality constraint is 
active, it is basically the same as an equality constraint in the previous subsection. Consider the following 
optimization problem with inequality constraints: 
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minimize 𝑓ሺ𝐱ሻ
subject to 𝑔௜ሺ𝐱ሻ ൑ 0, 𝑖 ൌ 1, ⋯ , 𝐾 (4.29)

Since we have KKT conditions for equality constraints, we can convert the inequality constraints to 
equality ones by adding a slack variable. That is, 

𝑔௜ሺ𝐱ሻ ൑ 0 → 𝑔௜ሺ𝐱ሻ ൅ 𝑠௜
ଶ ൌ 0 (4.30)

where 𝑠௜
ଶ ൒ 0 is the slack variable. Therefore, an inequality constraint introduces an additional variable to 

the system. When the slack variable 𝑠௜
ଶ ൌ 0, the inequality constraint becomes equality and active. When 

the slack variable is positive 𝑠௜
ଶ ൐ 0, the constraint is inactive. When the slack variable is negative, 𝑠௜

ଶ ൏
0, it means that the constraint is violated.  
 After converting inequality constraints to equality ones, we use the same Lagrangian function to make 
an unconstrained optimization problem, as 

minimize  𝐿ሺ𝐱, 𝛌, 𝐬ሻ ൌ 𝑓ሺ𝐱ሻ ൅ ෍ 𝜆௜ሺ𝑔௜ሺ𝐱ሻ ൅ 𝑠௜
ଶሻ

௄

௜ୀଵ

 (4.31)

The Lagrangian is a function of 𝑛 design variables, 𝐾 Lagrange multiplier, 𝐾 slack variables. Therefore, 
the stationary condition of the Lagrangian function will produce 𝑛 ൅ 2𝐾 numbers of equations. The KKT 
condition becomes 

∇𝐿ሺ𝐱, 𝛌, 𝐬ሻ ൌ 0 →  

⎩
⎪
⎨

⎪
⎧ 𝜕𝑓ሺ𝐱ሻ

𝜕𝐱
൅ ෍ 𝜆௜

𝜕𝑔௜ሺ𝐱ሻ
𝜕𝐱

௄

௜ୀଵ

ൌ 0

𝑔௜ሺ𝐱ሻ ൅ 𝑠௜
ଶ ൌ 0, 𝑖 ൌ 1, ⋯ , 𝐾

2𝜆௜𝑠௜ ൌ 0, 𝑖 ൌ 1, ⋯ , 𝐾

 (4.32)

The last 𝐾 equations, 𝜆௜𝑠௜ ൌ 0, is called complementary slackness or switching condition. This condition 
can be interpreted as 𝜆௜𝑔௜ ൌ 0 as 𝑔௜ ൌ 0 when 𝑠௜ ൌ 0. This condition implies that either the Lagrange 
multiplier is zero or the constraint is zero, which is why it is called complementary slackness. When the 
constraint is active, 𝑔௜ ൌ 0, the Lagrange multiplier is non-zero. If the constraint is inactive, it has a zero 
value. In particular, when the inequality constraint is less-than-or-equal-to type, the Lagrange multiplier 
of an active constraint becomes positive. Therefore, the complementary slackness can be summarized as 

𝜆௜ ൌ 0  → 𝑔௜ ൏ 0 inactive constraint
𝜆௜ ൐ 0  → 𝑔௜ ൌ 0 active constraint (4.33)

This complementary slackness is consistent with the previous discussion that inactive constraints do not 
play any role in determining the optimum design. In Eq. (4.32), the summation in the first equation is only 
for active constraints because 𝜆௜ for inactive constraints will be zero. It is noted that the Lagrange 
multiplier of an equality constraint can be either positive or negative. 
 
Example 4-12 
Find designs that satisfy the KKT conditions for the following constrained optimization problem: 

minimize  𝑓ሺ𝐱ሻ ൌ ሺ𝑥ଵ െ 3ሻଶ ൅ ሺ𝑥ଶ െ 3ሻଶ

subject to ℎሺ𝑥ሻ ൌ 𝑥ଵ െ 3𝑥ଶ െ 1 ൌ 0
                    𝑔ሺ𝐱ሻ ൌ 𝑥ଵ ൅ 𝑥ଶ െ 4 ൑ 0 

(4.34)

Solution: 
The inequality constraint needs to introduce a slack variable. The Lagrangian function can be defined as 

𝐿ሺ𝐱, 𝛌, 𝑠ሻ ൌ ሺ𝑥ଵ െ 3ሻଶ ൅ ሺ𝑥ଶ െ 3ሻଶ ൅ 𝜆ଵሺ𝑥ଵ െ 3𝑥ଶ െ 1ሻ ൅ 𝜆ଶሺ𝑥ଵ ൅ 𝑥ଶ െ 4 ൅ 𝑠ଶሻ 



 4-135

The KKT conditions become 

∇𝐿ሺ𝐱, 𝛌, 𝑠ሻ ൌ 0 →  

⎩
⎪
⎨

⎪
⎧

2ሺ𝑥ଵ െ 3ሻ ൅ 𝜆ଵ ൅ 𝜆ଶ ൌ 0
2ሺ𝑥ଶ െ 3ሻ െ 3𝜆ଵ ൅ 𝜆ଶ ൌ 0

𝑥ଵ െ 3𝑥ଶ െ 1 ൌ 0
𝑥ଵ ൅ 𝑥ଶ െ 4 ൅ 𝑠ଶ ൌ 0

𝑠𝜆ଶ ൌ 0

 

It is noted that all equations are linear, except for the complementary slackness term. Therefore, we can 
consider two cases separately: 𝜆ଶ ൌ 0 or 𝑠 ൌ 0. Each case needs to satisfy all constraints.  
 
Case 1)  𝜆ଶ ൌ 0. In this case, the KKT conditions become 

⎩
⎨

⎧
2ሺ𝑥ଵ െ 3ሻ ൅ 𝜆ଵ ൌ 0

2ሺ𝑥ଶ െ 3ሻ െ 3𝜆ଵ ൌ 0
𝑥ଵ െ 3𝑥ଶ െ 1 ൌ 0

𝑥ଵ ൅ 𝑥ଶ െ 4 ൅ 𝑠ଶ ൌ 0

 

The above equations can be solved for 𝑥ଵ ൌ 3.7, 𝑥ଶ ൌ 0.9, 𝜆ଵ ൌ െ1.4, and 𝑠ଶ ൌ െ0.6. The objective at 
this point is 𝑓∗ ൌ 4.9. Since it is required to be 𝑠ଶ ൒ 0, this condition violates the inequality condition.  
 
Case 2) 𝑠 ൌ 0. In this case, the KKT conditions become 

൞

2ሺ𝑥ଵ െ 3ሻ ൅ 𝜆ଵ ൅ 𝜆ଶ ൌ 0
2ሺ𝑥ଶ െ 3ሻ െ 3𝜆ଵ ൅ 𝜆ଶ ൌ 0

𝑥ଵ െ 3𝑥ଶ െ 1 ൌ 0
𝑥ଵ ൅ 𝑥ଶ െ 4 ൌ 0

 

The above equations can be solved for 𝑥ଵ ൌ 3.25, 𝑥ଶ ൌ 0.75, 𝜆ଵ ൌ െ1.875, and 𝜆ଶ ൌ 1.125 ൐ 0. The 
objective at this point is 𝑓∗ ൌ 5.125, which is larger than that of Case 1. Since the Lagrange multiplier of 
the inequality constraint is positive, this case is valid. Figure 4-16 shows the contour of the objective 
function along with the two constraints. Due to the equality constraint, the feasible domain is the blue-
colored line. Case 2 is the point when both constraints are active, while Case 1 is the point where the 
inequality constraint is violated. 
 

  
Figure 4-16: Objective and constraints of the optimization problem in Example 4-12.  
 

 
 As shown in Example 4-12, the Lagrange multipliers play an important role in determining 
optimization. As mentioned before, the Lagrange multipliers are called “shadow prices”. This means how 
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much constraint gradients need to change in order to compensate for the gradient of the objective function 
at the optimum design. From the first equation of the KKT condition in Eq. (4.32), the gradient of the 
objective function can be written as 

∇𝐱𝐿ሺ𝐱, 𝛌, 𝐬ሻ ൌ 0 →
𝜕𝑓ሺ𝐱ሻ

𝜕𝐱
ൌ െ ෍ 𝜆௜

𝜕𝑔௜ሺ𝐱ሻ
𝜕𝐱

௄

௜ୀଵ

 (4.35)

where ∇𝐱 means the derivative with respect to design variables 𝐱. This relation means that the gradient of 
the objective function can be represented by a linear combination of active constraints. The Lagrange 
multipliers are the coefficients of each constraint gradient. As we discussed in the surrogate chapters, the 
coefficients represent the importance of the term. Therefore, the Lagrange multipliers represent how 
important the constraint is to compensate for the objective change. An inactive constraint would not 
contribute to the optimum design. An important constraint would contribute significantly to the objective 
change. At the optimum, as shown in Figure 4-17, the objective gradient can be represented by a linear 
combination of constraint gradients with Lagrange multipliers as a proportional constant.  
 

  
Figure 4-17: The relationship between objective gradient and constraint gradients at the optimum design.  
 
 The KKT conditions in Eq.(4.27) or Eq. (4.32) are necessary conditions; i.e., those points that satisfy 
the necessary conditions are the candidate for optimum design. Similar to the unconstrained optimization 
problem, it is possible to develop second-order necessary conditions and sufficient conditions. Consider 
the following general form of Lagrangian function: 

minimize  𝐿ሺ𝐱, 𝛌, 𝐬ሻ ൌ 𝑓ሺ𝐱ሻ ൅ ෍ 𝜇௝ℎ௝ሺ𝐱ሻ
ெ

௝ୀଵ

൅ ෍ 𝜆௜ሺ𝑔௜ሺ𝐱ሻ ൅ 𝑠௜
ଶሻ

௄

௜ୀଵ

 (4.36)

where we used different notations for the Lagrange multipliers for the equality and inequality constraints. 
The first-order necessary condition in Eq.(4.27) or Eq. (4.32) can be represented by 

∇𝐿ሺ𝐱, 𝛍, 𝛌, 𝐬ሻ ൌ 0 (4.37)

where the gradient operator is the derivative of all variables: ∇ ൌ ൛∇𝐱
், ∇𝛍

், ∇𝛌
், ∇𝐬

்ൟ
்
.  

 In the case of unconstrained optimization problems, the sufficient condition is that the Hessian matrix 
∇ଶ𝑓 is positive definite. In the case of constrained optimization problems, the sufficient condition that the 
Hessian of the Lagrangian function ∇𝐱𝐱𝐿 is positive definite in all feasible directions. A feasible direction 
is a direction in which a small change in the design keeps the design feasible. As shown in Figure 4-18, 
the optimum design is located on the boundary of active constraints. At this point, a feasible direction 
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keeps the design in the feasible domain after a small movement in that direction. In the case of an equality 
constraint, the movement direction should be perpendicular to the gradient of the constraints. The gradient 
direction is the direction to change the constraint. Therefore, in order to keep the constraint satisfied after 
movement, the direction needs to satisfy ∇ℎ௝ ∙ ∆𝐱 ൌ 0. In the case of an inequality constraint, in order to 
make keep the constraint satisfied after movement, the direction needs to satisfy ∇𝑔௜ ∙ ∆𝐱 ൑ 0. However, 
the direction that makes ∇𝑔௜ ∙ ∆𝐱 ൏ 0 will make the constraint inactive after the movement. Therefore, in 
order to remain an active constraint, the inequality constraint also satisfy ∇𝑔௜ ∙ ∆𝐱 ൌ 0.  
 Therefore, the second-order necessary condition can be stated as 

𝑞 ൌ Δ𝐱்ሾ∇𝐱𝐱𝐿ሿΔ𝐱 ൒ 0 for all Δ𝐱 ് 0 satisfying (4.38)

ቊ
∇𝑔௜

்∆𝐱 ൌ 0 for all active inequalities
∇ℎ௝

்∆𝐱 ൌ 0 for all equalities
 (4.39)

 In a similar way, the second-order sufficient condition can be stated as 

𝑞 ൌ Δ𝐱்ሾ∇𝐱𝐱𝐿ሿΔ𝐱 ൐ 0 for all Δ𝐱 ് 0 satisfying Eq. ሺ4.39ሻ (4.40)

The feasible direction in Eq. (4.39) relaxes the requirement of positive definiteness of the Hessian matrix. 
It is enough that the Hessian matrix is positive definite only for feasible directions. 
 

 
Figure 4-18: Constraint boundary and feasible direction.  
 

Effect of constraint limit 
 In the previous subsection, it was shown that the Lagrange multipliers can be interpreted as “shadow 
prices” of constraint gradients in order to compensate for the gradient of the objective function at 
optimum design. There are different roles of the Lagrange multipliers in practical sense. The first 
important property of the Lagrange multipliers is that it can linearly approximate how much the optimum 
objective function will change when constraint bounds change.  
 Although the standard form of a constraint has a zero on the right-hand side, let us consider the 
constraint limit is on the right-hand side for this subsection. That is, the equality constraints are written as 
ℎ௜ሺ𝐱ሻ ൌ 𝑎௜, and the inequality constraints are written as 𝑔௝ሺ𝐱ሻ ൑ 𝑏௝. Therefore, 𝑎௜ and 𝑏௝ are constraint 
limits. Then, if 𝑎௜ and 𝑏௝ change, the optimum design will also change. Therefore we can say that the 
optimum design is a function of these constraint bounds: 𝐱∗ ൌ 𝐱∗ሺ𝐚, 𝐛ሻ. If the optimum design changes, 
the objective function at the optimum design will also change: 𝑓 ൌ 𝑓ሺ𝐚, 𝐛ሻ. Then, the gradients of the 
objective function with respect to the constraint bounds are nothing but the negative of the Lagrange 
multipliers. In order to show this property, consider the following form of Lagrangian function: 

𝐿ሺ𝐱, 𝛌, 𝐬ሻ ൌ 𝑓ሺ𝐱, 𝐚, 𝐛ሻ ൅ ෍ 𝜇௝ሺℎ௝ሺ𝐱ሻ െ 𝑎௝ሻ

ெ

௝ୀଵ

൅ ෍ 𝜆௜ሺ𝑔௜ሺ𝐱ሻ െ 𝑏௜ ൅ 𝑠௜
ଶሻ

௄

௜ୀଵ

 (4.41)
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At the optimum design, the Lagrangian function needs to be stationary. Therefore, if the above equation is 
differentiated with respect to 𝑎௝ and 𝑏௜, we can obtain the following important results: 

𝜕𝑓
𝜕𝑎௝

ൌ െ𝜇௝
∗,

𝜕𝑓
𝜕𝑏௜

ൌ െ𝜆௜
∗ (4.42)

where 𝜇௝
∗ and 𝜆௜

∗ are Lagrange multipliers at the optimum design. 
 This information can be used to linearly approximate the change of optimum objective function due to 
the change in constraint bounds. For that purpose, we use the Taylor series expansion again. For a change 
of 𝑎௝ and 𝑏௜, the objective function at the optimum design can be expanded as 

𝑓∗൫𝑎௝ ൅ Δ𝑎௝, 𝑏௜ ൅ Δ𝑏௜൯ ൌ 𝑓∗൫𝑎௝, 𝑏௜൯ ൅
𝜕𝑓∗

𝜕𝑎௝
Δ𝑎௝ ൅

𝜕𝑓∗

𝜕𝑏௜
Δ𝑏௜ ൅ H. O. T. (4.43)

Then, the change in the objective function can be estimated by 

Δ𝑓∗ ൌ െ ෍ 𝜇௝
∗Δ𝑎௝

ெ

௝ୀଵ

െ ෍ 𝜆௜
∗Δ𝑏௜

௄

௜ୀଵ

 (4.44)

Therefore, when the constraint bounds are changed in a small amount, instead of solving the optimization 
problem again, it is possible to estimate how much the optimum objective function will change using Eq. 
(4.44).  
 Figure 4-19 shows how the change in the optimum design can be approximated using the Lagrange 
multiplier. The original optimum design is located at point A where both constraints are active: 𝑔ଵ ൌ 𝑏ଵ 
and 𝑔ଶ ൌ 𝑏ଶ. When the constraint bound of 𝑔ଶ is changed to 𝑏ଶ ൅ Δ𝑏ଶ, the true modified optimum design 
should be located at point B if the optimization problem is solved again with the new constraint bound. 
Instead, Eq. (4.44) can be used to approximate the change of the optimum objective function at point C. It 
is noted that Eq. (4.44) cannot approximate the new optimum design. It only approximates the change of 
the optimum objective function.  
 

  
Figure 4-19: Change of the optimum objective function due to the change in constraint bound.  
 
Example 4-13 
Formulate an optimization problem to minimize the cost of building a top-open container box while the 
volume of the box should be greater than 125 ftଷ. The side panel cost is $10/ftଶ, while the floor and ends 
panels are $15/ftଶ. The three design variables are the depth, length, and height of the box. (a) Formulate 
the optimization problem and solve it for the optimum design. (b) When the required volume increases to 
130 ftଷ, estimate the change in cost using the Lagrange multiplier. (c) Solve the optimization problem 
with the new constraint bound and compare the change in optimum objective function with that of (b). 
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Solution: 
(a) Let design variables are ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷሽ ൌ ሼdepth, length, heightሽ. The optimization problem can be 
formulated as 

minimize  𝑓ሺ𝐱ሻ ൌ 20𝑥ଶ𝑥ଷ ൅ 30𝑥ଵ𝑥ଷ ൅ 15𝑥ଵ𝑥ଶ
subject to 𝑔ሺ𝐱ሻ ൌ 125 െ 𝑥ଵ𝑥ଶ𝑥ଷ ൑ 0 

The Lagrangian function is defined as 

𝐿ሺ𝐱, 𝜆, 𝑠ሻ ൌ 20𝑥ଶ𝑥ଷ ൅ 30𝑥ଵ𝑥ଷ ൅ 15𝑥ଵ𝑥ଶ ൅ 𝜆ሺ125 െ 𝑥ଵ𝑥ଶ𝑥ଷ ൅ 𝑠ଶሻ 

The stationary condition of the Lagrangian function becomes 

∇𝐿ሺ𝐱, 𝜆, 𝑠ሻ ൌ 0 →  

⎩
⎪
⎨

⎪
⎧

15𝑥ଶ ൅ 30𝑥ଷ െ 𝜆𝑥ଶ𝑥ଷ ൌ 0
15𝑥ଵ ൅ 20𝑥ଷ െ 𝜆𝑥ଵ𝑥ଷ ൌ 0
30𝑥ଵ ൅ 20𝑥ଶ െ 𝜆𝑥ଵ𝑥ଶ ൌ 0

125 െ 𝑥ଵ𝑥ଶ𝑥ଷ ൅ 𝑠ଶ ൌ 0
𝑠𝜆 ൌ 0

 

The optimum design that satisfies the above KKT conditions is 𝑥ଵ
∗ ൌ 4.8075, 𝑥ଶ

∗ ൌ 7.2112, 𝑥ଷ
∗ ൌ 3.6056. 

At the optimum design, the objective function and the Lagrange multiplier are 𝑓∗ ൌ 1560, 𝜆∗ ൌ 8.320. 
 
(b) When the constraint bound increases to 130 ftଷ, its effect on the constraint bound changes from െ125 
to െ130. This is because the constraint is written in standard form. Therefore, Δ𝑏 ൌ െ5. The increase in 
the optimum objective function can be estimated by  

Δ𝑓 ൌ െ𝜆Δ𝑏 ൌ െ8.320 ൈ െ5 ൌ 41.6 

(c) The modified optimization problem is 

minimize  𝑓ሺ𝐱ሻ ൌ 20𝑥ଶ𝑥ଷ ൅ 30𝑥ଵ𝑥ଷ ൅ 15𝑥ଵ𝑥ଶ
subject to 𝑔ሺ𝐱ሻ ൌ 130 െ 𝑥ଵ𝑥ଶ𝑥ଷ ൑ 0 

The solution to the above optimization problem is 𝑓∗ ൌ 1601.3, where Δ𝑓 ൌ 41.3. Therefore, the 
approximation using the Lagrange multiplier ሺΔ𝑓 ൌ 41.6ሻ is close to that of the actual changeሺΔ𝑓 ൌ
41.3ሻ. 
 

 

Sensitivity of optimum solution to parameters 
 In optimization problems, design variables are the ones that can be changed by engineers to find an 
optimum design. However, most engineering applications have parameters, which are not design variables 
but they can be changed or the engineers want to see their effects on the optimum design. For example, 
when an engineering application includes frictional contact, the friction coefficient is uncontrollable but 
its exact value is difficult to identify. Therefore, engineers might want to see the effect of the friction 
coefficient on the optimum design. If the optimum objective is very sensitive to the friction coefficient, it 
would be necessary to identify it more carefully or use a conservative value to compensate for inaccurate 
information. As another example, Young’s modulus is an important parameter for structural simulation. 
However, Young’s modulus of steel has about 15% variability. Therefore, engineers may want to try 
different values of Young’s modulus to understand its effect on the optimum design. Other common 
parameters are constraint bounds as we discussed in the previous subsection. In the case of a stress 
constraint, for example, 𝜎௠௔௫ ൑ 𝜎୪୧୫୧୲, where 𝜎୪୧୫୧୲ is an allowable strength of a material. In practice, 
since the allowable strength has uncertainty, we may want to get an estimate of how much the optimum 
objective will change if the allowable strength is increased by going to a better grade of material.  
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 When an engineering application has uncontrollable parameters, it would be valuable to know the 
sensitivity (i.e., the gradient) of the optimum objective function with respect to the parameters. If the 
sensitivity is high, the parameter is important and needs to identify accurately or use a conservative value 
to compensate for its effect. If the sensitivity is low, the parameter will not have much effect on the 
optimum design. The Lagrange multipliers play an important role in this parameter sensitivity. In order to 
show it, it is assumed that the objective and constraints depend on a parameter 𝑝. For simplicity of 
presentation, we only consider the following optimization problem with an inequality constraint: 

minimize 𝑓ሺ𝐱, 𝑝ሻ
subject to 𝑔ሺ𝐱, 𝑝ሻ ൑ 0 (4.45)

More complicated optimization problems with equality and inequality constraints can be considered in a 
similar way. Since both objective and constraint depend on parameter 𝑝, it is obvious that the optimum 
design also depends on the parameter: 𝐱∗ሺ𝑝ሻ.  
 The objective function at the optimum design can be written as 𝑓∗ሺ𝑝ሻ ൌ 𝑓ሺ𝐱∗ሺ𝑝ሻ, 𝑝ሻ, as well as the 
constraint 𝑔∗ሺ𝑝ሻ ൌ 𝑔ሺ𝐱∗ሺ𝑝ሻ, 𝑝ሻ. Since the constraint is a function of both the parameter and the design 
variable, the sensitivity of the constraint with respect to the parameter can be written as 

𝑑𝑔
𝑑𝑝

ൌ
𝜕𝑔
𝜕𝑝

൅
𝜕𝑔
𝜕𝐱

் 𝑑𝐱
𝜕𝑝

ൌ 0 (4.46)

where 𝑑𝑔/𝑑𝑝 is the total derivative, while 𝜕𝑔/𝜕𝑝 is the partial derivative. The second term on the right-
hand side uses the chain rule of differentiation. The sensitivity of the objective function with respect to the 
parameter can be written in a similar form. By using Eqs. (4.35) and (4.46), the sensitivity of the objective 
function at the optimum design can be calculated as 

𝑑𝑓
𝑑𝑝

ൌ
𝜕𝑓
𝜕𝑝

൅
𝜕𝑓
𝜕𝐱

் 𝑑𝐱
𝜕𝑝

      ൌ
𝜕𝑓
𝜕𝑝

െ 𝜆
𝜕𝑔
𝜕𝐱

் 𝑑𝐱
𝜕𝑝

 

 ൌ
𝜕𝑓
𝜕𝑝

൅ 𝜆
𝜕𝑔
𝜕𝑝

 

(4.47)

 Equation (4.47) shows that the Lagrange multiplier is a measure of the effect of a change in the 
constraint on the objective function. Consider, for example, the constraint is given in the form of 𝑔ሺ𝐱ሻ ൌ
𝐺ሺ𝐱ሻ െ 𝑝 ൑ 0. By increasing 𝑝, we make the constraint easier to satisfy (i.e., stress limit is increased for 
stress constraint). If a constraint is relaxed, the optimum objective function can be reduced further. Since 
𝜕𝑔/𝜕𝑝 ൌ െ1, from Eq. (4.47), 𝑑𝑓/𝑑𝑝 ൌ െ𝜆. That is, the optimum objective function can be reduced by 
increasing 𝑝. In the opposite case (i.e., increasing a parameter makes the constraint more difficult to 
satisfy), 𝜆 is the marginal price that we pay in terms of an increase in the objective function for making 
the constraint more difficult to satisfy.  
 There are two special cases that are worth noting. (a) When only the objective function depends on 
the parameter, it is remarkable that the total derivative is equal to the partial derivative. That means, that 
the effect of changing the optimum position 𝐱∗ as a function of 𝑝 can be neglected. (b) When 𝑝 is the 
bound on a single constraint; that is, when the constraint can be written as  𝑔ሺ𝐱ሻ ൌ 𝐺ሺ𝐱ሻ െ 𝑝 ൑ 0, 
𝑑𝑓/𝑑𝑝 ൌ െ𝜆, which is why the Lagrange multipliers are called shadow prices. 
 
Example 4-14 
Consider the following optimization problem with an inequality constraint: 
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subject to 𝑔ሺ𝐱, 𝑝ሻ ൌ 𝑝 െ ሺ𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶሻ ൑ 0 

where 𝑝 is the square of the radius of the circle. (a) When 𝑝 ൌ 100, calculate the optimum design and 
optimum objective function along with the Lagrange multiplier. (b) Calculate the sensitivity of the 
optimum objective function with respect to the parameter 𝑝. 
 
Solution: 
The Lagrangian function and the KKT conditions can be written as 

minimize  𝐿ሺ𝐱, 𝛌, 𝐬ሻ ൌ 𝑥ଵ
ଶ ൅ 10𝑥ଶ

ଶ ൅ 𝜆ሺ𝑝 െ 𝑥ଵ
ଶ െ 𝑥ଶ

ଶ ൅ 𝑠ଶሻ 

∇𝐿ሺ𝐱, 𝜆, 𝑠ሻ ൌ 0 →  ൞

2𝑥ଵ െ 2𝜆𝑥ଵ ൌ 0
20𝑥ଶ െ 2𝜆𝑥ଶ ൌ 0

𝑝 െ 𝑥ଵ
ଶ െ 𝑥ଶ

ଶ ൅ 𝑠ଶ ൌ 0
𝜆𝑠 ൌ 0

 

The above KKT conditions can be used to find the optimum design 𝑥 ൌ ሼേඥ𝑝, 0ሽ where the objective 
function is 𝑓∗ሺ𝑝ሻ ൌ 𝑝, and its sensitivity is 𝑑𝑓∗/𝑑𝑝 ൌ 1. The sensitivity of the optimum objective 
function can also be calculated using Eq. (4.47) as 

𝑑𝑓
𝑑𝑝

ൌ
𝜕𝑓
𝜕𝑝

൅ 𝜆
𝜕𝑔
𝜕𝑝

ൌ 0 ൅ 1 ൈ 1 ൌ 1 

This result can easily be verified since for any value of 𝑝 we get that the optimum is at 𝑥ଶ
∗ ൌ 0 and 𝑥ଵ

∗ ൌ
േඥ𝑝, so 𝑓∗ሺ𝑝ሻ ൌ 𝑝. 
 

 
4.5. Exercise 

 
1. Formulate the optimization problem for each of the following problems. Identify design variables and 

objective function. 
(a) Find the aspect ratio of rectangle with the highest ratio of area to the square of the perimeter. 
(b) We need to fly to a city in Florida, rent a car, and visit Gainesville, Jacksonville, and Tampa and 
fly back from the last city you visit. What should your itinerary be to minimize your driving distance? 
(c) You need to perform a task once a month, on the same day of each month (e.g., the 13th). It is 
more inconvenient to do on a weekend. Select the day of the month to minimize the number of times 
it will fall on a weekend in one given year (not a leap year). 

2. A rectangular underground storage tank is to be constructed and installed. Specifications require that 
the volume of the tank be 1000 mଷ and that the ratio of the lengths of any two sides is no greater than 
two. The top surface of the tank is to be 3 m below the ground surface when installed. The cost of 
construction of the tank is $150/mଶ based on the surface area. Installation cost in the dollar is equal 
to 200 times the product of the area and the square of the depth of the hole to be excavated. For 
convenience, assume the tank and the hole cross-sectional area are the same, i.e., no clearance is 
required. Formulate the optimization problem to minimize the total project cost and write the result in 
standard form. 

3. A coal mining company has three coal mines and four coal cellars. The company is trucking coal 
from three mines to four cellars before shipping out of the customer. To make efficient usage of 
trucks, the total delivery distance from mines to cellars by the trucks needs to be minimized. The 
following tables show that distance between three mines (Mine number 1, 2, and 3) and four cellars 
(Cellar number A, B, C, and D). Each truck can carry two tons of coal at one time. The amount of 
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coal produced at each coal mine and the amount of coal that can be stored at each cellar are given in 
the following table. Each delivery of the coal by truck means a round trip of the distance between the 
mine and cellar, since the truck will return empty to get more coal. Assume that the company has 
enough truck so each truck can move between a selected mine and cellar only. Formulate the problem 
in standard form. Do not normalize or attempt to solve. (Hint: There are 12 design variables). 
Mine number Distance(meter) from Mine to Cellar 

Cellar A Cellar B Cellar C Cellar D
1 3500 2900 3450 1290
2 1670 4500 2390 4230
3 2340 1250 2880 3770

 
Coal Production at Mines (per day) 
1 3500 ton 
2 4000 ton 
3 4500 ton 

 
Cellar Storage Capacity (per day) 
A 2000 ton 
B 3000 ton 
C 4500 ton 
D 2500 ton 

4. Find the optimum design of the following optimization problem using graphical optimization. 

minimize
௫భ,௫మ

𝑓 ൌ െ𝑥ଵ െ 𝑥ଶ

subject to 2𝑥ଵ ൅ 3𝑥ଶ ൑ 12 
       2𝑥ଵ ൅ 𝑥ଶ ൑ 8
       𝑥ଵ, 𝑥ଶ ൒ 0 

5. Solve Example 4-5 when design variables are the outer radius 𝑅௢ and inner radius 𝑅௜. 
6. A two-bar truss as shown in the figure is under a vertical load 𝑊. The goal of the optimization 

problem is to minimize the weight of the truss. The constraints are (a) each member stress should be 
less than the yield stress 𝜎௒, (b) the tip deflection should be less than the allowable displacement 
𝑢௔௟௟௢௪௔௕௟௘, and (c) the compressive stress should be less than the buckling stress. When design 
variables are the two cross-sections, 𝐴ଵ and 𝐴ଶ, the height ℎ, and the length 𝐿, write the standard form 
of the optimization problem.  

 
7. Provide two formulations in standard form for minimizing the surface area of a cylinder of a given 

volume when the diameter and height are the design variables. One formulation should use the 
volume as equality constraint, and another use it to reduce the number of design variables. 

8. Formulate in standard form the problem of finding an open-top rectangle container with a volume of 
at least 50 and minimum surface area. 

9. You need to go from point A to point B in minimum time while maintaining a safe distance from 
point C. Formulate an optimization problem in standard normalized form to find the path with no 
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more than three design variables when 𝐴 ൌ ሺ0,0ሻ, 𝐵 ൌ ሺ10,10ሻ, 𝐶 ൌ ሺ4,4ሻ, and the minimum safe 
distance is 5. 

10. Check for the convexity of the following functions. If the function is not convex everywhere, check 
its domain of convexity. 
(a) 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ

ଷ ൅ 2𝑥ଶ
ଶ 

(b) 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 3𝑥ଵ
ଶ ൅ 2𝑥ଵ𝑥ଶ ൅ 2𝑥ଶ

ଶ െ 8 
(c) 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ

ଷ ൅ 12𝑥ଵ𝑥ଶ
ଶ ൅ 2𝑥ଶ

ଶ ൅ 5𝑥ଵ
ଶ 

11. Consider the following optimization of a quadratic objective function with a ring constraint  

minimize
௫భ,௫మ

  𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ
ଶ ൅ 10𝑥ଶ

ଶ

subject to  81 ൑ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൑ 1000 

(a) Where is the minimum? What starting points (note the plural) will not find it when using fmincon? 
What is the problem preventing fmincon to reach the minimum? 
(b) For the problem above, we found that the inner ring constraint was active, and its Lagrange 
multiplier was equal to 1. Calculate an estimate based on the Lagrange multiplier of the effect of 
changing the constraint from 81 to 79? 

12. Classify the stationary points of the following functions from the optimality criteria, then check by 
plotting them. (a) 𝑓ሺ𝑥ሻ ൌ 2𝑥ଷ ൅ 3𝑥ଶ, (b) 𝑓ሺ𝑥ሻ ൌ 3𝑥ସ ൅ 4𝑥ଷ െ 12𝑥ଶ, (c) 𝑓ሺ𝑥ሻ ൌ 𝑥ହ, and (d) 𝑓ሺ𝑥ሻ ൌ
𝑥ସ ൅ 4𝑥ଷ ൅ 6𝑥ଶ ൅ 4𝑥. 

13. Find the stationary points of the following function and classify them: 𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ ൌ െ𝑥ଵ
ଶ ൅

2𝑥ଶ𝑥ଷ ൅ 𝑥ଶ
ଶ ൅ 4𝑥ଷ

ଶ. 
14. The objective function  𝑓 ൌ 𝑥ଵ ൅ 2𝑥ଶ is to be minimized subject to the constraint that 𝑥ଶ is larger 

than െ5, and that the point is inside the circle 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൌ 𝑅ଶ. (a)  Write the Kuhn-Tucker conditions 
for the problem. (b) For 𝑅ଶ ൌ 34, check that the optimum is at 𝑥ଵ ൌ െ3, 𝑥ଶ ൌ െ5, and calculate the 
Lagrange multipliers. (c) Calculate the derivative of the optimum objective with respect to R, by 
using the Lagrange multipliers. (d) Use the equations for the derivatives of an optimum solution to 
obtain the derivatives of x and the Lagrange multiplier with respect to 𝑅. Use the results to check on 
(c). (e) Use the results to extrapolate the optimal solution for the largest value of 𝑅 for which you 
think that extrapolation makes sense. Explain. 

15. The objective function  𝑓 ൌ 3𝑥ଵ ൅ 4𝑥ଶ is to be minimized subject to the constraint that both 𝑥ଵ and 
𝑥ଶ are less than 5 in magnitude, and that the point is inside the circle 𝑥ଵ

ଶ ൅ 𝑥ଶ
ଶ ൌ 𝑅ଶ. (a)  Write the 

optimization problem in standard form. (b) For 𝑅 ൌ 5, check that the optimum is at 𝑥ଵ ൌ െ3, 𝑥ଶ ൌ
െ4, and the Lagrange multiplier associated with the circle constraint is equal to 0.5. (c) Calculate the 
derivative of the optimum objective with respect to 𝑅, by using the Lagrange multiplier. (d) Use the 
equations for the derivatives of an optimum solution to obtain the derivatives of 𝐱 and the Lagrange 
multiplier with respect to 𝑅. Use the results to check on (c). (e) Use the results to extrapolate the 
optimal solution for the largest value of 𝑅 for which you think that extrapolation makes sense. 
Explain. 

16. Given the objective function 𝑓 ൌ ሺ𝑥ଵ ൅ 𝑥ଶሻଶ/𝑥ଵ, what is the error in the forward difference 
derivatives at that point if the increments in 𝑥ଵ and 𝑥ଶ are one percent of their value? 

17. Consider the problem of minimizing the function 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ ൅ 𝑅ଶ with respect to 𝑥ଵ and 𝑥ଶ, 
subject to the constraint 𝑥ଵ

ଶ ൅ 𝑥ଶ
ଶ ൑ 𝑅ଶ. Obviously, the solution for this problem is 𝑥ଵ ൌ െ𝑅, 𝑥ଶ ൌ 0. 

(a) Write the problem in standard form. (b) Check that the solution satisfies the Kuhn-Tucker 
conditions at the optimum for 𝑅 ൌ 1. (c) Use the solution at 𝑅 ൌ 1 and the Lagrange multiplier, to 
predict what the solution will be for 𝑅 ൌ 1.5. Check how accurate is the prediction. 
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18. Consider the function 𝑓ሺ𝑥ሻ ൌ 3𝑥ସ ൅ 12𝑥ଷ ൅ 18𝑥ଶ ൅ 12𝑥. (a) Check that it has a stationary point at 
𝑥 ൌ െ1. (b) Calculate what kind of stationary point it is. (c) Specify a region where you are sure the 
function is convex. 

19. Consider the problem of minimizing the surface area of a cylinder with a required volume of at least 
250𝜋 inଷ. (a) Formulate the optimization problem in the standard form. (b) Write the optimality 
conditions (KKT conditions). Use a Lagrange multiplier only for the volume constraint. (c) At the 
optimum, the height and diameter are both 10 inches. Use this to calculate the Lagrange multiplier. 
(d) Identify the type of stationary point. (e) Calculate the sensitivity of the optimum surface area to 
the value of the volume.  

20. Consider a function 𝑓ሺ𝑥ሻ ൌ ሺ𝑥 െ 2ሻହ. (a) Check if 𝑓 has a stationary point at 𝑥 ൌ 2. (b) Classify the 
definiteness of the Hessian matrix at the stationary point, and classify the stationary point. 

21. Consider a function 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 4 െ ሺ𝑥ଵ െ 2ሻଶ െ ሺ𝑥ଶ െ 3ሻଶ. (a) Check if 𝑓 has a stationary point at 
ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ2,3ሻ. (b) Classiful the definiteness of the Hessian matrix at the stationary point, and 
classify the stationary point. 

22. Calculate the derivative of the surface area 𝑓 ൌ 2𝜋𝑟ଶ ൅ 2𝜋𝑟ℎ with respect to change in volume 𝑔 ൌ
𝑉 ൌ 𝜋𝑟ଶℎ using the Lagrange multiplier and compare to the derivative obtained by differentiating the 
exact solution. 
 

23. Consider the problem of maximizing the volume of a cylinder 𝑉 ൌ 𝜋𝑟ଶℎ with a surface area 𝑆 ൌ
2𝜋𝑟ଶ ൅ 2𝜋𝑟ℎ of no more than 150𝜋 inଶ. (a) Formulate the optimization problem in the standard 
form. (b) Write the optimality conditions (KKT conditions). Use a Lagrange multiplier only for the 
surface constraint. (c) At the optimum, the height and diameter are both 10 inches. Use this to 
calculate the Lagrange multiplier. (d) Identify the type of stationary point. (e) Calculate the sensitivity 
of the optimum volume to the value of the surface area constraint. 

24. An engineering design problem is formulated as  

minimize
⬚

𝑓ሺ𝐱ሻ ൌ 𝑥ଵ
ଶ ൅ 2𝑥ଶ

ଶ െ 5𝑥ଵ െ 2𝑥ଶ ൅ 10 

subject to ℎሺ𝐱ሻ ൌ 𝑥ଵ ൅ 2𝑥ଶ െ 3 ൌ 0 
                    𝑔ሺ𝐱ሻ ൌ 3𝑥ଵ ൅ 2𝑥ଶ െ 6 ൑ 0 

(a) Write KKT necessary condition. (b) How many cases are there to be considered? Identify those 
cases. (c) Find the solution for the case where 𝑔ሺ𝐱ሻ is active. Is this an acceptable case? (d) Suppose 
the Lagrange multiplier for ℎሺ𝐱ሻ ൌ 0 is 𝜇 ൌ െ2 and that for 𝑔ሺ𝐱ሻ ൑ 0 is 𝜆 ൌ 1. If the constant in 
ℎሺ𝐱ሻ is changed to 3.2 and the constant in 𝑔ሺ𝐱ሻ is changed to 6.2, approximate the change of the 
optimum objective. 
 

25. An engineering design problem is formulated as  

minimize
⬚

𝑓ሺ𝐱ሻ ൌ 𝑝𝑥ଵ ൅ 4𝑥ଶ 

subject to 𝑥ଵ െ 3𝑥ଶ ൒ െ10𝑝 
                    𝑥ଵ ൅ 𝑥ଶ ൑ 6 
                    𝑥ଵ െ 𝑥ଶ ൑ 2 
                    𝑥ଵ ൅ 3𝑥ଶ ൒ 6 

where 𝑥ଵ and 𝑥ଶ non-negative. Use the Kuhn-Tucker conditions to check for (not solve for!) the 
optimality of the solution 𝑥ଵ ൌ 2, 𝑥ଶ ൌ 4 for 𝑝 ൌ 1. (Hint: you do not need to worry about inactive 
constraints in the optimality conditions!). Then, estimate the optimal objective function for 𝑝 ൌ 1.1 
without solving the problem again. Estimate how much we can change 𝑝 before a similarly obtained 
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estimate of the optimum objective function will not work. 
 

26. Classify the stationary points of the following functions: (a) 𝑓ሺ𝑥ሻ ൌ 2𝑥ଷ ൅ 3𝑥ଶ െ 6𝑥 ൅ 7, (b) 𝑓ሺ𝑥ሻ ൌ
𝑥, (c) 𝑓ሺ𝑥ሻ ൌ 𝑥ସ, (d) 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 7 ൅ 2ሺ𝑥ଵ

ଷ ൅ 𝑥ଶ
ଷሻ െ 6𝑥ଵ𝑥ଶ. 

 
 
27. For the given rational function, determine (a) all stationary points, and (b) check whether the 

stationary points are strictly local minima using the sufficient conditions 

𝑓 ൌ
𝑥ଵ ൅ 𝑥ଶ

3 ൅ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൅ 𝑥ଵ𝑥ଶ
 

28. A design problem is formulated as 

minimize  𝑓ሺ𝐱ሻ ൌ ሺ𝑥ଵ െ 8ሻଶ ൅ ሺ𝑥ଶ െ 5ሻଶ

subject to 𝑔ଵሺ𝐱ሻ ൌ 2𝑥ଵ െ 3𝑥ଶ െ 4 ൑ 0
                    𝑔ଶሺ𝐱ሻ ൌ 3𝑥ଵ ൅ 3𝑥ଶ െ 16 ൑ 0 

(a) Construct the Lagrangian and derive the equations for the KKT necessary conditions. (b) How 
many cases are there to be considered? (c) Consider the cases in which the second inequality 
constraint 𝑔ଶሺ𝐱ሻ is active. Find the point that satisfies the KKT necessary conditions. 

29. Consider the following design optimization problem: 

minimize  𝑓ሺ𝐱ሻ ൌ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ െ 4𝑥ଵ ൅ 4 
subject to 𝑔ଵሺ𝑥ሻ ൌ െ𝑥ଵ ൑ 0 
                    𝑔ଶሺ𝑥ሻ ൌ െ𝑥ଶ ൑ 0 
                    𝑔ଷሺ𝑥ሻ ൌ 𝑥ଶ െ ሺ1 െ 𝑥ଵሻଷ ൑ 0 

(a) Find the optimum point graphically. (b) Show that the optimum point does not satisfy the KKT 
condition. Explain why. 

30. Consider the following optimization problem: 

minimize  𝑓ሺ𝐱ሻ ൌ ሺ𝑥ଵ െ 3ሻଶ ൅ ሺ𝑥ଶ െ 3ሻଶ 
subject to 𝑔ሺ𝑥ሻ ൌ 2𝑥ଵ ൅ 𝑥ଶ െ 2 ൑ 𝑐 
                   െ𝑥ଵ ൑ 0, െ𝑥ଶ ൑ 0 

(a) Find an optimum point and objective function when 𝑐 ൌ 0. (b) Estimate the objective function 
when 𝑐 changes to 0.005, 0.010, and 0.040. Compare these estimations with the true optimum 
objective functions. 

31. Answer true or false of the following statements: 
(a) A function can have a negative value at its maximum point. 
(b) If a constant is added to a function, the location of its minimum point can change. 
(c) If the curvature of a function is negative at a stationary point, then the point is a maximum. 

32. Find the stationary points of the following functions and classify them: (a) 𝑓ሺ𝐱ሻ ൌ 𝑥ଵ
ଶ ൅ 4𝑥ଵ𝑥ଶ ൅

2𝑥ଵ𝑥ଷ െ 7𝑥ଶ
ଶ െ 6𝑥ଶ𝑥ଷ ൅ 5𝑥ଷ

ଶ, (b) 𝑓ሺ𝐱ሻ ൌ 𝑥ଵ
ଶ ൅ 2𝑥ଶ𝑥ଷ ൅ 𝑥ଶ

ଶ ൅ 4𝑥ଷ
ଶ, and (c) 𝑓ሺ𝐱ሻ ൌ 40𝑥ଵ ൅ 𝑥ଵ

ଶ𝑥ଶ ൅
𝑥ଶ

ଶ/𝑥ଵ. 
33. Derive the first-order necessary conditions of a constrained optimization problem with equality 

constraints using the Lagrange multiplier method. 
34. For 𝑓ሺ𝑥, 𝑝ሻ ൌ sin 𝑥 ൅ 𝑝𝑥, 0 ൑ 𝑥 ൑ 2𝜋, find the minimum for 𝑝 ൌ 0, estimate the derivative 𝑑𝑓∗/𝑑𝑝, 

and check by solving again for 𝑝 ൌ 0.1 and comparing to finite difference derivative. 
35. An optimization problem is to minimize the surface area of a cylinder while the volume of the 

cylinder must be larger than 128𝜋. Calculate the derivative of the cylinder surface area with respect 
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to change in volume using the Lagrange multiplier and compare to the derivative obtained by 
differentiating the exact solution. 

 
 
 
 


