
 5-147

5. Numerical Optimization Algorithms

5.1. Introduction

 Although the optimality criteria in Section 4.4 are powerful tools to find an optimum design, they are
limited to apply for solving general engineering optimization problems. They can only be applicable when
both the objective and constraints are available as an explicit function of design variables. They require to
solve a system of equations, which are composed of the gradients of objective and constraint functions.
Therefore, solving optimality criteria is only possible when the analytical expressions of the objective and
constraint functions are available. This is a significant limitation because most advanced engineering
applications use numerical methods to solve for system responses, from which the quantity of interest
(QoI) can be calculated. The finite element method, computational fluid dynamics, and rigid-body
dynamics are a short list of examples of numerical methods. For a given design, it is possible to evaluate
the values of objective and constraint functions, and possibly their gradients, but their analytical
expressions are mostly not available. Due to this critical limitation of optimality criteria, the optimality
criteria are used only for limited applications, such as structural optimization [45, 46] and topology
optimization [47, 48].
 Most engineering optimization problems are solved using numerical methods. Still, the optimality
criteria can be used to check the validity of the optimum design. In general, numerical optimization
algorithms can be categorized into two groups. The first group of algorithms starts from a design and
moves to a new design that can reduce the objective function while satisfying all constraints. This process
is repeated until the algorithm cannot find a new design that is better than the previous one. These
algorithms are the main focus of this chapter. In order to find a better design, not only the value of
functions but also the gradients are used to find the direction to change the design. Because of this reason,
the first group of algorithms is referred to as gradient-based algorithms.
 The second group of optimization algorithms does not require the gradient information, which is why
they are referred to as gradient-free algorithms. These algorithms explore the design space until they
cannot find a design that can improve the objective function while satisfying constraints. Sometimes these
algorithms are referred to as a global optimization algorithm, but this name can mislead as if they can
guarantee to find a global optimum design. As we discussed in Section 4.4, it is possible to guarantee the
existence of a global optimum design, but it does not mean that we can always find it. Unfortunately,
there is no numerical optimization algorithm that can guarantee to find a global optimum for general
problems. A proper name would be global search algorithms, as they tend to explore the entire design
space rather than moving from the current design to a better one. We will discuss global search algorithms
in Chapter 6.
 In numerical optimization algorithms, simulation provides the values of the objective and constraint
functions for given design variable. Gradient information is also supplied to the optimization algorithms,
which can be obtained using sensitivity analysis [49] or finite difference. Then, the optimization
algorithms, discussed in this chapter, calculate the best possible design of the problem. Each algorithm
has its own advantages and disadvantages. The performance of an optimization algorithm critically
depends on the characteristics of the design problem and the types of objective and constraint functions.
 As mentioned earlier, since the entire graphs of the objective and constraint functions are not
available, optimization algorithms can make a decision based on the current function value and its
sensitivity. Referring to Figure 5-1, let us assume that the current design is located in Point A. Since the
gradient of the function is negative at this point, the function will decrease if the design increases.
Therefore, the numerical algorithm gradually increases the design until it reaches Point B, where the

 5-148

gradient becomes zero. At Point B, the objective function will increase if the design is either increase or
decrease. Therefore, Point B is claimed as an optimum design.
 It is interesting to note that the optimum design at Point B is obtained because the optimization
algorithm starts from Point A. It was a shear luck that Point B happens to be the global optimum in this
case. If the optimization algorithm starts from Point C, it would end up Point D as an optimum design.
Therefore, there is no guarantee to find the global optimum design. A real challenge is that even if the
algorithm find the global optimum design at Point B, there is no way to tell if that is the global optimum.
In order to increase the chance of finding the global optimum, it would be necessary to repeat the
optimization algorithm with different starting points.

Figure 5-1: Finding an optimum design from a starting point.

5.2. Overview of the numerical optimization process

 Table 5-1 shows the procedure of basic optimization algorithms. As mentioned before, gradient-based
numerical optimization algorithms start from an initial design and move to a new design that is better than
the previous one. Therefore, it is necessary to choose the initial design by the users (Step 1). The initial
design may or may not belong to the feasible set, but it is always good to start with a design within the
feasible set. For a given design, the optimization algorithm evaluates the values of the objective and
constraint functions (Step 2). In most optimization problems, it is considered that the computational cost
of the optimization algorithm itself is ignorable compared to that of the evaluation of objective and
constraint functions. Therefore, this step takes the major part of computational cost. The algorithm also
requires calculating gradient information. Some software has the capability of calculating the gradient
information using an adjoint method [49], but most software calculates function values but not gradient
information. In such a case, a finite difference method is used to approximate the gradient information,
where each design variable is perturbed by a small amount and the simulation is repeated. Since each
perturbation requires a full simulation, gradient calculation causes major computational costs. Once the
function values and gradient information are available, optimization algorithms calculate the design
change (Step 3). This is the key step for optimization algorithms. Different algorithms have different ways
of calculating design change Δ𝐱ሺ௞ሻ, which affects the convergence of the algorithm. Once the design is
changed, optimization algorithms check if the design is converged (Step 4). It is natural to use optimality
criteria to determine the convergence, but various other criteria can be used for this purpose. For example,
if the objective and design variables do not change for several iterations, it means that the algorithm
cannot improve the objective anymore and is converged. Also, if the algorithm failed to converge within
the maximum number of function evaluations or the maximum number of iterations, it may stop without

 5-149

convergence. If the algorithm is not converged, the design is updated using Δ𝐱ሺ௞ሻ (Step 5) and move to
the next iteration (Steps 6).

Table 5-1: Procedure of basic optimization algorithms

Step Procedure Comment

1 Start with 𝐱ሺ௞ሻ with 𝑘 ൌ 0 Initial design must be given

2 Evaluate function values and their gradients: 𝑓ሺ௞ሻ, 𝑔௜
ሺ௞ሻ, ℎ௝

ሺ௞ሻ, ∇𝑓ሺ௞ሻ, ∇𝑔௜
ሺ௞ሻ, ∇ℎ௝

ሺ௞ሻ

3
Using information from Step 2, determine design
change Δ𝐱ሺ௞ሻ

4 Check for the termination condition Stop if converged

5 Update design: 𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ Δ𝐱ሺ௞ሻ

6 Increase 𝑘 ൌ 𝑘 ൅ 1 and go to Step 2 Design iteration

 Among the steps shown in Table 5-1, the key step in optimization is the determination of design
change Δ𝐱ሺ௞ሻ in Step 3. In most algorithms, the design change is further decomposed into (a) the direction
and (b) the magnitude of the design change. The former is often called the search direction and the latter
is referred to as the step size. Therefore, the design change can be written as

Δ𝐱ሺ௞ሻ ൌ 𝛼௞𝐝ሺ௞ሻ (5.1)

where 𝛼௞ is the step size and 𝐝ሺ௞ሻ is the search direction. The search direction is calculated in such a way
that the objective function initially decreases along the direction. Due to nonlinearity, however, the
function may increase if the design is changed too much. Therefore, the step size determines how much
the design should change before the objective function increases again.

5.3. Determination of step size

Descent direction
 In general, the search direction is not unique, but not any direction can be a search direction.
Therefore, it would be necessary to determine the condition that a search direction must satisfy. It is
obvious that the search direction must reduce the objective function. Let us consider an unconstrained
optimization problem to minimize the objective function 𝑓ሺ𝐱ሻ. The required condition is that the objective
function should decrease after iteration: 𝑓൫𝐱ሺ௞ାଵሻ൯ ൏ 𝑓ሺ𝐱ሺ௞ሻሻ. This condition is used in the following
Taylor series expansion of 𝑓൫𝐱ሺ௞ାଵሻ൯ at 𝐱ሺ௞ሻ as

𝑓൫𝐱ሺ௞ାଵሻ൯ ൌ 𝑓൫𝐱ሺ௞ሻ൯ ൅ ∇𝑓൫𝐱ሺ௞ሻ൯
்

Δ𝐱ሺ௞ሻ ൅ H. O. T.

 ≅ 𝑓൫𝐱ሺ௞ሻ൯ ൅ 𝐜ሺ௞ሻ்
Δ𝐱ሺ௞ሻ ൏ 𝑓൫𝐱ሺ௞ሻ൯

(5.2)

where 𝐜ሺ௞ሻ ൌ ∇𝑓൫𝐱ሺ௞ାଵሻ൯ is the gradient of the objective function. In order to satisfy the inequality, the
descent direction should satisfy the following condition:

𝐜ሺ௞ሻ்
Δ𝐱ሺ௞ሻ ൏ 0

𝛼௞𝐜ሺ௞ሻ்
𝐝ሺ௞ሻ ൏ 0

(5.3)

The search direction that satisfies Eq. (5.3) is called the descent direction. Knowing that the objective
function increases in the direction of 𝐜ሺ௞ሻ, the angle between 𝐜ሺ௞ሻ and 𝐝ሺ௞ሻ must be greater than 90°.

Example 5-1
An objective function is given as 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ

ଶ ൅ 3𝑥ଵ𝑥ଶ െ 2𝑥ଶ
ଶ. When 𝐱 ൌ ሼ2,0ሽ is the location of the

current design, plot the descent directions.

 5-150

Solution:
At the current design, the gradient of the objective function becomes

 𝐜ሺ௞ሻ ൌ ൜
2𝑥ଵ ൅ 3𝑥ଶ
3𝑥ଵ െ 4𝑥ଶ

ൠ ൌ ቄ4
6

ቅ

Therefore, the descent direction is those vectors that have an angle greater than 90°. Figure 5-2 shows
possible descent directions. At 𝐱 ൌ ሼ2,0ሽ, the objective function has 𝑓 ൌ 4. The gradient 𝐜ሺ௞ሻ of the
objective function is normal to the tangent plane. The object function increases along the direction of the
gradient. Then, all directions below the tangent plane are descent directions.

Figure 5-2: Descent directions.

 Since there are infinitely many descent directions, various optimization algorithms were developed
based on how to determine the search direction 𝐝ሺ௞ሻ. It seems that 𝐝ሺ௞ሻ ൌ െ𝐜ሺ௞ሻ is the best search
direction as the objective function creases fastest in this direction. However, we will be shown in the next
section, it turns out that it is not an efficient direction. This is because the objective function is nonlinear
and the best descent direction may change at different designs. Different numerical optimization
algorithms will be discussed in Sections 5.4 and 5.5.

Step size termination criterion
 The determination of step size 𝛼௞ is independent of the search direction. For the moment, let us
assume that the search direction 𝐝ሺ௞ሻ is given. The goal of step size determination is to find 𝛼௞ that
minimizes the objective function in the direction of 𝐝ሺ௞ሻ. That is, the following 1D optimization problem
needs to be solved for the step size:

minimize 𝜙ሺ𝛼௞ሻ ≡ 𝑓ሺ𝐱ሺ௞ሻ ൅ 𝛼௞𝐝ሺ௞ሻሻ (5.4)

As shown in Figure 5-3, the current design 𝐱ሺ௞ሻ is at the y-intercept 𝛼௞ ൌ 0. The objective function has a
negative slope at the current design because the search direction 𝐝ሺ௞ሻ is a descent direction. The goal is to
find that step size 𝛼௞ that minimizes 𝜙ሺ𝛼௞ሻ.
 Similar to the optimality criteria, the minimum point must satisfy 𝜙ᇱ ൌ 0 and 𝜙ᇱᇱ ൐ 0. Therefore, the
following condition can be obtained:

𝜙ᇱ ൌ
𝜕𝑓

𝜕𝐱ሺ௞ାଵሻ

் 𝜕𝐱ሺ௞ାଵሻ

𝜕𝛼
ൌ 𝐜ሺ௞ାଵሻ்

𝐝ሺ௞ሻ ൌ 0 (5.5)

 5-151

That is, the minimum point is when the search direction is perpendicular to the gradient of the objective
function. The above condition is called the step size termination criterion. The optimum step size 𝛼௞
should satisfy this condition.

Figure 5-3: Determination of step size in 1D line search.

Example 5-2
In Example 5-1, let the descent direction is chosen as 𝐝ሺ௞ሻ ൌ ሼെ4, െ6ሽ் at the current design 𝐱ሺ௞ሻ ൌ
ሼ2,0ሽ். Find 1D line search to determine the step size 𝛼௞ and new design 𝐱ሺ௞ାଵሻ

Solution:
The step size termination criterion in Eq. (5.5) can be written as

𝐜ሺ௞ାଵሻ்
𝐝ሺ௞ሻ ൌ െ4ሺ2𝑥ଵ ൅ 3𝑥ଶሻ െ 6ሺ3𝑥ଵ െ 4𝑥ଶሻ ൌ 0

The new design point can be written as 𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ 𝛼௞𝐝ሺ௞ሻ ൌ ሼ2 െ 4𝛼௞, െ6𝛼௞ሽ். After substituting
this point into the step size termination criterion, we have

𝐜ሺ௞ାଵሻ்
𝐝ሺ௞ሻ ൌ െ4൫2ሺ2 െ 4𝛼௞ሻ ൅ 3ሺെ6𝛼௞ሻ൯ െ 6ሺ3ሺ2 െ 4𝛼௞ሻ െ 4ሺെ6𝛼௞ሻሻ ൌ 0

The above equation can be solved for 𝛼௞ ൌ 1.625. Therefore, the new design point is

𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ 𝛼௞𝐝ሺ௞ሻ ൌ ሼ2 െ 4𝛼௞, െ6𝛼௞ሽ் ൌ ሼെ4.5, െ9.75ሽ்

Although 𝐱ሺ௞ାଵሻ minimizes the objective function in the direction of 𝐝ሺ௞ሻ, it is not the minimum point of
the objective function. This can be verified by calculating the gradient of the objective function in this
design, as

𝐜ሺ௞ାଵሻ ൌ ൜
2𝑥ଵ ൅ 3𝑥ଶ
3𝑥ଵ െ 4𝑥ଶ

ൠ ൌ ቄെ38.25
25.5

ቅ

Therefore, 𝐱ሺ௞ାଵሻ does not satisfy the KKT condition, and the objective function can further be reduced
by moving to a new descent direction.

 Although it is best to choose the step size that satisfies the termination criterion, it is unnecessary to
find the exact minimum point. This is because it is the minimum only in the direction of 𝐝ሺ௞ሻ. Once we
move to 𝐱ሺ௞ሻ ൅ 𝛼௞𝐝ሺ௞ሻ, the objective function can be reduced in other directions as well. Therefore,
instead of wasting computational resources in finding an accurate minimum in 1D line search, it might be
more efficient to approximate it.
 In this section, we assume that the search direction 𝐝ሺ௞ሻ is given and would like to determine the step
size 𝛼௞. There are many algorithms available to determine the step size. Some algorithms are based on
reducing the intervals where the optimum step size exists, while other algorithms are approximating the

 5-152

objective function along the search direction as a simple polynomial function and finding the optimum
step size from it. In this section, we briefly introduce an example of these two types of algorithms. For
detailed discussions of step-size determination methods, readers are referred to the book of Arora [39].

Interval reduction method
 The first group of algorithms starts from a range of 𝛼 where the optimum 𝛼௞ is within the range. It
may not be straightforward to determine an appropriate range. A too-large range may slow the process of
finding the optimum, while a too-small range may miss it. An important assumption in determining the
range is that the objective function shows unimodal behavior within the interval. That is, the objective
function initially decreases, and after the optimum step size 𝛼௞, it increases again. Since different
objective functions have different behaviors, it might be difficult to determine the range that works for
general functions. As mentioned before, however, since finding the exact optimum 𝛼௞ is not critical, the
range is often determined heuristically.
 Once the initial range is determined, the interval is gradually reduced by removing those sub-intervals
that do not have optimum 𝛼௞. This is done by computing the objective function at different 𝛼’s and
comparing their values. For example, the equal interval search method is to divide the range into 𝑛
intervals, to evaluate the function values starting from the first interval, and to stop when 𝜙൫𝛼௝ିଵ൯ ൐
𝜙൫𝛼௝൯ and 𝜙൫𝛼௝ାଵ൯ ൐ 𝜙൫𝛼௝൯. Then, the range is reduced to ሾ𝛼௝ିଵ, 𝛼௝ାଵሿ, and the process is repeated until
the range becomes smaller than a threshold. This process is computationally expensive as it requires
multiple simulations. The major disadvantage is that the samples in the previous interval cannot be used
in the refined interval.
 Among different interval reduction methods, the golden section search method is the most popular
and efficient one. This method chooses the sample locations in such a way that the samples in the
previous interval can be reused in the refined interval. It is a variable interval method, where the interval
size is reduced in a constant ratio. With reference to Figure 5-4, let the interval length at 𝑘th iteration be
𝑙ሺ௞ሻ. The function values are evaluated at the two endpoints and two inside points. The two internal points
𝛼ଷ and 𝛼ସ are located at the same distance from the two ends. The reduced interval is selected depending
on function values at these sample locations. If 𝜙ሺ𝛼ଷሻ ൏ 𝜙ሺ𝛼ସሻ, then the minimum lies between 𝛼ଵ and
𝛼ସ, and thus, the new interval becomes 𝑙ሺ௞ାଵሻ ൌ 𝛼ସ െ 𝛼ଵ. If 𝜙ሺ𝛼ଷሻ ൐ 𝜙ሺ𝛼ସሻ, then the minimum lies
between 𝛼ଷ and 𝛼ଶ, and thus, the new interval becomes 𝑙ሺ௞ାଵሻ ൌ 𝛼ଶ െ 𝛼ଷ. Figure 5-4 shows the case of
𝜙ሺ𝛼ଷሻ ൏ 𝜙ሺ𝛼ସሻ. This process is repeated until the interval size is smaller than a predetermined threshold.
 In the golden section search, the internal two points (𝛼ଷ and 𝛼ସ) are chosen in such a way that these
points can be reused in the next iteration with a reduced interval. As shown in Figure 5-4, 𝛼ଷ becomes the
sample point in the next iteration. Therefore, only one additional point 𝛼ହ is required in each iteration,
and the interval is reduced to 𝑙ሺ௞ାଵሻ ൌ 𝑟𝑙ሺ௞ሻ. In order to reuse 𝛼ଷ, it is required that 𝑟𝑙ሺ௞ାଵሻ ൌ ሺ1 െ 𝑟ሻ𝑙ሺ௞ሻ.
This requirement ends up being a quadratic equation 𝑟ଶ ൅ 𝑟 െ 1 ൌ 0, whose positive root is 𝑟 ൌ ሺെ1 ൅
√5ሻ/2 ൌ 0.618. Thus the two internal points are located at a distance of 0.618𝑙 or 0.382𝑙 from either end
of the interval.

 5-153

Figure 5-4: Interval reduction in the golden section search method.

Quadratic interpolation method
 The second group of algorithms approximates the objective function as a simple polynomial. For
example, the quadratic interpolation method evaluates the objective function at three step sizes, 𝛼ଵ, 𝛼ଶ,
and 𝛼ଷ. Then, the function is approximated by a quadratic polynomial 𝜙෠ሺ𝛼ሻ ൌ 𝑎𝛼ଶ ൅ 𝑏𝛼 ൅ 𝑐. Since the
polynomial has three coefficients, the three sample points are enough to determine the unknown
coefficients. From the KKT condition in Chapter 4, the minimum point can be identified using the
derivative information. That is, 𝜙෠ᇱሺ𝛼ሻ ൌ 2𝑎𝛼 ൅ 𝑏 ൌ 0 and 𝜙෠ᇱᇱሺ𝛼ሻ ൌ 2𝑎 ൐ 0. From these two conditions,
we can obtain the optimum step size 𝛼∗ ൌ െ𝑏/2𝑎 with 𝑎 ൐ 0 and 𝑏 ൏ 0. Figure 5-5 shows the quadratic
approximation of the objective function and the approximate optimum step size.

Figure 5-5: Quadratic approximation for step size determination.

Example 5-3
In Example 5-1, let the descent direction is chosen as 𝐝ሺ௞ሻ ൌ ሼെ4, െ6ሽ் at the current design 𝐱ሺ௞ሻ ൌ
ሼ2,0ሽ். Use the quadratic interpolation method to determine the step size 𝛼௞ and new design 𝐱ሺ௞ାଵሻ. Use
the following three points to sample the objective function: 𝛼 ൌ 0, 1, and 2.

Solution:
The new design point can be written as 𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ 𝛼௞𝐝ሺ௞ሻ ൌ ሼ2 െ 4𝛼௞, െ6𝛼௞ሽ். At the three sample
points, the objective function has the following values: 𝜙ሺ0ሻ ൌ 4, 𝜙ሺ1ሻ ൌ െ32, 𝜙ሺ2ሻ ൌ െ36. These three
samples are used to approximate a quadratic function 𝜙෠ሺ𝛼ሻ ൌ 𝑎𝛼ଶ ൅ 𝑏𝛼 ൅ 𝑐 ൌ 16𝛼ଶ െ 52𝛼 ൅ 4.
Therefore, the optimum step size is 𝛼∗ ൌ െ𝑏/2𝑎 ൌ 1.625, which happens to be the same as the optimum
step size in Example 5-2. This is because the original objective function is a quadratic polynomial.
Therefore, the new design point is

 5-154

 𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ 𝛼௞𝐝ሺ௞ሻ ൌ ሼ2 െ 4𝛼௞, െ6𝛼௞ሽ் ൌ ሼെ4.5, െ9.75ሽ்

 When the objective function is a quadratic function of design variables, the step size of the line search
can be calculated analytically. Consider the following objective function is a quadratic form:

𝑓ሺ𝐱ሻ ൌ
1
2

𝐱்𝐇𝐱 െ 𝐱்𝐛 (5.6)

where 𝐇 is the Hessian matrix and 𝐛 is a constant vector. The gradient of the objective function can be
written as 𝐜 ൌ 𝐇𝐱 െ 𝐛. From the KKT condition, the minimum of the objective function is equivalent to
solving the linear system of equation 𝐇𝐱 ൌ 𝐛. When the search direction 𝐝 is given, the design can be
updated to 𝐱 ൅ 𝛼𝐝. By substituting this new design into the objective function, we have

𝑓ሺ𝐱 ൅ 𝛼𝐝ሻ ൌ
1
2

ሺ𝐱 ൅ 𝛼𝐝ሻ்𝐇ሺ𝐱 ൅ 𝛼𝐝ሻ െ ሺ𝐱 ൅ 𝛼𝐝ሻ்𝐛 (5.7)

By differentiating this with respect to 𝛼, we can obtain the optimum step size as

𝛼 ൌ െ
𝐝்𝐜

𝐝்𝐇𝐝
൐ 0 (5.8)

Although this step size is only true for a quadratic function, it can be used for general nonlinear function
as we can approximate them using a quadratic function when the design change is small.

5.4. Unconstrained optimization algorithms

 When there are no constraints on the design problem, it is referred to as an unconstrained optimization
problem. Even if most engineering problems have constraints, these problems can be transformed into
unconstrained ones by using the penalty method, or the Lagrange multiplier method. The unconstrained
optimization problem sometimes contains the lower and upper limits of a design variable, since this type
of constraint can be treated easily. The standard form of an unconstrained optimization problem can be
written as

minimize 𝑓ሺ𝐱ሻ (5.9)

In the standard numerical optimization algorithms, the optimum design is found iteratively. Let the
superscript ሺ𝑘ሻ be an iteration counter, the design at 𝑘 ൅ 1th iteration is updated by 𝑥ሺ௞ାଵሻ ൌ 𝑥ሺ௞ሻ ൅
𝛼௞𝐝ሺ௞ሻ. In the previous section, the methods of determining the optimum step size 𝛼௞ was discussed
assuming that the search direction 𝐝ሺ௞ሻ is given. In this section, various methods of determining the search
direction 𝐝ሺ௞ሻ will be discussed. As mentioned before, there are infinitely many search directions.
Therefore, the performance of optimization algorithms depends on the selection of the search direction.

Steepest descent method
Since the search direction needs to be a descent direction, it is intuitive to choose the direction that
reduces the objective function the most. It turns out that the objective function increases fastest along the
direction of its gradient. This is obvious from the definition of the gradient. It can also be shown that the
gradient is normal to the hypersurface of 𝑓ሺ𝐱ሻ ൌ constant. The surface shown in Figure 5-6 represents
𝑓ሺ𝐱ሻ ൌ constant in 2D design space. Although we cannot plot the surface in a higher-dimensional space,
we can name it a hypersurface. On the surface, we can define a parametric curve 𝐱ሺ𝑠ሻ, where 𝑠 is a
parametric coordinate. Then, a tangent vector 𝐭ሺ𝑠ሻ of the curve can be defined as 𝐭ሺ𝑠ሻ ൌ 𝑑𝐱/𝑑𝑠. That is,

 5-155

the derivative of the coordinate on the curve with respect to the parametric coordinate 𝑠. With the
definition of the tangent vector, the derivative of the objective function with respect to 𝑠 can be defined as

𝑑𝑓
𝑑𝑠

ൌ
𝑑𝑓
𝑑𝐱

் 𝑑𝐱
𝑑𝑠

ൌ 𝐜்𝐭 ൌ 0 (5.10)

This result is expected as the objective function remains constant along the curve. An important
observation from this equation is that the gradient vector 𝐜 is perpendicular to the tangent vector 𝐭.
Therefore, the normal vector to the hypersurface of 𝑓ሺ𝐱ሻ ൌ constant is the direction that increases the
objective function fastest.

Figure 5-6: Gradient of objective function.

 With this observation, the steepest descent method chooses the negative of the gradient as a search
direction:

𝐝ሺ௞ሻ ൌ െ𝐜ሺ௞ሻ (5.11)

First, this search direction satisfies the descent condition: 𝐜ሺ௞ሻ்
𝐝ሺ௞ሻ ൌ െฮ𝐜ሺ௞ሻฮ

ଶ
൏ 0. This seems the best

direction for optimization, but it turns out that this is not a good strategy due to the nonlinearity of the
objective function. Especially the convergence of this strategy becomes slow near the optimum point.
This is because the search directions in the consecutive two iterations are perpendicular. In order to show
this, consider the step-size termination criterion:

𝐜ሺ௞ାଵሻ்
𝐝ሺ௞ሻ ൌ െ𝐜ሺ௞ାଵሻ்

𝐜ሺ௞ሻ ൌ 0 (5.12)

Therefore, 𝐜ሺ௞ାଵሻ and 𝐜ሺ௞ሻ are perpendicular. This makes the search directions move in a zigzag pattern
and slows the convergence. The reason for a slow convergence is that the search direction is determined
based on the current information, not using information from the previous iterations. In addition, only the
first-order derivatives are used in determining the search direction.

Example 5-4
Consider an elliptical objective function 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ

ଶ ൅ 𝑟𝑥ଶ
ଶ. When the initial design is 𝐱ሺ଴ሻ ൌ ሼ𝑟, 1ሽ,

show the trajectory of design changes using the steepest descent method. The step size can be calculated
using the step-size termination criterion in Eq. (5.5). Plot the contour of the objective function along with
the trajectory of design change when 𝑟 ൌ 10.

Solution:
For the given objective function, the gradient vector can be calculated as

 5-156

𝐜ሺ௞ሻ ൌ ቄ2𝑥ଵ
ሺ௞ሻ, 2𝑟𝑥ଶ

ሺ௞ሻቅ
்

Therefore, at the initial design, 𝐱ሺ଴ሻ ൌ ሼ𝑟, 1ሽ, the gradient vector and the search direction become 𝐜ሺ଴ሻ ൌ
ሼ2𝑟, 2𝑟ሽ் and 𝐝ሺ଴ሻ ൌ െ𝐜ሺ଴ሻ. Then, at the next iteration, 𝑘 ൌ 1, the design becomes 𝐱ሺଵሻ ൌ ሼ𝑟 െ 2𝑟𝛼, 1 െ
2𝑟𝛼ሽ, and the gradient becomes 𝐜ሺଵሻ ൌ ሼ2𝑟 െ 4𝑟𝛼, 2𝑟 െ 4𝑟ଶ𝛼ሽ். Therefore, the step-size termination
criterion can be used to determine the optimum step size:

𝐜ሺଵሻ்
𝐝ሺ଴ሻ ൌ 2𝑟ሺ2𝑟 െ 4𝑟𝛼ሻ ൅ 2𝑟ሺ2𝑟 െ 4𝑟ଶ𝛼ሻ ൌ 0 → 𝛼଴ ൌ

1
𝑟 ൅ 1

Therefore, the design at 𝑘 ൌ 1 can be determined as

𝐱ሺଵሻ ൌ ሼ𝑟 െ 2𝑟𝛼, 1 െ 2𝑟𝛼ሽ ൌ
𝑟 െ 1
𝑟 ൅ 1

ሼ𝑟, െ1ሽ

This process is repeated for 𝑘 ൌ 2, 3, ⋯ to obtain the general formulation of the updated design as

𝐱ሺ௞ሻ ൌ ൬
𝑟 െ 1
𝑟 ൅ 1

൰
௞

ሼ𝑟, ሺെ1ሻ௞ሽ

The following Matlab code plots the contour of the objective function and the trajectory of design changes
as shown in Figure 5-7. For the quadratic objective function, it is possible to find the optimum design if
the initial design is located along the axis of each design variable because then the initial descent direction
is toward the optimum design 𝐱∗ ൌ ሼ0,0ሽ. However, if the initial design is not on the axis, the descent
direction is misaligned with the optimum design. Therefore, although the updated designs move toward
the optimum design, the show zigzag pattern due to the orthogonal property of two consecutive descent
directions.

r=10; x0=[r 1];

for k=1:10

 x(k,:)=((r-1)/(r+1))^k*[r (-1)^k];

end

x = [x0; x];

figure(1);hold on; axis equal;

line(x(:,1),x(:,2),'marker','o')

%

x = linspace(-12,12);

y = linspace(-5,5);

[X,Y] = meshgrid(x,y);

Z = X.^2 + r*Y.^2;

contour(X,Y,Z,[0.1 0.5 1 2 5 10 20 30 50 70 100])

Figure 5-7: Zigzag motion of the steepest descent method.

 5-157

Conjugate gradient method
The slow convergence of the steepest descent method is because the method only uses the current gradient
information. Due to the perpendicular nature of consecutive two gradients, the search directions move in a
zigzag pattern as shown in the blue lines in Figure 5-8. However, as shown in the red arrow, the
convergence behavior can be improved if the search direction is in the diagonal direction of the two
descent directions.
 The conjugate gradient method developed by Fletcher and Reeves [50] improves the rate of slow
convergence in the steepest descent method by selecting a direction which takes into account not only the
gradient direction but also the search direction in the previous iteration. By doing that, it is possible to
develop algorithms that are guaranteed to converge to the minimum of an 𝑛-dimensional quadratic
function in no more than 𝑛 iterations.

Figure 5-8: Conjugate gradient direction.

 The difference in this method is the computation of search direction. The new descent direction is
computed by

𝐝ሺ௞ሻ ൌ െ𝐜ሺ௞ሻ ൅ 𝛽௞𝐝ሺ௞ିଵሻ (5.13)

and the first iteration is the same as the steepest descent method, 𝐝ሺ଴ሻ ൌ െ𝐜ሺ଴ሻ. Because of the
modification of the descent direction using the previous descent direction, the conjugate directions
methods home on the minimum in the second move. The parameter 𝛽௞ controls how much the previous
descent direction contributes to the current one. It is determined based on the magnitude of the gradients
as

𝛽௞ ൌ ቆ
ฮ𝐜ሺ௞ሻฮ

ฮ𝐜ሺ௞ିଵሻฮ
ቇ

ଶ

൐ 0 (5.14)

 This method tends to select the descent direction as a diagonal of the two orthogonal steepest descent
directions, such that a zigzagging pattern can be eliminated. This method always has better convergence
than the steepest descent method. Since the optimum design will satisfy the KKT condition, the parameter
𝛽௞ will be zero at the optimum design. It is noted that each move ends at the tangent to the function
contour, because we minimize the function in the search direction. Most implementations approximate the
function as a quadratic along the search direction, so that if the function is a quadratic the search will end
at the minimum in that direction. However, if the function is not quadratic we are likely to stop at a
distance from where the direction is tangent to the contour.

Example 5-5
Perform the first two iterations of unconstrained optimization problem in Example 5-4 using the
conjugate gradient method. Use the analytical step size shown in Eq. (5.8).

 5-158

Solution:
The first iteration of the conjugate gradient method is identical to the steepest descent method. Therefore,
𝐱ሺ଴ሻ ൌ ሼ10,1ሽ, 𝐝ሺ଴ሻ ൌ െ𝐜ሺ଴ሻ ൌ ሼെ20, െ20ሽ. From Eq. (5.8), 𝛼଴ ൌ െሺ𝐝்𝐜ሻ/ሺ𝐝்𝐇𝐝ሻ ൌ 0.0909. The
updated design becomes 𝐱ሺଵሻ ൌ 𝐱ሺ଴ሻ ൅ 𝛼଴𝐝ሺ଴ሻ ൌ ሼ8.1818, െ0.8182ሽ.

When 𝑘 ൌ 1: 𝐜ሺଵሻ ൌ ሼ16.3636, െ16.3636ሽ, and

𝛽ଵ ൌ ቆ
ฮ𝐜ሺଵሻฮ

ฮ𝐜ሺ଴ሻฮ
ቇ

ଶ

ൌ 0.6694

Therefore, the search direction in the conjugate gradient method becomes

𝐝ሺଵሻ ൌ െ𝐜ሺଵሻ ൅ 𝛽ଵ𝐝ሺ଴ሻ ൌ ሼെ29.7521,2.9752ሽ

The step size 𝛼ଵ ൌ 𝐝்ሺ𝐛 െ 𝐇𝐱ሻ/ሺ𝐝்𝐇𝐝ሻ ൌ 0.2750. The updated design becomes 𝐱ሺଶሻ ൌ 𝐱ሺଵሻ ൅
𝛼ଵ𝐝ሺଵሻ ൌ ሼ0,0ሽ, which is the optimum design. At this point, 𝐜ሺଶሻ ൌ ሼ0,0ሽ. Since the objective function is a
quadratic function, the conjugate gradient method converges in two iterations. Figure 5-9 shows the
contour of the objective function and the trajectory of the design changes. The blue-colored lines are for
the conjugate gradient method, while the red-colored lines are for the steepest descent method. By
utilizing previous descent direction, the algorithm find the optimum design in two iterations.

Figure 5-9: Convergence of conjugate gradient method.

Newton method
The previous two methods, the steepest descent and conjugate gradient methods, only use the first-order
information (gradients) of the objective function to find the optimum design, which is called a first-order
method. The convergence of these methods is generally slow and often require many iterations to find the
optimum design. Although the conjugate gradient method in Example 5-5 converged in two iterations,
this happened because the objective function is a quadratic function. For a general nonlinear objective
function, the conjugate gradient method may require many iterations as well.
 In addition to the gradient information, the Newton’s method uses second-order information (Hessian)
to approximate the objective function as a quadratic function of the design. The advantage of this method
is that the design change Δ𝐱 that can satisfy the KKT condition can be found by solving a linear system of
equations. Therefore, if the objective function is a quadratic function, this method can find the optimum
design in one iteration. For a general nonlinear objective function, this method shows a second-order
convergence, which is much faster than the first-order convergence.
 Let us consider the unconstrained optimization problem in Eq. (5.9). The design variable is updated at
𝑘 ൅ 1th iteration by 𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ Δ𝐱ሺ௞ሻ. Since 𝐱ሺ௞ሻ is already determined from 𝑘th iteration, the only

 5-159

variable is Δ𝐱ሺ௞ሻ. Therefore, the objective function is approximated using the Taylor series expansion
with respect to the previous design 𝐱ሺ௞ሻ as

𝜙൫Δ𝐱ሺ௞ሻ൯ ൌ 𝑓൫𝐱ሺ௞ሻ ൅ Δ𝐱ሺ௞ሻ൯ ൎ 𝑓൫𝐱ሺ௞ሻ൯ ൅ 𝐜ሺ௞ሻ்
Δ𝐱ሺ௞ሻ ൅

1
2

Δ𝐱ሺ௞ሻ்
𝐇ሺ௞ሻΔ𝐱ሺ௞ሻ (5.15)

where 𝐇ሺ௞ሻ is the Hessian matrix ሺ𝑛 ൈ 𝑛ሻ, which is made of second-order derivatives. The above equation
basically approximates the objective function at the new design as a quadratic function of Δ𝐱ሺ௞ሻ. The goal
is to find the design change Δ𝐱ሺ௞ሻ to minimize the objective function. One can use the KKT condition to
find Δ𝐱ሺ௞ሻ that minimizes 𝜙൫Δ𝐱ሺ௞ሻ൯ as

𝜕𝜙

𝜕Δ𝐱ሺ௞ሻ ൌ 𝐜ሺ௞ሻ ൅ 𝐇ሺ௞ሻΔ𝐱ሺ௞ሻ ൌ 0 (5.16)

which yields the following design change:

Δ𝐱ሺ௞ሻ ൌ െ𝐇ሺ௞ሻିଵ
𝐜ሺ௞ሻ (5.17)

In practice, since calculating the inverse of the Hessian matrix is expensive, the linear system of equations
𝐇ሺ௞ሻΔ𝐱ሺ௞ሻ ൌ െ𝐜ሺ௞ሻ is solved for Δ𝐱ሺ௞ሻ. If the current estimated design 𝐱ሺ௞ሻ is sufficiently close to the
optimum design, then Newton’s method will show a quadratic convergence.
 Albeit its fast convergence, the major concern of Newton’s method is how to calculate the Hessian
matrix. The greater the number of design variables is, the greater the cost of computing 𝐇ሺ௞ሻ is. Although
the Hessian information can be calculated using sensitivity analysis [49], it is not available in many
application software. Therefore, Newton’s method is often limited to cases when the functional form of
the objective function is given in terms of design variables.
 In addition, the Hessian matrix needs to be positive definite. Otherwise, the design change Δ𝐱ሺ௞ሻ from
Eq. (5.17) can be unstable. The positive definite Hessian matrix means that the objective function should
be convex (at least locally). From the descent direction, 𝐜ሺ௞ሻ்

Δ𝐱ሺ௞ሻ ൏ 0, the Hessian matrix must satisfy

𝐜ሺ௞ሻ𝐇ሺ௞ሻ𝐜ሺ௞ሻ ൐ 0 (5.18)

which is the definition of positive definiteness. Therefore, Δ𝐱ሺ௞ሻis a descent direction when 𝐇ሺ௞ሻ is
positive definite.
 Lastly, Newton’s method does not guarantee convergence. The method would find the optimum
design if the starting design is close to the optimum design and the objective function is convex. Thus,
several modifications are available. For example, the design update algorithm can be modified to include
a step size by using a line search. In that case, the linear system of equations solves the search direction,

Δ𝐝ሺ௞ሻ ൌ െ𝐇ሺ௞ሻିଵ
𝐜ሺ௞ሻ (5.19)

and the design can be updated as

𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ 𝛼௞Δ𝐝ሺ௞ሻ (5.20)

Example 5-6
Find the optimum design of the unconstrained optimization problem in Example 5-4 using the Newton’s
method.

Solution:
Since the objective function is quadratic, the Hessian matrix is constant. With the initial design 𝐱ሺ଴ሻ ൌ
ሼ10,1ሽ, the gradient of the objective function is 𝐜ሺ଴ሻ ൌ ሼ20,20ሽ. Therefore, the design change can be
found by solving the following linear system of equations:

 5-160

𝐇Δ𝐱ሺ଴ሻ ൌ ቂ2 0
0 20

ቃ ൝
Δ𝑥ଵ

ሺ଴ሻ

Δ𝑥ଶ
ሺ଴ሻൡ ൌ ቄെ20

െ20
ቅ ൌ െ𝐜ሺ଴ሻ

The above equations can be solved for Δ𝐱ሺ଴ሻ ൌ ሼെ10, െ1ሽ. Therefore, the updated design becomes 𝐱ሺଵሻ ൌ
𝐱ሺ଴ሻ ൅ Δ𝐱ሺ଴ሻ ൌ ሼ0, 0ሽ. With the new design 𝐱ሺଵሻ, 𝐜ሺଵሻ ൌ ሼ0,0ሽ, and therefore, it is the optimum design.
Since the objective function is a quadratic function of design variables, the Newton’s method converges in
one iteration.

Quasi-Newton method
Although Newton’s method has a quadratic convergence, the cost of computing the Hessian matrix and
the lack of a guaranteed convergence are drawbacks to this method. On the other hand, the steepest
descent method only requires the gradient information but has a problem of a slow convergence. The
main difference between these two methods is the Hessian information; i.e., the second-order derivatives.
In a similar way that the gradient information can be calculated using finite difference between two
function values, the Hessian information can also be approximated using the difference of two gradients.
Quasi-Newton methods are based on this concept and approximate the Hessian information using the
gradient information. These methods build an approximation to the Hessian matrix and update it after
each gradient calculation. For a quadratic objective function, they are guaranteed to reach the optimum
design in no more than 𝑛 iterations and to have an exact Hessian after 𝑛 iterations. Due to the
approximate Hessian information, these methods show a slower convergence than that of the Newton’s
method, but faster than that of steepest descent method.
 Quasi-Newton methods update the Hessian matrix starting from an identity matrix. An important
property of Hessian update is that it needs to maintain the matrix positive definite when an exact line
search is used. The calculation of search direction in Eq. (5.19) requires inverting the Hessian matrix or
solving a linear system of matrix equations. Since the Hessian matrix is an approximate one, it would be
more efficient if the inverse of the Hessian matrix is approximated directly. Therefore, The search
direction in Quasi-Newton methods can be determined by

𝐝ሺ௞ሻ ൌ െ𝐇ሺ௞ሻିଵ
𝐜ሺ௞ሻ

𝐝ሺ௞ሻ ൌ െ𝐀ሺ௞ሻ𝐜ሺ௞ሻ
(5.21)

where 𝐇ሺ௞ሻ is an approximate Hessian matrix and 𝐀ሺ௞ሻ is an inverse of the approximate Hessian matrix.
After the search direction is determined, the step size is determined using line search. Therefore, the main
difference in quasi-Newton methods is how to update the Hessian or its inverse.
 In order to show how the Hessian matrix is updated, the following vectors are defined first:

𝐬ሺ௞ሻ ൌ 𝐱ሺ௞ାଵሻ െ 𝐱ሺ௞ሻ ൌ 𝛼௞𝐝ሺ௞ሻ

𝐲ሺ௞ሻ ൌ 𝐜ሺ௞ାଵሻ െ 𝐜ሺ௞ሻ
(5.22)

where 𝐬ሺ௞ሻ is the change of design variables, and 𝐲ሺ௞ሻ is the change of gradients. Then, the quasi-Newton
condition means that the curvature remains constant between two consecutive iterations. Consider the
Taylor series expansion of the gradient vector, 𝐜ሺ௞ାଵሻ ൌ 𝐜൫𝐱ሺ௞ሻ ൅ 𝐬ሺ௞ሻ൯ ൌ 𝐜ሺ௞ሻ ൅ 𝐇ሺ௞ሻ𝐬ሺ௞ሻ ൅ 𝐻. 𝑂. 𝑇.
Therefore, the change of gradient can be approximated by 𝐲ሺ௞ሻ ൌ 𝐜ሺ௞ାଵሻ െ 𝐜ሺ௞ሻ ൎ 𝐇ሺ௞ሻ𝐬ሺ௞ሻ. By
multiplying 𝐬ሺ௞ሻ on both sides, we can obtain the curvature at the current design as

𝐬ሺ௞ሻ்
𝐲ሺ௞ሻ ൌ 𝐬ሺ௞ሻ்

𝐇ሺ௞ሻ𝐬ሺ௞ሻ (5.23)

 5-161

Therefore, the quasi-Newton condition is to update the Hessian matrix while keeping the curvature
constant. That is, 𝐬ሺ௞ሻ்

𝐇ሺ௞ାଵሻ𝐬ሺ௞ሻ ൌ 𝐬ሺ௞ሻ்
𝐇ሺ௞ሻ𝐬ሺ௞ሻ ൌ 𝐬ሺ௞ሻ்

 𝐲ሺ௞ሻ. Therefore, the following conditions can
be written:

𝐇ሺ௞ାଵሻ𝐬ሺ௞ሻ ൌ 𝐲ሺ௞ሻ

𝐀ሺ௞ାଵሻ𝐲ሺ௞ሻ ൌ 𝐬ሺ௞ሻ
(5.24)

 It is obvious that there are infinitely many ways of updating the Hessian matrix while satisfying the
quasi-Newton condition in Eq. (5.24). Normally, the Hessian (or its inverse) matrix is updated using a
vector at each iteration, starting from an identity matrix. For example, when a single vector 𝐮 is used to
update the Hessian matrix, it is called rank-1 update: 𝐇ሺ௞ାଵሻ ൌ 𝐇ሺ௞ሻ ൅ 𝑎௞𝐮𝐮். Of course, the magic is to
choose vector 𝐮 such that the quasi-Newton condition is satisfied while the Hessian matrix is positive
definite.
 One of the most popular quasi-Newton methods is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [51], which uses a rank-2 update. It means that two vectors, 𝐮 and 𝐯, are used to update the
Hessian matrix as

𝐇ሺ௞ାଵሻ ൌ 𝐇ሺ௞ሻ ൅ 𝑎௞𝐮𝐮் ൅ 𝑏௞𝐯𝐯் (5.25)

Among infinitely many possibilities, the first vector is chosen as 𝐮 ൌ 𝐲ሺ௞ሻ. Then, the quasi-Newton
condition requires the following relation:

𝐇ሺ௞ାଵሻ𝐬ሺ௞ሻ ൌ 𝐇ሺ௞ሻ𝐬ሺ௞ሻ ൅ 𝑎௞𝐲ሺ௞ሻ ቀ𝐲ሺ௞ሻ்
𝐬ሺ௞ሻቁ ൅ 𝑏௞𝐯൫𝐯்𝐬ሺ௞ሻ൯ ൌ 𝐲ሺ௞ሻ (5.26)

In addition, the coefficients 𝑎௞ and 𝑏௞ are chosen to normalize the dot-product terms as 𝑎௞ ൌ 1/𝐲ሺ௞ሻ்
𝐬ሺ௞ሻ

and 𝑏௞ ൌ െ1/𝐯்𝐬ሺ௞ሻ. Then, the quasi-Newton condition becomes

𝐇ሺ௞ାଵሻ𝐬ሺ௞ሻ ൌ 𝐇ሺ௞ሻ𝐬ሺ௞ሻ ൅ 𝐲ሺ௞ሻ െ 𝐯 ൌ 𝐲ሺ௞ሻ (5.27)

This condition yields 𝐯 ൌ 𝐇ሺ௞ሻ𝐬ሺ௞ሻ. Therefore, the two vectors are determined. In summary, the Hessian
matrix update of the BFGS method can be written as

𝐇ሺ௞ାଵሻ ൌ 𝐇ሺ௞ሻ ൅
𝐲ሺ௞ሻ𝐲ሺ௞ሻ்

𝐲ሺ௞ሻ்
𝐬ሺ௞ሻ

െ
൫𝐇ሺ௞ሻ𝐬ሺ௞ሻ൯൫𝐇ሺ௞ሻ𝐬ሺ௞ሻ൯

்

𝐬ሺ௞ሻ்
𝐇ሺ௞ሻ𝐬ሺ௞ሻ

 (5.28)

As mentioned before, this update can keep the Hessian matrix positive definite. In addition, if the
objective function is quadratic, 𝐇ሺ௡ሻ will be the exact Hessian matrix.
 As mentioned before, it would be unnecessary to update the Hessian matrix and invert it to calculate
the search direction. Instead, the inverse of the Hessian matrix can be updated directly. The DFP
(Davidon-Fletcher-Powell [52]) method approximates the inverse of the Hessian matrix using first-order
sensitivity information. Similar to the Hessian update, the inverse of the Hessian matrix is updated by

𝐀ሺ௞ାଵሻ ൌ 𝐀ሺ௞ሻ ൅ 𝑎௞𝐮𝐮் ൅ 𝑏௞𝐯𝐯் (5.29)

By selecting 𝐮 ൌ 𝐬ሺ௞ሻ, the other vector 𝐯 ൌ 𝐀ሺ௞ሻ𝐲ሺ௞ሻ can be determined from the quasi-Newton condition.
Therefore, the inverse of the Hessian matrix is updated as

𝐀ሺ௞ାଵሻ ൌ 𝐀ሺ௞ሻ ൅
𝐬ሺ௞ሻ𝐬ሺ௞ሻ்

𝐲ሺ௞ሻ்
𝐬ሺ௞ሻ

െ
൫𝐀ሺ௞ሻ𝐲ሺ௞ሻ൯൫𝐀ሺ௞ሻ𝐲ሺ௞ሻ൯

்

𝐲ሺ௞ሻ்
𝐀ሺ௞ሻ𝐲ሺ௞ሻ

 (5.30)

The updated matrix 𝐀ሺ௞ାଵሻ has similar properties to the updated Hessian matrix 𝐇ሺ௞ାଵሻ.

Example 5-7

 5-162

Minimize 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 12𝑥ଵ
ଶ ൅ 4𝑥ଶ

ଶ െ 12𝑥ଵ𝑥ଶ ൅ 2𝑥ଵ using the BFGS quasi-Newton method with the
exact line search starting with the initial design 𝐱ሺ଴ሻ ൌ ሼെ1, െ2ሽ.

Solution:
Although it is possible to calculate the exact Hessian matrix by differentiating the objective function
twice, it is assumed that the Hessian matrix is unknown and needs to be updated. At the initial step, since
𝐇ሺ଴ሻ ൌ 𝐈, the search direction is the same as that of the steepest descent method:

∇𝑓 ൌ ൜
24𝑥ଵ െ 12𝑥ଶ ൅ 2

8𝑥ଶ െ 12𝑥ଵ
ൠ , 𝐝ሺ଴ሻ ൌ െ𝐜ሺ଴ሻ ൌ ቄെ2

4
ቅ

Using the search direction and step size, the design can be updated as

𝐱ሺଵሻ ൌ ቄെ1
െ2

ቅ ൅ 𝛼଴ ቄെ2
4

ቅ

The objective function at the updated design becomes 𝑓ሺ𝛼଴ሻ ൌ 12ሺെ1 െ 2𝛼଴ሻଶ ൅ 4ሺെ2 ൅ 4𝛼଴ሻଶ െ
12ሺെ1 െ 2𝛼଴ሻሺെ2 ൅ 4𝛼଴ሻ ൅ 2ሺെ1 െ 2𝛼଴ሻ. The value of 𝛼଴ for which 𝑓 is the minimum is obtained
from the condition 𝑑𝑓/𝑑𝛼଴ ൌ 0, or 𝛼଴ ൌ 0.048077. Therefore, the updated design and the gradient at
that point are

𝐱ሺଵሻ ൌ ቄെ1.0961
െ1.8077

ቅ , 𝐜ሺଵሻ ൌ ∇𝑓ሺ𝐱ሺଵሻሻ ൌ ቄെ2.6154
െ1.3077

ቅ

Then, the vectors 𝐬ሺ଴ሻ and 𝐲ሺ଴ሻ can be calculated as

𝐬ሺ଴ሻ ൌ 𝐱ሺଵሻ െ 𝐱ሺ଴ሻ ൌ ቄെ0.0961
0.1923

ቅ , 𝐲ሺ଴ሻ ൌ 𝐜ሺଵሻ െ 𝐜ሺ଴ሻ ൌ ቄെ4.6154
2.6923

ቅ

Therefore, the Hessian matrix in Eq. (5.28) is updated as

𝐇ሺଵሻ ൌ 𝐇ሺ଴ሻ ൅
𝐲ሺ଴ሻ𝐲ሺ଴ሻ்

𝐲ሺ଴ሻ்
𝐬ሺ଴ሻ

െ
൫𝐇ሺ଴ሻ𝐬ሺ଴ሻ൯൫𝐇ሺ଴ሻ𝐬ሺ଴ሻ൯

்

𝐬ሺ଴ሻ்
𝐇ሺ଴ሻ𝐬ሺ଴ሻ

ൌ ቂ 22.9538 െ12.5231
െ12.5231 7.7385

ቃ

Then, the search direction is obtained from Eq. (5.21) as

𝐝ሺ௞ሻ ൌ െ𝐇ሺ௞ሻିଵ
𝐜ሺ௞ሻ ൌ ቄ1.7608

3.0186
ቅ

 And, the design at the next iteration becomes

𝐱ሺଶሻ ൌ ቄെ1.0961
െ1.8077

ቅ ൅ 𝛼ଵ ቄ1.7608
3.0186

ቅ

The step size 𝛼ଵ is calculated from the condition 𝑑𝑓/𝑑𝛼ଵ ൌ 0, to yield 𝛼ଵ ൌ 0.4332, and

𝐱ሺଶሻ ൌ ቄെ0.3333
െ0.500

ቅ , 𝐜ሺଶሻ ൌ ∇𝑓ሺ𝐱ሺଶሻሻ ൎ ቄ0
0

ቅ

This implies convergence to the exact solution.

 The quasi-Newton method is most popular in commercial optimization algorithms. The Matlab
function fminunc uses a variant of Newton’s method if the analytical gradient information is provided
and BFGS if it has to calculate the gradient by finite differences. The variant of Newton’s method used by
fminunc is called a trust-region method. It constructs a quadratic approximation to the function and
minimizes it in a box around the current point, with the size of the box adjusted depending on the success
of the previous iteration.

 5-163

Rate of convergence
We used the order of convergence of the steepest descent method and Newton’s method without formally
defining it. In numerical analysis, the order of convergence and the rate of convergence of a convergent
sequence are quantities that represent how quickly the sequence approaches its limit. In the context of
optimization, the sequence means the history of design variables. Let ൛𝑥ሺ௞ሻൟ be the history of design
variables ሺ𝑘 ൌ 1,2, ⋯ ሻ and let 𝑥∗ be the optimum design after convergence. Then the order of
convergence means how fast the sequence ൛𝑥ሺ௞ሻൟ converges to 𝑥∗. If the order of convergence is higher,
then typically fewer iterations are necessary to converge to the optimum design.
 A sequence ൛𝑥ሺ௞ሻൟ is said to converge to 𝑥∗ with order 𝑝 where 𝑝 is the largest number such that

0 ൑ lim
௞→∞

ฮ𝑥ሺ௞ାଵሻ െ 𝑥∗ฮ

ฮ𝑥ሺ௞ሻ െ 𝑥∗ฮ
௣ ൏ ∞ (5.31)

In addition, when a sequence has 𝑝 order of convergence, the rate of convergence is defined as

𝛽 ൌ lim
௞→∞

ฮ𝑥ሺ௞ାଵሻ െ 𝑥∗ฮ

ฮ𝑥ሺ௞ሻ െ 𝑥∗ฮ
௣ (5.32)

 If 𝑝 ൌ 1, the sequence displays linear convergence, and 𝛽 must be less than 1 for the sequence to
converge. In particular, if 𝛽 ൌ 0 when 𝑝 ൌ 1, then the sequence is called super-linear convergence. The
steepest descent method shows linear convergence. A quadratic convergence is when 𝑝 ൌ 2. Newton’s
method shows a quadratic convergence when the initial design is close to the optimum design. The quasi-
Newton methods show the order of convergence between 1 and 2.

Example 5-8
Calculate the order and rate of convergence of the sequence 𝑥ሺ௞ሻ ൌ 𝑎௞, 𝑎 ൏ 1, and 𝑥∗ ൌ 0.

Solution:
First, assume that 𝑝 ൌ 1. Then, Eq. (5.31) becomes

0 ൑ lim
௞→∞

ฮ𝑥ሺ௞ାଵሻ െ 𝑥∗ฮ

ฮ𝑥ሺ௞ሻ െ 𝑥∗ฮ
ଵ ൌ

𝑎௞ାଵ

𝑎௞ ൌ 𝑎 ൏ ∞

On the other hand, if 𝑝 ൌ 2 is assumed, then

0 ൑ lim
௞→∞

ฮ𝑥ሺ௞ାଵሻ െ 𝑥∗ฮ

ฮ𝑥ሺ௞ሻ െ 𝑥∗ฮ
ଶ ൌ

𝑎௞ାଵ

𝑎ଶ௞ ൌ
1

𝑎௞ିଵ → ∞

Therefore, the sequence shows linear convergence. With 𝑝 ൌ 1, 𝛽 ൌ 𝑎. Therefore, the rate of
convergence is 𝑎 ൏ 1.

5.5. Constrained optimization using unconstrained algorithms

In the previous section, numerical algorithms for solving unconstrained optimization problems were
discussed. Most engineering applications, however, have constraints that must be satisfied during the
design optimization process. As shown in Figure 5-10, optimums design normally exits on the boundary
of constraints. These constraints play a critical role in determining the optimum design. In this section,
numerical algorithms that can find the optimum design for constrained optimization problems will be
discussed.

 5-164

Figure 5-10: The role of constraints on optimum design.

 As we discussed in Section 4.4, not all constraints are active at the optimum design. All equality
constraints should be active, while some inequality constraints may be inactive. Only those active
constraints contribute to the optimum design. When all constraints are inactive, the constraint
optimization problem can be considered as an unconstrained problem, it is assumed that at least one
constraint should be active at the optimum design.
 Numerical algorithms for constrained optimization can be grouped into two types. The first type
converts the constrained optimization problem into an unconstrained optimization problem using either
the Lagrange multiplier method or the penalty method and solve it using the numerical algorithms in the
previous section. The second group solves the constrained optimization problem directly. We will discuss
both types of algorithms in the following subsections.

Lagrange multiplier method
The Lagrange multiplier method, along with the penalty method in the next subsection, is a
transformation method, where the constrained optimization problem is converted into an unconstrained
optimization problem. Then, the problem can be solved using the unconstrained optimization algorithms
in the previous section. Consider the constrained optimization problem in Eq. (4.3), which is rewritten
here:

minimize 𝑓ሺ𝐱ሻ
subject to 𝑔௜ሺ𝐱ሻ ൑ 0, 𝑖 ൌ 1, ⋯ , 𝐾
 ℎ௝ሺ𝐱ሻ ൌ 0, 𝑗 ൌ 1, ⋯ , 𝑀
 𝑥௟

௅ ൑ 𝑥௟ ൑ 𝑥௟
௎, 𝑙 ൌ 1, ⋯ , 𝑛

(5.33)

where 𝐱 ൌ ሼ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡ሽ் is the vector of design variables, 𝑓ሺ𝐱ሻ is the objective function,
𝑔ଵሺ𝐱ሻ, ⋯ , 𝑔௄ሺ𝐱ሻ are inequality constraints, ℎଵሺ𝐱ሻ, ⋯ , ℎெሺ𝐱ሻ are equality constraints, and 𝐱௅ and 𝐱௎ are
lower- and upper-bounds of design variables, respectively. Since only active constraints contribute to the
optimum design, let the number of active inequality constraints be 𝐿 ൏ 𝐾. Since the active inequality
constraints are equivalent to equality constraints, the optimization problem can be considered as a
constrained optimization with 𝑀 ൅ 𝐿 equality constraints.
 The Lagrange multiplier method is based on the Lagrangian function defined in Eq. (4.36), which is
rewritten here:

 5-165

minimize 𝐿ሺ𝐱, 𝛍, 𝛌ሻ ൌ 𝑓ሺ𝐱ሻ ൅ ෍ 𝜇௝ℎ௝ሺ𝐱ሻ
ெ

௝ୀଵ

൅ ෍ 𝜆௜𝑔௜ሺ𝐱ሻ
௅

௜ୀଵ

 (5.34)

It is noted that the slack variables are not used because the Lagrangian function is defined only with active
inequality constraints. The minimization of the unconstrained optimization problem in Eq. (5.34) is
equivalent to that of the constrained optimization problem in Eq. (5.33). The only difference is that in
addition to design variables, the Lagrange multipliers are also considered unknown variables. Therefore,
the objective function is the Lagrangian function, and the variables are design variables and Lagrange
multipliers. It is noted that the Lagrange multipliers of inequality constraints have a sign restriction, which
can easily be imposed using side constraints.
 Although this seems a straightforward conversion, there are two challenges associated with the
Lagrange multiplier method. The first challenge is that the number of active constraints varies during
design iterations. Therefore, some Lagrange multipliers may disappear while others are introduced in the
middle of design iterations, which causes difficulty in initializing and updating them. It is possible that the
Lagrange multipliers for all constraints are kept throughout all design iterations and those multipliers
associated with inactive constraints are set to a zero value. However, this still can cause a problem
especially when some constraints oscillate between active and inactive states. The second challenge is
from the positive definite property of the Hessian matrix. Many Newton or quasi-Newton methods use the
positive definite Hessian matrix or its approximation to enhance the convergence speed of design
iterations. However, the second-order derivatives of the Lagrange multiplier are zero. Therefore, the
diagonal terms of the Hessian matrix are zero, which makes the Hessian matrix positive semi-definite.
Due to these two challenges, the Lagrange multiplier method is not popular in practical use.

Penalty function method
The penalty function method converts the constrained optimization problem to an unconstrained one by
adding a penalty for violating constraints. A quadratic penalty is usually employed in order to make the
penalty function smooth and preserve differentiability. The penalty for equality constraints is proportional
to their square, while for inequality constraints it is their square when they are positive and zeroes
otherwise. Therefore, the quadratic loss function is defined as

Φሺ𝐱, 𝜔ሻ ൌ 𝑓ሺ𝐱ሻ ൅ 𝑃ሺ𝐡, 𝐠, 𝜔ሻ ൌ 𝑓ሺ𝐱ሻ ൅ 𝜔 ቐ෍ ቀℎ௝ሺ𝐱ሻቁ
ଶ

ெ

௝ୀଵ

൅ ෍൫𝑔௜
ାሺ𝐱ሻ൯

ଶ
௅

௜ୀଵ

ቑ (5.35)

where 𝜔 is a penalty parameter, and 𝑔௜
ାሺ𝐱ሻ ൌ maxሺ0, 𝑔௜ሺ𝐱ሻሻ is only nonzero when the inequality

constraint is violated.
 The disadvantage of a quadratic penalty is that it is very small for small violation, so the solution will
tend to violate some constraints. This can be minimized by multiplying the penalty by a large parameter
𝜔, but that makes the problem numerically ill-conditioned. Therefore, the established procedure is to
gradually increase 𝜔 as one gets closer to the solution. This is referred to as the sequential unconstrained
minimization technique (SUMT). As the penalty parameter approaches infinity, the solution converges to
the original optimization problem. The advantage of the penalty function method compared to the
Lagrange multiplier method is that it does not introduce additional variables, but it has a disadvantage of
numerical ill-conditioning of the Hessian matrix.
 Because of this ill-conditioned Hessian matrix, the penalty function method is not popular any more
for gradient-based algorithms, but it is still popular for gradient-free global search algorithms. This is

 5-166

because most global search algorithms in Chapter 6 do not have a systematic way of including constraints.
Therefore, the penalty function method is frequently used for them.

Example 5-9
Find the optimum design of the following constrained optimization problem by gradually increasing the
penalty parameter from 𝜔 ൌ 1 to 𝜔 ൌ 1,000:

minimize 𝑓ሺ𝐱ሻ ൌ 𝑥ଵ
ଶ ൅ 10𝑥ଶ

ଶ

subject to ℎሺ𝐱ሻ ൌ 4 െ 𝑥ଵ െ 𝑥ଶ ൌ 0

Solution:
In order to apply for the penalty function method, the following loss function is defined:

Φሺ𝐱, 𝜔ሻ ൌ 𝑥ଵ
ଶ ൅ 10𝑥ଶ

ଶ ൅ 𝜔ሺ4 െ 𝑥ଵ െ 𝑥ଶሻ

Since this is a quadratic function, it is possible to find the optimum design analytically. From the KKT
condition, the optimum design can be obtained as

𝑥ଵ ൌ
40𝜔

10 ൅ 11𝜔
, 𝑥ଶ ൌ

4𝜔
10 ൅ 11𝜔

The following table shows the solution, the objective and the loss function for a series of increasing 𝜔
values. The difference between 𝑓 and Φ is the penalty. For low values of 𝜔 the constraint is violated a lot,
the penalty is high, but the objective is small. As we increase the penalty parameter the constraint
violation decreases fast enough so that the total penalty actually decreases! For the highest penalty
parameter, the sum of the variables is 3.966, so that the violation is smaller than 1%, but that may not be
acceptable, in which case an even higher penalty parameter would be required.

𝜔 𝑥ଵ 𝑥ଶ 𝑓 Φ

1 1.905 0.1905 3.992 7.619

10 3.333 0.3333 12.220 13.333

100 3.604 0.3604 14.288 14.144

1,000 3.633 0.3633 14.518 14.532

The contour of the augmented function when 𝜔 ൌ 1 as shown in Figure 5-11(a) is well behaved. Even if
we obtain the optimum design analytically, it is expected that numerical algorithms would converge easily
as well. On the other hand, when 𝜔 ൌ 1,000 as shown in Figure 5-11(b), the contour shows a canyon at
the constraint boundary. For a linear constraint this may not be much of a problem, but if the constraint is
nonlinear, an optimization algorithm that moves in straight lines would require large number of iterations
and may get stuck. Therefore, it is expected that numerical optimization with a large value of the penalty
parameter may experience difficulty in convergence. For gradient-free algorithms, we may avoid this
problem by using a penalty that is proportional to the violation instead of its square, so that the penalty
parameter would not need to be very high.
 The contours in Figure 5-11 were obtained with the following Matlab script :

r=1;

x=linspace(1,5,41); y=linspace(0.1,0.5,41);

[X,Y]=meshgrid(x,y);

Z=X.^2+10*Y.^2+r*(4-X-Y).^2;

cs=contour(X,Y,Z); clabel(cs);

 5-167

Figure 5-11: Contours of the loss function with different penalty parameters.

5.6. Constrained optimization using direct methods

In the previous section, constrained optimization problems were converted into unconstrained
optimization problems using the Lagrange multiplier method and the penalty function method. However,
in practice, it is popular to solve constrained optimization problems directly. The basic idea of direct
methods is to calculate a search direction based on the gradients of both the objective function and the
constraints. The direct methods for constrained optimization have an analogy of a person with a flashlight
trying to go down a hill in a terrain with fenced areas. The flashlight can only provide a limited
information of slopes (gradients), and the person uses them to select a direction to move. Then, the person
can move until the slope changes upwards or the person meets with constraint boundaries.
 Some algorithms move mostly away from constraint boundaries and stay inside of the feasible
domain. Since the optimum design usually is located on constraint boundaries, they approach to the
boundaries from the inside of the feasible domain. Some other algorithms follow the constraint
boundaries. The gradient projection algorithm starts with a point on the boundary of the feasible domain
and moves in the plane tangent to all the active constraints. The direction is the projection of the gradient
on that plane. This move will end either when a new constraint is encountered or when the move will take
it too far from the constraint boundaries due to their nonlinearity. Then there is a restoration move that
brings it back to the constraint boundary.
 Similar to the loss function in the previous section, the direct methods usually define a descent
function or a merit function. The merit function must be reduced from one iteration to another and should
be the same as the objective function 𝑓ሺ𝑥ሻ at the optimum design.
 A practical difficulty associated with constraint boundaries is the oscillation between active/violated
and inactive constraints. A constraint is considered inactive when 𝑔ሺ𝐱ሻ ൏ 0, active when 𝑔ሺ𝐱ሻ ൌ 0, and
violated when 𝑔ሺ𝐱ሻ ൐ 0. The oscillation frequently happens when the design is close to the constraint
boundary. This oscillation can cause technical difficulty as the constraints may not consider consistently
at different iterations. In order to overcome this difficulty, inactive constraints that are close to the
constraint boundaries are also included in the active constraint set. The 𝜖-active constraint set is defined
as

𝐼ఢ ൌ ሼ𝑖| 𝑔௜ ൅ 𝜖 ൒ 0ሽ (5.36)

where 𝜖 ൐ 0 is a small positive constant to determine the value of constraint that can be considered active.
The 𝜖-active constraint set includes all active/violated constraints as well as those constraints that are
close to the constraint boundary.

 5-168

Sequential linear programming (SLP) method
The sequential linear programming (SLP) method approximates the nonlinear problem as a sequence of
linear programming problems such that the simplex method in Section 1.7.1 may be used to find the
solution to each iteration. By using function values and sensitivity information, the nonlinear problem in
Eq. (5.33) is linearized in a similar way as Taylor’s expansion method in the first order. Let the linear
approximation of the objective function be 𝑓൫𝑥ሺ௞ାଵሻ൯ ൎ 𝑓൫𝑥ሺ௞ሻ൯ ൅ 𝐜்Δ𝐱, that of equality constraint
ℎ௜൫𝐱ሺ௞ାଵሻ൯ ൎ ℎ௜൫𝐱ሺ௞ሻ൯ ൅ ∇ℎ௜

்Δ𝐱, and that of active inequality constraint 𝑔௝൫𝐱ሺ௞ାଵሻ൯ ൎ 𝑔௝൫𝐱ሺ௞ሻ൯ ൅
∇𝑔௝

்Δ𝐱. In order to simplify notations, the gradient vectors are defined as ∇ℎ௜ ൌ 𝐧௜ and ∇𝑔௝ ൌ 𝐚௝. Also,
the gradient matrix is defined as 𝐍 ൌ ሾ𝐧ଵ, ⋯ , 𝐧ெሿ and 𝐀 ൌ ሾ𝐚ଵ, ⋯ , 𝐚௅ሿ. Then, the constrained
optimization problem in Eq. (5.33) at iteration 𝑘 can be written as

minimize 𝐜்Δ𝐱
subject to 𝐧௜

்Δ𝐱 ൅ ℎ௜ ൌ 0, 𝑖 ൌ 1, ⋯ , 𝑀
 𝐚௝

்Δ𝐱 ൅ 𝑔௜ ൑ 0, 𝑗 ൌ 1, ⋯ , 𝐾
 Δ𝑥௟

௅ ൑ Δ𝑥௟ ൑ Δ𝑥௟
௎, 𝑙 ൌ 1, ⋯ , 𝑛

(5.37)

That is, the original nonlinear optimization problem with respect to 𝐱 is converted into a linear
optimization problem with respect to Δ𝐱. There are many efficient algorithms to solve linear optimization
problems, such as the simplex method. Once the design increment Δ𝐱 is solved, the design is updated by
𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ Δ𝐱. Therefore, the SLP method sequentially linearizes the nonlinear optimization
problem, where its name comes from. It is noted that the gradient information is critical to construct the
linear optimization problem.

Quadratic programming (QP) subproblem
In solving the linear optimization problem in Eq. (5.37) for Δ𝐱, the move limits (side constraints or step
size constraints) are critically important for convergence. Consider the move limits of two-dimensional
design variables as shown in Figure 5-12(a). The red dot is the current design 𝐱ሺ௞ሻ and the square is the
move limits. As can be shown in the figure, the length of design change Δ𝐱 is large toward the corner of
move limits. Therefore, design tends to change along the corners. In order to prevent such a bias, the
move limits can be given in circular domain as shown in Figure 5-12(b). In this case, all design changes
have the same length, and there is no preferred direction.

Figure 5-12: Box-shaped move limits versus equal-size move limits.

In order to apply the equal-size design change, the linearized optimization problem in Eq. (5.37) is
modified as

(5.38)

 5-169

 ଵ
ଶ
𝐝்𝐝 ൑ 𝜉ଶ

Instead of design change Δ𝐱, the search direction 𝐝 is used as additional line search can be added to find
the optimum design change. The last term in Eq. (5.38) impose the step-size constraint where the length
of design change should be less than a pre-determined threshold. The only difficulty in Eq. (5.38) is that
the constraints are nonlinear, and many linear programming algorithms, such as the simplex method,
cannot be used.
 Instead of solving Eq. (5.38), it is possible to show that the following quadratic programming (QP)
problem is equivalent to the linearized constrained optimization with equal-size constraints in Eq. (5.38):

minimize 𝐜்𝐝 ൅ ଵ
ଶ
𝐝்𝐝

subject to 𝐍୘𝐝 ൌ െ𝐡
 𝐀்𝐝 ൑ െ𝐠

(5.39)

Since the objective function of the QP is convex and since the feasible set of linear constraints is a convex
set, Eq. (5.39) is a convex optimization problem, and a local optimum becomes the global optimum
design. There are many numerical algorithms to solve for the QP in Eq. (5.39). This QP can be effectively
solved, for example, by using the Kuhn-Tucker condition and the simplex method. Starting from the
identity matrix, the Hessian matrix 𝐇 is updated at each iteration by using the aforementioned methods in
unconstrained optimization algorithms. The advantage of solving Eq. (5.39) in this way is that for positive
definite 𝐇, the problem is convex and the solution is unique. Moreover, this method does not require the
move limit as in SLP.

Constrained steepest descent method
In the steepest descent algorithm detailed in Section 5.4, the descent direction 𝐝 is obtained from the
gradient of the objective function; 𝐝 ൌ െ𝐜. When constraints exist, this descent direction has to be
modified in order to include their effect. In the constrained steepest descent method, this is accomplished
by defining the following descent function with violated constraints:

Φሺ𝐱, 𝜔, 𝐡, 𝐠ሻ ൌ 𝑓ሺ𝐱ሻ ൅ 𝜔𝑉ሺ𝐡, 𝐠ሻ (5.40)

where 𝑉ሺ𝐡, 𝐠ሻ is the maximum constraint violation and 𝜔 is a penalty parameter. The penalty parameter is
user-defined but has to be larger than the absolute sum of all Lagrange multipliers. The maximum
constraint violation is defined as

𝑉ሺ𝐡, 𝐠ሻ ൌ max൛0, |ℎ௜|, 𝑔௝, 𝑗 ∈ 𝐼ఢൟ (5.41)

If constraints are violated, then these constraints are added to the objective function using a penalty
method. The gradient of the descent function combines the effects of the objective function and the
violated constraint functions. Table 5-2 summarizes the procedure of the constrained steepest descent
algorithm.

Table 5-2: Procedure of the constrained steepest descent algorithm

Step Procedure Comment

1 Set 𝐱ሺ଴ሻ, 𝑘 ൌ 0, 𝜔଴ ൌ 1 Initial design must be given

2 Compute 𝑓൫𝐱ሺ௞ሻ൯, ℎ௜൫𝐱ሺ௞ሻ൯, 𝑔௝൫𝐱ሺ௞ሻ൯, 𝐜, 𝐍, 𝐀, 𝑉

3 Using QP subproblem, solve for 𝐝ሺ௞ሻ

4 Check for convergence ฮ𝐝ሺ௞ሻฮ ൏ 𝜖ଶ and 𝑉 ൏ 𝜖ଵ Stop if converged

5 Update 𝜔௞

 5-170

6 Line search: 𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ 𝛼௞𝐝ሺ௞ሻ

7 Increase 𝑘 ൌ 𝑘 ൅ 1, go to step 2 Design iteration

Feasible direction method
The feasible direction method is designed to allow design movement within the feasible region in each
iteration. Based on the previous design, the updated design reduces the objective function and remains in
the feasible region. Since all designs are feasible, a design at any iteration can be used, even if it is not an
optimum design. Since this method uses the linearization of functions as in SLP, it is difficult to maintain
nonlinear equality constraints. Thus, this approach is used exclusively for inequality constraints. Search
direction 𝐝 can be found by solving the following linear subproblem:

minimize 𝑓̅ ൌ 𝑓଴ ൅ 𝐜்𝐝
subject to 𝑔̅௝ ൌ 𝑔௝଴ ൅ 𝐚௝

்𝐝 ൑ 0 (5.42)

Knowing that 𝑔௝଴ ൑ 0, the direction that satisfies 𝐚௝
்𝐝 ൑ 0 is a feasible direction; i.e., the direction

maintains the constrained satisfied. In addition, the direction that satisfies 𝐜்𝐝 ൑ 0 is a useful direction as
it reduces the objective function. Therefore, the goal is to find the direction that satisfies both the feasible
and useful directions. This can be achieved by defining a new variable 𝛽 ൌ max൛𝐜்𝐝, 𝐚௝

்𝐝ൟ and solve the
following optimization problem:

minimize 𝛽ሺ𝐝ሻ
subject to 𝐚௝

்𝐝 ൑ 𝛽
 𝐜்𝐝 ൑ 𝛽
 െ1 ൑ ‖𝐝‖ ൑ 1

(5.43)

After finding a direction 𝐝 that can reduce cost function and maintain feasibility, a line search is used to
determine the step size.

Constrained quasi-Newton method
In the case of unconstrained optimization in Section 5.5, it was shown that the Newton method has a
quadratic convergence, while the steepest descent method only shows linear convergence. It was also
shown that since the Hessian information is expensive to calculate, quasi-Newton methods were used to
approximate the Hessian or its inverse matrix. A similar approach can also be taken in constrained
optimization problems.
 The constrained quasi-Newton methods, or sequential quadratic programming methods, are based on
solving the nonlinear KKT conditions using Newton’s method. Since Newton’s method requires the
Hessian matrix, it is approximated using the quasi-Newton method. In order to explain the constrained
quasi-Newton method, consider the following constrained optimization problem with equality constraints
alone:

minimize 𝑓ሺ𝐱ሻ
subject to ℎ௜ሺ𝐱ሻ ൌ 0 (5.44)

whose Lagrangian function becomes 𝐿ሺ𝐱, 𝛌ሻ ൌ 𝑓ሺ𝐱ሻ ൅ ∑ 𝜆௜ℎ௜ሺ𝐱ሻ. The KKT optimality condition can be
written in the form of a nonlinear equation. First, let us define the combined variables 𝐲 ൌ ሼ𝐱, 𝛌ሽ். Then
the KKT condition can be written as

൜
∇𝐱𝐿 ൌ ∇𝐱𝑓 ൅ 𝐍𝛌 ൌ 0
∇𝛌𝐿 ൌ 𝐡 ൌ 0 → 𝐅ሺ𝐲ሻ ൌ ቄ∇𝐱𝑓 ൅ 𝐍𝛌

𝐡
ቅ ൌ 0 (5.45)

 5-171

The constrained quasi-Newton method solves the above nonlinear equations of the KKT condition using
Newton’s method. From Taylor series expiation, 𝐅൫𝐲ሺ௞ାଵሻ൯ ൌ 𝐅൫𝐲ሺ௞ሻ൯ ൅ ൫∇𝐲𝐅൯

்
Δ𝐲ሺ௞ሻ ൌ 0. By replacing

Δ𝐲 ൌ ሼ𝐝, Δ𝛌ሽ், this linearized incremental equation can be written as

൤
∇𝐱𝐱𝐿 𝐍
𝐍் 0

൨ ൜ 𝐝ሺ௞ሻ

𝛌ሺ௞ାଵሻൠ ൌ െ ቄ∇𝐱𝑓
𝐡

ቅ (5.46)

In the above equation, Δ𝛌ሺ௞ሻ ൌ 𝛌ሺ௞ାଵሻ െ 𝛌ሺ௞ሻ is used to replace the unknown variables Δ𝛌ሺ௞ሻ with 𝛌ሺ௞ାଵሻ.
This is the 𝑘th iteration to find the search direction and the Lagrange multiplier for the KKT condition.
 In practice, instead of solving Eq. (5.46), an equivalent quadratic problem is solved. It is left as an
exercise problem to show that the following quadratic problem is equivalent to solving Eq. (5.46), as

minimize 𝐜்𝐝 ൅
1
2

𝐝்ሾ∇𝐱𝐱𝐿ሿ𝐝

subject to 𝐍்𝐝 ൌ െ𝐡
(5.47)

As discussed before, the Hessian matrix is expensive to calculate. Therefore, the constrained quasi-
Newton method use the BFGS method to approximate it.
 When there are both equality and inequality constraints, the equivalent quadratic problem is defined
using equality constraints and active inequality constraints as

minimize 𝐜்𝐝 ൅
1
2

𝐝்ሾ∇𝐱𝐱𝐿ሿ𝐝

subject to 𝐍்𝐝 ൌ െ𝐡
 𝐀்𝐝 ൑ െ𝐠

(5.48)

Once the search direction 𝐝ሺ௞ሻ is found by solving the quadratic programming problem, the line search
algorithm can be used to find the step size 𝛼௞ and update the design 𝐱ሺ௞ାଵሻ ൌ 𝐱ሺ௞ሻ ൅ 𝛼௞𝐝ሺ௞ሻ.

5.7. Matlab optimization toolbox

Matlab provides various optimization functions, as shown in Table 5-3. Among various optimization
algorithms, unconstrained optimization problems can be solved using fminunc and fminsearch. For
constrained optimization problems with nonlinear equality and inequality constraints, fmincon is the most
common function. In this section, brief explanations of these functions with their algorithms are
introduced along with several examples.

Table 5-3: Matlab optimization functions

Type Function

Minimization of a scalar function fminbnd

Unconstrained minimization fminunc, fminsearch

Linear programming linprog

Quadratic programming quadprog

Constrained minimization fmincon

Goal attainment fgoalattain

Minmax fminmax

Semi-infinite minimization fseminf

Binary integer programming bintprog

Example 5-10
Solve the following constrained optimization problem using the Matlab fmincon function:

 5-172

minimize 𝑓ሺ𝐱ሻ ൌ e௫భሺ4𝑥ଵ
ଶ ൅ 2𝑥ଶ

ଶ ൅ 4𝑥ଵ𝑥ଶ ൅ 2𝑥ଶ ൅ 1ሻ
subject to 𝑔ଵሺ𝐱ሻ ൌ 𝑥ଵ𝑥ଶ െ 𝑥ଵ െ 𝑥ଶ ൅ 1.5 ൑ 0
 𝑔ଶሺ𝐱ሻ ൌ െ𝑥ଵ𝑥ଶ െ 10 ൑ 0

Solution:
In order to call fmincon, it would be necessary to make m-files for the objective function and constraints.
First, create the following m-file named objfun.m:

function f = objfun(x)

f = exp(x(1))*(4*x(2)^2 + 2*x(2)^2 + 4*x(1)*b(2) + 2*x(2) + 1);

Also, create the following m-file named confun.m

function [c, ceq] = confun(x)

% Nonlinear inequality constraint

c = [1.5 + x(1)*x(2) – x(1) – x(2);

 -x(1)*x(2) – 10];

% Nonlinear equality constraints

ceq = [];

Then, optimization can be invoked by using the following Matlab script:

x0 = [-1,1]; % Make a starting guess at the solution

options = optimset('LargeScale','off');

[x, fval, exitflag, output, lambda, grad, hessian] = ...

fmincon(@objfun,x0,[],[],[],[],[],[],@confun, options)

First, design variables are stored in the array x. The function objfun.m calculates the objective function
value and return in the variable f. On the other hand, the function confun.m calculates an array of
inequality constraints c and an array of equality constraints ceq. In this particular optimization problem,
there are two inequality constraints and no equality constraint. Therefore, c is 2 ൈ 1 array, while ceq is
null. With objfun.m and confun.m being available, the Matlab script assigns the initial design to x0,
defines optimization options in options, and calls the function fmincon. The function optimset assign
various options that control the optimization process. Table 5-5 summarizes the available options for
Matlab optimization functions, which include algorithms, convergence criteria, result displace, etc. For
detailed explanations of the optimset function, the users are referred to the Matlab manual.
 The function fmincon in this example returns the following outputs:

x = -3.4049 1.1135

fval = -0.1494

exitflag = 1

output =

 iterations: 13

 funcCount: 45

 constrviolation: 0

 stepsize: 1.2743e-05

 algorithm: 'interior-point'

 firstorderopt: 4.0000e-07

 cgiterations: 0

 message: 'Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing

in ↵feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint

tolerance. <stopping criteria details> Optimization completed: The

 5-173

relative first-order optimality measure, 4.000016e-07, is less than

options.OptimalityTolerance = 1.000000e-06, and the relative maximum

constraint violation, 0.000000e+00, is less than

options.ConstraintTolerance = 1.000000e-06.'

lambda =

 eqlin: [0×1 double]

 eqnonlin: [0×1 double]

 ineqlin: [0×1 double]

 lower: [2×1 double]

 upper: [2×1 double]

 ineqnonlin: [2×1 double]

grad =

 -0.0015

 0.0579

hessian =

 0.1464 0.2038

 0.2038 0.3980

 The function fmincon returns various outputs. First, the variable x contains optimum design variables,
and the variable fval contains the value of optimum objective function. The values of constraints at the
optimum design can be obtained by calling confun.m as [c, ceq] = confun(x). The meaning of variable
exitflag = 1 is explained in Table 5-4, where the optimum is achieved by satisfying the optimality
criterion. When the exitflag is 0, െ1, or െ2, the optimization iteration stops without convergence. The
variable output contains various information regarding the optimization process, such as the total number
of iterations and the number of function evaluations. The variable lambda contains the Lagrange
multiplier for all constraints. The variables grad and hessian contain the gradient and Hessian information
of the objective function at the optimum design.

Table 5-4: Interpretation of exitflag in Matlab optimization

exitflag Meaning

1 First-order optimality measure was less than options.TolFun and maximum constraint
violation was less than options.TolCon.

2 Change in x was less than options.TolX.

3 Change in the objective function value was less than options.TolFun.

4 The magnitude of the search direction was less than 2*options.TolX
and constraint violation was less than options.TolCon.

5 Magnitude of directional derivative in search direction was less than 2*options.TolFun and
maximum constraint violation was less than options.TolCon.

0 Number of iterations exceeded options.MaxIter or number of function evaluations
exceeded options.FunEvals.

-1 The algorithm was terminated by the output function.

-2 No feasible point was found.

Table 5-5: Available optimset options

 5-174

Option Data Meaning

Display ‘off’ ‘iter’ ‘final’ ‘notify’ Level of display

GradObj ‘on’ ‘off’ Objective gradient

Jacobian ‘on’ ‘off’ Constraint gradient

LargeScale ‘on’ ‘off’ Algorithm

MaxFunEvals Integer Max. number of function evaluations

MaxIter Integer Max. number of optimization iterations

TolFun Real Convergence tolerance for objective

TolX Real Convergence tolerance for design variables

Example 5-11
We will examine the behavior of the function fmincon for a simple example of minimizing a quadratic
function in a ring. Solve the following constrained optimization problem when (a) 𝑎 ൌ 10 and (b) 𝑎 ൌ
1.1. Compare the difference between the two cases in terms of

minimize 𝑓ሺ𝐱ሻ ൌ 𝑥ଵ
ଶ ൅ 𝑎𝑥ଶ

ଶ

subject to 10ଶ ൑ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൑ 20ଶ

Solution:
(a) Since the objective function is an elliptical shape, the outer ring constraint will not be active, but it
may slow down convergence by limiting the straight-line moves. As long as 𝑎 ൐ 1, the optimum on the
inner circle will go to 𝑥ଶ ൌ 0. For the first case, we choose 𝑎 ൌ 10, which would make it easy for
fmincon to find the optimum, even if we start far away at 𝐱଴ ൌ ሺ1,10ሻ. The following two Matlab
functions, quad2.m and ring.m, are defined for the objective and constraint functions, respectively:

function f=quad2(x)

 global a

 f=x(1)^2+a*x(2)^2;

end

%

function [c,ceq]=ring(x)

 c(1)=10^2-x(1)^2-x(2)^2;

 c(2)=x(1)^2+x(2)^2-20^2;

 ceq=[];

end

It is noted that the inequality constraint is split into two inequality constraints in order to use the standard
form of constraints. The following Matlab script is used to call the fmincon function:

global a

x0=[1,10];a=10;

[x,fval,exitflag,output,lambda]=fmincon(@quad2,x0,[],[],[],[],[],[],@ring)

The output from fmincon tells us that it satisfied convergence criteria based on the lack of progress on the
objective function and constraint satisfaction. In both cases, this is based on tolerances that we can change
with the optimset function, which uses default values.

x = 10.0000 0.0000

fval = 100.0000

exitflag = 1

output =

 iterations: 9

 5-175

 funcCount: 36

 constrviolation: 0

 stepsize: 9.9662e-06

 algorithm: 'interior-point'

 firstorderopt: 2.0004e-06

 cgiterations: 2

With the calling sequence we had, it gives us the objective function value of 100 and the optimum 𝐱 ൌ
ሺ10,0ሻ. The optimization finished successfully (exitflag=1), and that it took 9 iterations and 36 function
evaluations. This is remarkable since we did not provide fmincon with a routine to calculate derivatives of
objective function and constraints and it had to calculate them by finite differences. So with 9 iterations,
18 of the function evaluations were used to calculate derivatives. This means that the average number of
function evaluations per one dimensional search was only 2.

(b) Setting 𝑎 ൌ 1.1, we make the advantage of reducing 𝑥ଶ and increasing 𝑥ଵ much smaller. This causes
fmincon to slow down a lot. It took 36 iterations with 216 function evaluations. The optimization
converges to the same optimum design as with case (a). Note that each iteration now takes about 4
function evaluations!

x = 10.0000 0.0000

fval = 100.0000

exitflag = 1

output =

 iterations: 36

 funcCount: 216

 constrviolation: 0

 stepsize: 9.9694e-06

 algorithm: 'interior-point'

 firstorderopt: 2.0002e-06

 cgiterations: 19

5.8. Practical suggestions for numerical optimization

Although various numerical optimization algorithms are presented in this chapter, there are several things
that the users need to pay attention in order to make the optimization solution process robust. These are
applicable to all algorithms in this chapter.

1. It is always good to normalize the design space to 0 ൑ 𝑥௞ ൑ 1. Mathematically, it is possible to solve
design variables with different lower- and upper-bounds. However, when the ranges of design variables
are significantly different, a numerical difficulty can occur. For example, let us consider the case that both
Young’s modulus and Poisson’s ratio are design variables. In the MKS unit system, Young’s modulus of
metal is in the order of 10ଵଵ Pa, while the Poisson’s ratio is 0 ൏ 𝜈 ൏ 0.5. Such a huge difference makes it
difficult for numerical algorithms to find the optimum design for both variables. Therefore, it would be
better to normalize all design variables with the same range:

𝑥ො ൌ
𝑥 െ 𝑥୫୧୬

𝑥୫ୟ୶ െ 𝑥୫୧୬
 (5.49)

where 𝑥୫୧୬ and 𝑥୫ୟ୶ are, respectively, the lower- and upper-bounds of the design variable. In many
commercial optimization algorithms internally normalize design variables. When a design variable does

 5-176

not have lower- and/or upper-bounds, it is better to select very low or high values for the bounds.

2. Similar to the normalization of design variables, it is also better to normalize constraints. This is
because different constraints have different scales. For example, in solid mechanics, displacement
constraints are in the order of 10ିହm, while stress constraint is in the order of 10଼Pa. Such a huge
difference in scale can cause difficulty in satisfying the constraints. A violation of 10ଷ is ignorable for
stress constraint, but it is a huge violation of the displacement constraint. Therefore, it would be necessary
to scale all constraints such that their violation and margin can be interpreted in the same way. For
example, when a constraint is given in the form of 𝑔ሺ𝐱ሻ ൑ 0, it would be desirable to scale them such that
𝑔 ൌ െ0.1 means a 10 percent margin, and 𝑔 ൌ ൅0.1 corresponds to a 10 percent violation. When a
constraint is given in the form of 𝑐ሺ𝑥ሻ ൑ 𝑐୪୧୫୧୲, the normalized constraint can be written as

𝑔ሺ𝐱ሻ ൌ
𝑐ሺ𝐱ሻ
𝑐୪୧୫୧୲

െ 1 ൑ 0 (5.50)

Similar normalization can be possible for greater-than-equal-to type constraints. When a constrain bound
is zero, an appropriate scale should be chosen by the users.

3. When the users have many algorithms to choose, it is better to choose an optimization algorithm that
computes Lagrange multipliers. In Chapter 4, the optimality condition of a constrained optimization
problem is formulated using Lagrange multipliers. These Lagrange multipliers are not only important to
find an optimum design but also useful to understand the role of constraints on the optimum design. If a
Lagrange multiplier is zero at the optimum design, the corresponding constraint is inactive. If a Lagrange
multiplier at the optimum design is small, the influence of the corresponding constraint is not significant.
On the other hand, if a Lagrange multiplier is high, the constraint is important. That is, if the constraint
bound is changed slightly, the optimum design can change significantly. Therefore, it is a good practice to
check the Lagrange multipliers at the optimum design to understand what constraints play an important
role to determining the optimum design.

4. Most optimization algorithms in this chapter require gradient (i.e., derivative) information of the
objective and constraint functions, which is why they are categorized as gradient-based optimization.
There are systematic ways of calculating the gradient information [*,*], which is called design sensitivity
analysis. They require additional computer program that depends on the objective and constraint
functions. In many cases, design sensitivity analysis can calculate the gradient information with much
cheaper computational costs. However, since it requires significant modification of the response analysis
program, not all computer programs have the capability of calculating the gradient information. Instead,
the gradient information is often calculated using a finite difference method, where the design variable is
slightly perturbed, and the response is calculated again. Then, using the difference between the two
response values, the gradient is approximated, as

∇𝑔ሺ𝐱ሻ ൎ
𝑔ሺ𝐱 ൅ ∆𝐱ሻ െ 𝑔ሺ𝐱ሻ

∆𝐱
 (5.51)

Indeed, this is the definition of the derivative as ∆𝐱 → 0. The above method of calculating gradient is
referred to as the forward finite difference method because the design is perturbed in the positive direction
of the design variable. Gradient calculation using a finite difference method is computationally expensive
because each design variable is perturbed one at a time and the response is calculated again. For example,
if there are 𝑛 design variables, it requires 𝑛 ൅ 1 response analyses to calculate the gradient information. In
fact, gradient calculation is a major part of the computational cost in optimization. However, the forward

 5-177

finite difference in Eq. (5.51) can cause biased gradient information as the design is perturbed in the
positive direction. If the computational cost is affordable, it is recommended to use the central finite
difference method, where the sensitivity is calculated by

∇𝑔ሺ𝐱ሻ ൎ
𝑔ሺ𝐱 ൅ ∆𝐱ሻ െ 𝑔ሺ𝐱 െ ∆𝐱ሻ

2∆𝐱
 (5.52)

The central finite difference method is expensive as it requires perturbing the design in both positive and
negative directions. When there are 𝑛 design variables, the central finite difference method requires 2𝑛 ൅
1 response analyses to calculate the gradient information. However, the calculated gradient is unbiased.

5. Finite element analysis programs are often used to calculate the objective and constraint functions.
When the size of model is large, it is difficult to solve a large matrix equation using a direct method.
Instead, iterative methods are often used to solve a large system of equations. The iterative methods often
yield less accurate solutions than the direct method. Therefore, if iterative analysis methods are used for
the analysis, it would be better to use an extra stringent convergence criterion during the optimization if
you can afford to. Otherwise, you can get poor finite-difference derivatives and bogus local minima.

6. Optimization algorithms assume that the analysis can produce results anywhere in the design space. In
practice, however, it is possible that the analysis may not be successful at some portion of the design
space. Since the analysis cannot produce results at this region, the optimization algorithm may think that
the objective function value is low in this region, which is wrong. Therefore, it would be necessary to
carefully check the final designs with more accurate analysis codes or more refined models.

7. It would not be smart to solve an optimization problem without having any prior estimation or
expectation of the optimum design. It is dangerous to use the optimization program as if it is a black-box.
Before using optimization, it is crucial to gain some insight into the problem by studying carefully the
results of an analysis of a representative or intuitive design.

8. It would be a bad choice if nonlinear optimization algorithms are used to solve linear problems. It is
true that nonlinear algorithms can solve linear problems. However, nonlinear optimizers are not as robust
as linear optimizers, and have more difficulty in calculating Lagrange multipliers. Therefore, if both the
objective function and constraints are linear, it is always better to use linear optimization algorithms.

9. When optimization algorithms stop convergence iterations, it does not always mean that the optimum
design has been found. There are many other reasons that the optimization algorithms stop without
converging to the optimum design. Optimization algorithms can stop iterations for many reasons. For
example, optimization algorithms stop when the maximum number of function evaluations is reached.
Also, they stop when the maximum number of iterations is reached. The best way to confirm local optima
is to check the Kuhn-Tucker conditions. In practice, this might not be an easy task. In the case of Matlab
optimization algorithms, the reason of stopping the algorithms is stored in EXITFLAG variable. When
EXITFLAG is negative, it means that the optimization algorithms stopped without finding local optima.

 In presenting optimization results, the guiding principle is one that applies to almost any document
that is long enough, so some readers may not want to read everything. The document should provide
summaries that allow the reader to get the important information in the document without reading
everything and indicate where in the rest of the document additional details on each topic may be found.
When presenting the solution to an optimization problem, the following information should be included:

 5-178

1. Summary of design variables, objective function, and constraints
2. Method of solution
3. Solution, including minimizer, the value of the objective function, the indication of which constraints
are critical, and if they are not exactly zero, what is the margin or degree of violation
4. List of the other materials included with the solution which allow the reader to get additional details.

5.9. Exercise

1. Explain the differences and commonalities of steepest descent, conjugate gradients, Newton’s

method, and quasi-Newton methods for unconstrained minimization

2. Minimize 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 12𝑥ଵ
ଶ ൅ 4𝑥ଶ

ଶ െ 12𝑥ଵ𝑥ଶ ൅ 2𝑥ଵ using the conjugate gradient method, starting
with the initial design 𝐱ሺ଴ሻ ൌ ሼെ1, െ2ሽ.

3. Calculate the order and rate of convergence of the sequence 𝑥ሺ௞ሻ ൌ 1/𝑘 and 𝑥∗ ൌ 0.

4. With an extremely robust algorithm, we can find a very accurate solution with a penalty function
approach by using a very high 𝜔. However, at some high value the algorithm will begin to falter,
either taking very large number of iterations or not reaching the solution. Test fminunc and
fminsearch on Example 5-9 starting from 𝐱଴ ൌ ሾ2,2ሿ. Start with 𝜔 ൌ 1000 and increase.

5. Show that the KKT condition of the quadratic programming problem in Eq. (5.47) is equivalent to the
KKT condition in Eq. (5.46).

Solution:

6. Use the Matlab fminsearch function to minimize the function 𝑓 ൌ 𝑥ଵ

ଶ ൅ ሺ𝑥ଵ െ 𝑥ଶሻଶ starting at the
point ሺ10,1ሻ. Report the first 23 function evaluations and identify each with the Nelder-Mead
operation that yields each point (i.e., reflection, contraction, expansion, etc.).

7. Use fminunc to minimize the Rosenbrock Banana function and compare the trajectories of fminsearch
and fminunc starting from (-1.2,1), with and without the routine for calculating the gradient. Plot the
three trajectories.

8. Minimize a quadratic objective function with a ring constraint using the Matlab fmincon function.
Using the bounds 𝑟௜ ൌ 10 and 𝑟௢ ൌ 20. Is feasible domain convex?

minimize
௫భ,௫మ

 𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ
ଶ ൅ 10𝑥ଶ

ଶ

subject to 𝑟௜
ଶ ൑ 𝑥ଵ

ଶ ൅ 𝑥ଶ
ଶ ൑ 𝑟௢

ଶ

 5-179

9. For the ring problem in Example 5-11 with 𝑎 ൌ 10, can you find a starting point within a circle of
radius 30 around the origin that will prevent fmincon of finding the optimum?

10. Solve the problem of minimizing the surface area of the cylinder subject to a minimum volume
constraint as an inequality constraint. Do also with Matlab by defining non-dimensional radius and
height using the cubic root of the volume.

Solution:

function Opt

x0=[1,1];

A=-eye(2); b=[0,0]';

options = optimset('Algorithm','active-set','Display','iter');

dopt_cov=fmincon(@(d) myfun(d),x0,A,b,[],[],[],[],@(d)

nonlcon(d),options)

function f=myfun(d)

r=d(1);

h=d(2);

f=2*pi()*r^2+2*pi()*r*h;

function [c,ceq]=nonlcon(d)

r=d(1);

h=d(2);

c=-r^2*h+1/pi();

ceq=[];

11. A 10-bar truss structure shown in the figure is under two loads, 𝑃ଵ and 𝑃ଶ. The design goal is to

minimize the weight, 𝑊, by varying the cross-sectional areas, 𝐴௜, of the truss members. The stress of
the member should be less than the allowable stress with the safety factor. For manufacturing reasons,
the cross-sectional areas should be greater than the minimum value. Input data are summarized in the
table. Find optimum design using the fmincon Matlab function. Use initial cross-sectional area 𝐴௜ ൌ
 0.5 inଶ. Plot objective history (objective value versus iteration). Discuss EXITFLAG. Discuss why
some members have minimum area.
In order to calculate the member forces, the following terms need to be defined first:

𝑎ଵଵ ൌ ቆ
1

𝐴ଵ
൅

1
𝐴ଷ

൅
1

𝐴ହ
൅

2√2
𝐴଻

൅
2√2
𝐴଼

ቇ , 𝑎ଵଶ ൌ 𝑎ଶଵ ൌ
1

𝐴ହ

𝑎ଶଶ ൌ ቆ
1

𝐴ଶ
൅

1
𝐴ଷ

൅
1

𝐴ହ
൅

1
𝐴଺

൅
2√2
𝐴ଽ

൅
2√2
𝐴ଵ଴

ቇ

𝑏ଵ ൌ √2 ቆ
𝑃ଶ

𝐴ଵ
െ

𝑃ଵ ൅ 2𝑃ଶ

𝐴ଷ
െ

𝑃ଶ

𝐴ହ
െ

2√2ሺ𝑃ଵ ൅ 𝑃ଶሻ
𝐴଻

ቇ , 𝑏ଶ ൌ ቆെ
√2𝑃ଶ

𝐴ସ
െ

√2𝑃ଶ

𝐴ହ
െ

4𝑃ଶ

𝐴ଽ
ቇ

Then, member forces are defined as

 5-180

𝑁ହ ൌ െ𝑃ଶ െ
1

√2
𝑁଼ െ

1

√2
𝑁ଵ଴, 𝑁଺ ൌ െ

1

√2
𝑁ଵ଴

𝑁଻ ൌ √2ሺ𝑃ଵ ൅ 𝑃ଶሻ ൅ 𝑁଼, 𝑁ଽ ൌ √2𝑃ଶ ൅ 𝑁ଵ଴

Parameters Values
Dimension, b 360 inches
Safety factor, SF 1.5
Load, P1 66.67 kips
Load, P2 66.67 kips
Density,  0.1 lb/in3
Modulus of elasticity, E 104 ksi
Allowable stress, 𝜎ୟ୪୪୭୵ୟୠ୪ୣ 25 ksi*
Initial area 𝐴௜ 1.0 in2
Minimum cross-sectional area 0.1 in2

*for Element 9, allowable stress is 75 ksi

12. .

13. .

14. .

