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6. Global Search Optimization Algorithms. 
 
6.1. Introduction 

The gradient-based numerical optimization algorithms that we discussed in Chapter 5 are local search 
algorithms where a design is continuously improved/updated based on derivatives. For differentiable 
functions, it has been shown that even if the derivatives are calculated by finite difference methods, 
gradient-based algorithms are better than ones that do not use derivatives. However, gradient-based 
algorithms are limited to continuously differentiable functions. If the objective function or constraint 
functions are not smooth or have some discontinuities, we have to rely on gradient-free optimization 
algorithms.  
 Another challenge of gradient-based algorithms is that they find local optimum designs. Since design 
moves from an initial design to an improved design, the local search algorithms tend to converge the local 
optimum that is close to the initial design. Therefore, different initial designs may end up different local 
optima. Indeed, it is often suggested to repeat the gradient-based optimization algorithms with different 
initial designs in order to increase the chance of finding a global optimum design. However, the lack of 
capability in exploring the entire design space is considered as the major drawback of gradient-based 
optimization algorithms.  
 In order to overcome the requirements of smoothness and local optima, gradient-free optimization 
algorithms have gained a lot of attention recently. These algorithms are relatively easy to implement as 
they do not require gradient or Hessian information and the line search for step-size determination. In 
addition, since they explore the entire design space, they have a better chance to find the global optimum. 
However, most gradient-free algorithms are computational expensive as they require thousands of 
function evaluations. In addition, these algorithms often come with many parameters to be tuned and the 
performance strongly depends on these parameters. Therefore, an algorithm that works great for one 
optimization problem may not work well for other problems. Typically, these algorithms are developed 
based on some physical phenomena. Some examples are genetic algorithms, simulated annealing 
algorithm, and particle swarm optimization.  
 In the literature, these algorithms are often referred to as global optimization algorithms, but they are 
referred to as global search algorithms in this text. This is because there is no guarantee to find the global 
optimum design. They are indeed a structured random search, which increases the chance of finding 
global or near global optimum designs. These methods tend to be numerically robust as they generate a 
population of design and choose the best one. An important aspect of these group of algorithms is that 
they can provide a number of good designs instead of a single optimum design. 
 Some global search algorithms are deterministic, while most others are probabilistic. Nelder-Mead 
sequential simplex algorithm in Section 6.2 and the DIRECT method in Section 6.3 are two examples of 
deterministic algorithms. These algorithms are deterministic in the sense that the same optimum design 
can be found when the algorithm is used with the same initial condition. However, they still search 
globally to find the best design. Most other algorithms are stochastic in their nature where different results 
are expected with the algorithm is repeated. These algorithms include the genetic algorithm in Section 6.4, 
the particle swarm algorithm in Section 6.5, and simulated annealing algorithm in Section 6.6. 
 Depending on how they generate population and not get trapped in local optima, probabilistic 
optimization algorithms can be categorized into three groups. The first group is based on pure random 
search, including the hill-climbing and taboo search algorithms. These algorithms essectially jump around 
the design space and accept designs with some probability. The second group is based on evolutionary 
algorithms, such as the genetic algorithm that try to imitate biological evolution. The last one tries to 
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imitate swarm intelligence, particle swarm optimization, which will cover essentially imitates birds and 
bees while ant colony optimization imitates ants. 
 The major bottleneck of global search algorithms is computational cost. The cost of local optimization 
algorithms usually increases somewhere between linearly and quadratically proportional to the number of 
variables. However, the global search algorithms are often considered as NP-hard [53], which means that 
as the dimension of a problem increases, the cost of solving it increases faster than any polynomial orders, 
which means that the computational cost increases exponentially. 
 Another interesting observation in global search algorithms is no-free-lunch theorem [54], where for 
certain types of mathematical problems, the computational cost of finding a solution, averaged over all 
problems in the class, is the same for any solution method. In global optimization, it means that no single 
algorithm will perform well on all problems. The performance of global search algorithms changes 
significantly by changing their parameters. Therefore, it is possible to make an algorithm perform well for 
a specific problem, but it may not work efficiently for other problems. This is a great opportunity for 
engineers who can use problem specific knowledge to tailor algorithms to their problems, something that 
they can rarely do for local optimization algorithms. However, it is difficult to claim that one algorithm is 
better than the other. 
 The complexity of a function can be categorized in the perspective of difficulty associated with 
finding the global optimum. Thomas Weise [55] illustrates different characteristics of optimization 
problems of increasing challenge. The function in Figure 6-1(a) shows a very benign function, where 
local minima are very shallow and most local optimization algorithms may be able to find the global 
minimum. Figure 6-1(b) shows many significant local optima, where it is likely that gradient-based 
algorithms may find the closest local optimum from the intial design. However, a good global algorithm 
may find the global optimum in such a problem. Gradient-based algorithm can still find the global 
optimum by repeating the algorithm with different initial design. Figure 6-1(c) is a challenging problem in 
the sense that most optimization algorithms may trap in the wide flat region as we do not know the 
functional form of the entire design space. In Figure 6-1(d), the global optimum is hidden in a narrow 
region. Even a good global search optimizer may take forever to find the optimum.  
 

 
Figure 6-1: Complexity of functions and global optimization.  
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6.2. Nelder-Mead sequential simplex algorithm 

The first gradient-free algorithm that we will discuss in this section is the Nelder-Mead sequential simplex 
algorithm, which does not require the objective function to be differentiable or even continuous. The 
algorithm was initially invented by Spendley et al. [56], and then, refined by British mathematicians 
Nelder and Mead [57]. It is considered the simplest algorithm in a random search by adding simple logics, 
which is referred to as a structured random search. It is easy to implement, robust, and computationally 
efficient. This algorithm is currently implemented in Matlab function fminsearch. Matlab refers to a paper 
on its convergence properties in one or two dimensions [58]. 
 The algorithm has random search characteristic as it is based on generating population in the design 
space. However, it is not purely random search because it moves the design in a direction that can reduce 
the objective function. This sounds like a gradient-based algorithm, but it moves the design without 
requiring the gradient information. 
 The Nelder-Mead sequential simplex algorithm utilizes the geometry of simplex, which is the 
simplest body in 𝑁 dimensional design space with 𝑁  1 vertices (triangle in 2D and tetrahedron in 3D). 
The initial vertices are randomly generated in the design space, but the performance of the algorithm is 
relatively insensitive to these initial choices. The objective function is evaluated at each vertex. The basic 
idea of the Nelder-Mead algorithm is to move away from the worst point in the direction of the other 
points. Then, the algorithm is composed of the following four simple logics to update the design: 

 Reflection: the point with the highest objective function value is reflected to the opposite side 
(preserve volume, nondegeneracy). Specifically, the worst point moves in the direction to the 
center of gravity of the other points. Most of the time, this point may be an improvement on the 
worst point, but not on the best point. In that case, the new vertex is the point that is the mirror 
image of the worst point on the other side.  

 Expansion: If the reflected point is the best design (better than the objective functions at all 
vertices), this means that the reflection direction is promising and the reflected point should go 
further along that direction; i.e., expand the simplex further (possibly optimum is further in that 
direction). 

 Contraction: If the reflected point is worse than all the existing points, it means the reflected point 
possibly goes too far and it would be necessary to contract the simplex (possible valley floor). 

 Reduction: If the contracted point is still worst, reduce the size of the simplex (possibly the best 
point is within the simplex) 

 
 Figure 6-2 shows an illustration of the Nelder-Mead algorithm for two-dimensional design space. The 
initial simplex is the blue triangle composed of 𝑏ଵ-𝑏ଶ-𝑏ଷ. At these three vertices, the objective function 
has the highest value at 𝑏ଷ, which is reflected against 𝑏ଵ-𝑏ଶ. The reflected point is 𝑏. If the objective 
value at 𝑏 is between that of 𝑏ଵ and 𝑏ଶ, it becomes a new vertex, replacing 𝑏ଷ. If the objective value at 𝑏 
is less than that of 𝑏ଵ and 𝑏ଶ, it is further extended to 𝑏. If the objective value at 𝑏 is greater than that of 
𝑏ଵ and 𝑏ଶ, it is contracted to 𝑏. If the objective function value at the contracted point 𝑏 is greater than 
that of 𝑏ଵ and 𝑏ଶ, reduce the size of simplex by half.  
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Figure 6-2: Nelder-Mead sequential simplex algorithm in two-dimensional design space.  
 
 With reference to Figure 6-2, the Nelder-Mead sequential simplex algorithm in 𝑁-dimensional design 
space starts with 𝑁  1 randomly selected vertices of a simplex. The objective functions at all vertices are 
evaluated and ordered by function values: 𝑓ሺ𝐛ଵሻ  𝑓ሺ𝐛ଶሻ  ⋯  𝑓ሺ𝐛ேାଵሻ. That is, 𝐛ଵ is the best design 
and 𝐛ேାଵ is the worst design for the given simplex. Then, the following algorithm is repeated until the 
size of simplex is less than a threshold. 

1. Calculate 𝐛 at the center of gravity of all the points except for 𝐛ேାଵ 

𝐛 ൌ
1
𝑁

 𝐛

ே

ୀଵ

 

2. (Reflection) Reflect the worst point 𝐛ேାଵ about 𝐛 ሺ𝛼 ൌ 1ሻ 

𝐛 ൌ 𝐛  𝛼ሺ𝐛 െ 𝐛ேାଵሻ 

If 𝐛 is better than the second worst, but not the best, use it to replace with the worst and go back 
to Step 1 ሺ𝐛ேାଵ ൌ 𝐛ሻ 

3. (Expansion) If 𝐛 is the best; i.e., 𝑓ሺ𝐛ሻ ൏ 𝑓ሺ𝐛ଵሻ, move further in the direction to 𝐛 ሺ𝛾 ൌ 2ሻ 

𝐛 ൌ 𝐛  𝛾ሺ𝐛 െ 𝐛ேାଵሻ 

If 𝑓ሺ𝐛ሻ ൏ 𝑓ሺ𝐛ሻ, then replace 𝐛ேାଵ by 𝐛. Otherwise, replace 𝐛ேାଵ by 𝐛. Go back to Step 1 
4. (Contraction) If 𝐛 is the worst; i.e., 𝑓ሺ𝐛ሻ  𝑓ሺ𝐛ேሻ, move less in the direction to 𝐛 ሺ𝜌 ൌ 0.5ሻ  

𝐛 ൌ 𝐛  𝜌ሺ𝐛 െ 𝐛ேାଵሻ 

If 𝑓ሺ𝐛ሻ ൏ 𝑓ሺ𝐛ேାଵሻ, then replace 𝐛ேାଵ by 𝐛. 
5. (Reduction) If 𝑓ሺ𝐛ሻ  𝑓ሺ𝐛ேାଵሻ, contract all points about the best one ሺ𝜎 ൌ 0.5ሻ 

𝐛 ൌ 𝐛ଵ  𝜎ሺ𝐛 െ 𝐛ଵሻ, 𝑖 ൌ 2, ⋯ , 𝑁  1 

Go back to Step 1 
 
Example 6-1 
Consider the minimization of the Rosenbrock function, commonly called a banana function: 

minimize  𝑓ሺ𝐱ሻ ൌ 100ሺ𝑥ଶ െ 𝑥ଵ
ଶሻଶ  ሺ1 െ 𝑥ଵሻଶ 

It is known that the function has its minimum at 𝐱∗ ൌ ሺ1,1ሻ with 𝑓ሺ𝐱∗ሻ ൌ 0. With the initial design at 
ሺെ1.2,1.0ሻ, perform 20 optimization iterations using the Matlab fminsearch function (Nelder-Mead 
sequential simplex method). 
 
Solution: 
First, the following Matlab function banana is stored in the banana.m file: 

function [y]=banana(x) 
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global z1 z2 yg count 

y=100*(x(2)-x(1)^2)^2+(1-x(1))^2; 

z1(count)=x(1); z2(count)=x(2); 

yg(count)=y; 

count=count+1; 

The banana function does not only codes the Banana function, but it also stores the coordinates and the 
function values every time it is called. This allows us to plot the history of design evolution. The 
following Matlab script calls fminsearch with a limit on the number of function evaluations set at 20 

global z1 z2 yg count 

count =1; 

options=optimset('MaxFunEvals',20) 

[b,fval] = fminsearch(@banana,[-1.2, 1],options)  

mat=[z1;z2;yg] 

The array mat stores the history of design variables and objective function: 
mat = 

  Columns 1 through 8 

   -1.200   -1.260   -1.200   -1.140   -1.080   -1.080   -1.020   -0.960 

    1.000    1.000    1.050    1.050    1.075    1.125    1.1875   1.150 

   24.20      39.64    20.05   10.81     5.16     4.498    6.244   9.058 

 

  Columns 9 through 16 

   -1.020   -1.020   -1.065   -1.125   -1.046   -1.031   -1.007   -1.013 

    1.125    1.175    1.100    1.100    1.119    1.094    1.078    1.113 

    4.796    5.892    4.381    7.259    4.245    4.218    4.441    4.813 

The first two rows are design variables, 𝑥ଵ and 𝑥ଶ, while the last row is the objective function. In order to 
construct the initial simplex (triangle in 2D problem), fminsearch perturbs the initial design by 5% in each 
design direction. Figure 6-3 shows the first seven design points generated by fminsearch function in 
Matlab. The first three points are the initial simplex. Here the first reflection, 𝐱ሺସሻ, is very successful, in 
that the value of the function, at 10.81, is better than any of the previous points, so we double the distance 
and get an even better result of 5.16 at 𝐱ሺହሻ. At the step, the simplex is composed by 𝐱ሺହሻ, 𝐱ሺଷሻ, and 𝐱ሺଶሻ. 
The second iteration again starts with a reflection of the worst point 𝑓൫𝐱ሺଶሻ൯ ൌ 24.2 about the middle of 
the line connecting the other two points, 𝐱ሺହሻ and 𝐱ሺଷሻ. This gives us an improvement to 4.49 at 𝐱ሺሻ, so 
we try expansion again to 𝐱ሺሻ. However, this time we do not get an improvement, so the simplex for the 
next iteration will include 𝐱ሺሻ, 𝐱ሺହሻ, and 𝐱ሺଷሻ. 
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Figure 6-3: First seven design points generated by fminsearch in Matlab.  
 

 
6.3. DIRECT method 

Although the Nelder-Mead sequential simplex method is a gradient-free algorithm, it has a limitation to 
be called a global search algorithm as it starts with an initial simplex and update the simplex based on 
function values. If a function has many local optima, it tends to find a local optimum depending on the 
size and location of the initial simplex. A global search algorithm should have a capability to explore the 
entire design space for a possible, better optimum design.  
 In this section, we will discuss a new algorithm, called DIviding RECTangles (DIRECT) algorithm, 
originally proposed by Jones et al. [59]. The DIRECT algorithm is an example of systematic exploration 
of the design space by dividing it into regions, and then into sub-regions. The regions would be sections 
of a line in 1D, rectangles in 2D, and cuboids in 3D. In higher-dimensions, they are referred to hyper-
boxes. Compared to other global search algorithms, the DIRECT algorithm is purely deterministic, which 
means that the algorithm will produce the same optimum design even if it runs multiple times. In order to 
understand the DIRECT optimization algorithm, it would be necessary to discuss Lipschitzian 
optimization first, followed by how the DIRECT algorithm extends it.  
 

Lipschitzian optimization 
Lipschitzian optimization was originally proposed by Shubert [60], which is designed for seeking the 
global minimum of a function. It is named after Rudolf Otto Sigismund Lipschitz (14 May 1832 – 7 
October 1903) who was a German mathematician and professor at the University of Bonn from 1864. 
Lipschitzian optimization is a predecessor of the DIRECT optimization algorithm that divides the space 
into boxes, samples at the center of the boxes and divides boxes further based on the function’s Lipschitz 
constant. The Lipschitz constant is an upper bound on the rate of change of the function, and it can be 
used even for functions that are not even differentiable.  
 A function 𝑓: 𝐷 ∈ 𝑅 → 𝑅 is called Lipschitz continuous if there exists a positive constant 𝐾 ∈ 𝑅ା 
such that 

|𝑓ሺ𝑥ሻ െ 𝑓ሺ𝑥ᇱሻ|  𝐾|𝑥 െ 𝑥ᇱ|, ∀𝑥, 𝑥′ ∈ 𝐷 (6.1)

where the lowest 𝐾 is called the Lipschitz constant. This basically excludes those functions whose 
absolute value of the slope approaches infinite. The upper bound of the slope is the Lipschitz constant. As 
long as the objective function is a bounded function of design variables, it is Lipschitz continuous. For 
𝑥 ∈ ሾ𝑎, 𝑏ሿ, replacing 𝑎 and 𝑏 with 𝑥′ in the previous equation obtains 

𝑓ሺ𝑥ሻ  𝑓ሺ𝑎ሻ െ 𝐾ሺ𝑥 െ 𝑎ሻ
𝑓ሺ𝑥ሻ  𝑓ሺ𝑏ሻ  𝐾ሺ𝑥 െ 𝑏ሻ (6.2)

In the first equation, the right-hand side is the straight line from 𝑓ሺ𝑎ሻ with a slope of െ𝐾. In the second 
equation, the right-hand side is the straight line from 𝑓ሺ𝑏ሻ with a slope of 𝐾. Therefore, the function 
value is above the two straight lines. As shown in Figure 6-4(a), the intersection of these two lines is the 
possible lowest value if the function is decreased by a rate of 𝐾 from both ends. Note that given 𝐾 the 
function cannot be possibly lower than the intersection value. The intersection point can be calculated as 

𝑥ଵሺ𝑎, 𝑏, 𝑓, 𝐾ሻ ൌ
𝑎  𝑏

2


𝑓ሺ𝑎ሻ െ 𝑓ሺ𝑏ሻ
2𝐾

𝑓ଵሺ𝑎, 𝑏, 𝑓, 𝐾ሻ ൌ
𝑓ሺ𝑎ሻ  𝑓ሺ𝑏ሻ

2
െ

𝐾ሺ𝑏 െ 𝑎ሻ
2

 
(6.3)
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 The Lipschitz optimization repeats this process by reducing the intervals. As shown in Figure 6-4(b), 
the process is repeated with two intervals that were created by adding 𝑥ଵ; that is, ሺ𝑎, 𝑥ଵሻ and ሺ𝑥ଵ, 𝑏ሻ. 
Figure 6-4(b) shows that the process predicts a lower bound on the function in ሺ𝑎, 𝑥ଵሻ that is better than 
the one in ሺ𝑥ଵ, 𝑏ሻ. Therefore, we select the intersection there and get 𝑥ଶ. We can repeat the process at the 
additional two intervals that were created by adding 𝑥ଶ, that is ሺ𝑎, 𝑥ଶሻ and ሺ𝑥ଶ, 𝑥ଵሻ. Among all 
intersection points, we choose the lowest on as 𝑥ଷ as shown in Figure 6-4(c).  
 

 
Figure 6-4: Lipschitzian optimization of 1D function.  
 
 The Lipschitzian optimization algorithm is simple and straightforward, and yet, provides a robust 
global searching capability. The algorithm is deterministic, which means there is no need for multiple 
runs. In addition, the algorithm requires a few tuning parameters. The only parameter it needs is the 
Lipschitz constant 𝐾, which depends on the function. On the other hand, the determination of the 
Lipschitz constant may not be an easy task as the global behavior of the function is unknown. In practice, 
the Lipschitz constant affects the convergence speed as well as global searching capability. A Large 𝐾 can 
help global search but it slows down the convergence speed. On the other hand, a small 𝐾 may end up 
searching for local optima. Lastly, the algorithm may have a computational complexity for high 
dimensions. Since the algorithm requires to evaluate function values at all corners of the design space, it 
requires a large number of function evaluations ~𝑂ሺ2ሻ for a high-dimensional design space. 
 

DIRECT in 1D 
The direct algorithm is inspired by Lipschitzian optimization. The algorithm divides the design space into 
hyper-boxes (lines in 1D, rectangles in 2D, cuboids in 3D, etc.) and samples the function at the center of 
each hyper-box. Based on Jones et al. [59], another challenge in Lipschitzian optimization is the 
determination of the Lipschitzian constant 𝐾. In the DIRECT algorithm, instead of finding the 
intersection of two lines as in Figure 6-4(a), the function value is evaluated at the center of the region. In 
addition, in order to recycle the center of the region in subsequent subregions, the region of design is 
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divided into three subregions and the function values are evaluated at the center of each subregion. As 
shown in Figure 6-5(a), the center point P in the initial region is recycled after the region is divided into 
three subregions. From the perspective of Lipschitzian optimization, the DIRECT algorithm uses the 
following Lipschitz bound: 

𝑓ሺ𝑥ሻ  𝑓ሺ𝑐ሻ  𝐾ሺ𝑥 െ 𝑎ሻ for 𝑥  𝑐
𝑓ሺ𝑥ሻ  𝑓ሺ𝑐ሻ െ 𝐾ሺ𝑥 െ 𝑐ሻ for 𝑥  𝑐 (6.4)

Since the function value at the center of the region is used instead of the two ends, it is unnecessary to 
find the intersection of two lines, as shown in Figure 6-5(b). Also, it is unnecessary to define the Lipschitz 
constant 𝐾 that is the upper bound of the slope of the function.  
 

 
Figure 6-5: The DIRECT algorithm in 1D design space.  
 

DIRECT algorithm 
The DIRECT algorithm starts from one region of the entire design space and sequentially subdivides the 
region. At a given iteration, the design space is divided into subregions, and the objective function is 
evaluated at the center of each subregion. Figure 6-6 illustrates an example of the subdivision process of 
the DIRECT algorithm in a two-dimensional design space. The horizontal axis is 𝑥ଵ and the vertical axis 
is 𝑥ଶ. First, the design space is normalized such that the box is square. The yellow boxes represent the 
regions that need to be subdivided, and the red circles represent the location of function evaluation. 
Initially, a single box is used for the entire design space, and the function is evaluated at the center of the 
design space as shown in Figure 6-6(a). In the implementation of Jones et al. [59], the rule of the 
subdivision is such that the longer dimension is subdivided into three subregions. When a box is a square, 
the region is subdivided into three regions in the direction of 𝑥ଶ first, and then, only the center region is 
subdivided into three regions in the direction of 𝑥ଵ as shown in Figure 6-6(b). Such scheme only requires 
four additional function evaluations. After comparing all five function values, it is determined that the 
bottom box is further subdivided. The rule of selecting the regions to be subdivided will be discussed 
later. In this case, the subdivision is only performed in the direction of 𝑥ଵ because the bottom box is 
rectangle and has a longer length in the direction of 𝑥ଵ. In the next iteration as shown in Figure 6-6(c), 
both the top rectangle and the bottom-center square are selected. In the optimization term, subdividing a 
large box corresponds to exploring the design space, while subdividing a small box corresponds to 
refining the design space. The top rectangle is subdivided into three squares in the direction of 𝑥ଵ, while 
the bottom-center square is subdivided into both 𝑥ଵ and 𝑥ଶ directions, as shown in Figure 6-6(d). In the 
subsequent evaluations, the top-center and bottom-right boxes will be further subdivided in the next 
iteration. 
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Figure 6-6: DIRECT algorithm in 2D design space.  
 
 A critical question of the DIRECT algorithm is which boxes should be subdivided. As mentioned 
before, this subdivision is used to explore the design space and refine the optimum design. In the DIRECT 
algorithm, this determination is done using a graph of box-size versus objective function as shown in 
Figure 6-7. In the graph, the box-size represents the largest dimension of a box, while the ordinate is the 
value of the objective function at the center of the box. With reference to Figure 6-7(a), if the smallest box 
with the lowest objective function is subdivided, it can look for a better design within the current best 
box, which corresponds to refining the current optimum design. On the other hand, the lowest objective 
functions of larger boxes may have higher values, but they have a chance to yield a better design if they 
are subdivided, which corresponds to exploring the design space.  
 

 
Figure 6-7: Determination of subdivision boxes in the DIRECT algorithm.  
 
 In the DIRECT algorithm, subdivisions are made at those points that have the best possibility of 
improving the optimum design. These points can be selected by constructing a convex hull of box sizes as 
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shown in Figure 6-7(b). Those points on the convex hull are subdivided and function values are evaluated 
at the center of the new boxes. If enough number of iterations are performed, every region in design space 
will be eventually divided into a small box. Therefore, the algorithm is guaranteed to find the global 
optimum even if the objective function has a difficult shape to find the global optimum design. In 
practice, however, it will require a huge number of function evaluations.  
 Figure 6-7 only shows a two-dimensional illustration. However, the number of boxes (i.e., the number 
of function evaluations) increases exponentially with dimension. For example, consider the case of ten 
design variables. Having ten regions in each design variable is not considered a high resolution. Even 
with such a coarse resolution, the number of function evaluations can reach 10ଵ, which is practically 
impossible for most functions. Therefore, there is a serious question as to how practical is DIRECT for a 
high-dimensional problem, which is discussed by Cox et al. [61]. Therefore, this algorithm is appropriate 
for an optimization problem with a small number of design variables. 
 The Matlab code of the DIRECT algorithm from Dr. Daniel Finkel is available in the website 
(https://ctk.math.ncsu.edu/Finkel_Direct/). The code is based on the algorithm published by Jones et al. 
[59]. The website also has user’s guide as well as sample optimization problems. The Matlab code is also 
available in the companion website of this book.  
 
Example 6-2 
Optimize the following Goldstein-Price function in the design space of െ2  𝑥ଵ, 𝑥ଶ  2 using the 
DIRECT algorithm: 

minimize  𝑓ሺ𝐱ሻ ൌ ቀ1  ሺxଵ  xଶ  1ሻଶ ∗ ሺ19 െ 14xଵ  3xଵ
ଶ െ 14xଶ  6xଵxଶ  3xଶ

ଶሻቁ 

                              ∗ ቀ30  ሺ2xଵ െ 3xଶሻଶሺ18 െ 32xଵ  12xଵ
ଶ  48xଶ െ 36xଵxଶ  27xଶ

ଶሻቁ 

Solution: 
The Goldsten-Price function has its global minimum at ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ0, െ1ሻ with the minimum value 
𝑓 ൌ 3.0. In order to solve the optimization problem, it would be necessary to define the objective 
function as an m-file. The following gp.m file is defined: 

function value = gp(x) 
x1 = x(1); x2 = x(2); 
value =(1+(x1+x2+1).^2.*(19-14.*x1+3.*x1.^2-14.*x2+6.*x1.*x2+3.*x2.^2))... 
.*(30+(2.*x1-3.*x2).^2.*(18-32.*x1+12.*x1.^2+48.*x2-36.*x1.*x2+27.*x2.^2)); 

 
The above gp.m file will calculate the objective function value at a given design ሺ𝑥ଵ, 𝑥ଶሻ. Then, the 
following Matlab code will define the optimization problem and call the Direct.m Matlab function to find 
the optimum design: 

clear all; 
bounds = [-2 2;-2 2];                    % lower- and upper-bounds of design 
options.testflag  = 1;                             % Global minimum is known 

options.globalmin = 3;                       % The value of known global min 

options.showits   = 1;                              % Show iteration history 
options.tol       = 0.01;                               % Stopping criterion 
Problem.f = 'gp';                                  % Objective function name 
[fmin,xmin,hist] = Direct(Problem,bounds,options);% Calling DIRECT algorithm 
plot(hist(:,2),hist(:,3))                        % Plot iteration statistics 
xlabel('Fcn Evals'); ylabel('f_{min}'); 
 

The optimum design is stored at xmin, and the optimum objective value is at fmin. It turns out 𝑥 ൌ
 ሺ0, െ1.0005ሻ, and 𝑓 ൌ 3.0001, which is within the tolerance. Figure 6-8(a) shows the contour of the 
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objective function, which shows ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ0, െ1ሻ as the global optimum design. Figure 6-8(b) shows 
the history of the objective function versus the number of function evaluations. Although optimization 
took only 14 iterations, it requires a total 191 function evaluations. As boxes are refined, more function 
evaluations are required at a single iteration. 
 

 
Figure 6-8: Contour of objective function and optimization history of Example 6-2.  
 

 
6.4. Genetic algorithms 

 The sequential simplex method and the DIRECT method in the previous sections have the global 
searching capability, but they are deterministic in a sense that they will produce the same optimum design 
when the algorithm is repeated. That is, there is no randomness in the searching process. This is not a 
desirable feature of global searching algorithms as randomness can increase the chance of finding the 
global optimum. Therefore, many global searching algorithms have randomness imbedded in their 
iteration process. Among many global searching algorithms, genetic algorithms are the most popular 
ones. Genetic algorithms were developed in 1975 by John Holland from the University of Michigan [62]. 
However, similar algorithms were developed in Europe around the same time with the name of 
evolutionary strategies. The main difference is that genetic algorithms are usually associated with discrete 
variables, while evolutionary strategies with continuous ones. 
 Genetic algorithms are inspired by Darwin’s principle of evolution, where a population of individuals 
can adapt to its environment because individuals that possess traits that make them less vulnerable than 
others are more likely to have descendants and therefore to pass on their desirable traits to the next 
generation. One can think of this process of adaptation as an optimization process that probabilistically 
creates fitter individuals through selection and recombination of good characters. Genetic algorithms are 
simplified computer models of evolution, where the environment is emulated by the objective function to 
maximize/minimize, and the design variables play the role of the individuals. Moving from parents to 
children corresponds to one iteration in optimization, and the goodness is measured in terms of the 
objective function. The key ideas that distinguish genetic algorithms from traditional search algorithms 
are the use of population of designs, the mating of pairs of design to create child designs in a process 
called crossover, and the use of mutations (i.e., randomness) to enhance exploration. Together they create 
an optimization process that has a strong random component, so every time the algorithms are run, they 
produce different optimum designs. 
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Representation of design 
 An important difference between the genetic algorithms and conventional engineering optimization is 
the representation of design. In engineering design, a design variable is represented using a number, either 
continuous or discrete. In genetic algorithms, a design variable is stored in the chain of DNA 
(deoxyribonucleic acid) chromosomes, often using binary digits. Each design encodes of a particular 
candidate structure in the form of one or several chromosomes, which are strings of finite length. A 
design variable is represented in the form of a string of binary numbers. Each chromosome can have a 
value of 0 or 1. The mapping between binary numbers and the state of design variable is called coding. As 
an example, let a discrete design variable have four different states: red, green, blue, and yellow. In order 
to represent this design variable, two chromosomes should be enough as they can represent four different 
states: 00, 01, 10, and 11. Therefore, by coding 00 as red, 01 as green, 10 as blue, and 11 as yellow, the 
design variable can have all possible states. Although binary coding is most common, real number coding 
is also possible but requires special treatment.  
 The same binary digits can be used to store integer variables in a similar way that a computer stores 
numbers in the form of a binary numeral system. Figure 6-9 shows an eight-digit binary number. In the 
binary system, each bit represents an increasing power of 2, with the rightmost bit representing 2, the 
next representing 2ଵ, then 2ଶ, and so on. The value of a binary number is the sum of the powers of 2 
represented by each "1" bit. For example, the binary number 100101 is converted to decimal form as 
follows: 

100101ଶ ൌ ሺ1 ൈ 2ହሻ  ሺ0 ൈ 2ସሻ  ሺ0 ൈ 2ଷሻ  ሺ1 ൈ 2ଶሻ  ሺ0 ൈ 2ଵሻ  ሺ1 ൈ 2ሻ ൌ 37 

As expected, the eight-digit binary numbers can represent up to 256 states of a design variable. A great 
number of bits are required to represent a design variable with a large range. 
 

 
Figure 6-9: Representation of 37 in the form of binary numbers.  
 
Example 6-3 
Four integer variables are used for the following optimization problem definition 

minimize  𝑓ሺ𝐱ሻ, 𝐱 ൌ ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସሽ
ሼ0  𝑥ଵ, 𝑥ସ  15ሽ, ሼ0  𝑥ଶ  7ሽ, ሼ0  𝑥ଷ  3ሽ 

When 𝑥ଵ ൌ 6, 𝑥ଶ ൌ 5, 𝑥ଷ ൌ 3, 𝑥ସ ൌ 11, represent the integer design variables using binary coding. 
 
Solution: 
Since 𝑥ଵ and 𝑥ସ are between 0 and 15, all their states can be represented using four bits. Similarly, 𝑥ଶ 
needs three bits and 𝑥ଷ needs two bits. Therefore, all four design variables are represented using 13 bits as 
shown in  
 

 
Figure 6-10: Representation of four integer variables.  
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 Many engineering optimization problems include real-valued design variables. It is a challenge to 
store a continuous variable using binary coding. Instead of storing continuous variables, binary coding 
stores the variable with resolution or interval. Let a continuous design variable has a lower- and upper-
bound, 𝑥  𝑥  𝑥. We want to store this variable with a resolution of 𝑥. Then the number 𝑚 of the 
required digits can be found from 

2 
𝑥 െ 𝑥

𝑥  1 (6.5)

For example, if ሼ0.01  𝑥  1.81ሽ with 𝑥 ൌ 0.001, the required digits should be 

2 
1.81 െ 0.01

0.001
 1 ൌ 1801 (6.6)

Therefore, the smallest integer 𝑚 ൌ 11 and the actual intervals should be 𝑥 ൌ ሺ1.81 െ 0.01ሻ/2ଵଵ ൌ
0.00088. It is noted that the interval is adjusted such that the entire 11 digits are used to represent the 
range. As another example, let a design variable is the height of a stiffener, which can change from 1 inch 
to 2 inches with 0.1-inch intervals. Even if the design variable can have 11 different values, binary coding 
requires four digits with 16 values. Therefore, the entire range is divided into 15 intervals, each 1/15 inch 
wide. Therefore, 0000 denotes 1", 0001 denotes 16/15", … 1111 denotes 2". Genetic algorithms, like 
most global search algorithms, are not effective in getting high-precision designs. It is better to go for a 
coarse grid of real values. 
 A common application of discrete variables is stacking sequence optimization of composite materials, 
where the sequence of four different ply angles, 0°, േ45° or 90°, are determined to achieve the best 
performance of the composite panel. Since the ply thickness is fixed due to the manufacturing process, the 
design problem is to select the number of plies and select the ply angles for each ply from the four 
choices. Coding the stacking sequence of a composite laminate that has a finite number of possible angles 
is typically done by assigning a number to each angle, or even just using the angle itself. For the 
convenience of explanation, natural coding will be used instead of common binary coding. In natural 
coding, the four possible ply angles are assigned as ሺ0° → 1, 45° → 2, െ45° → 3, 90° → 4ሻ. If binary 
coding is used, then two bits can be used instead. Therefore, the following stacking sequence can be 
represented using natural coding as 

ሺ45/െ45/90/0ሻ௦ → ሺ2/3/4/1ሻ 

The subscribed ‘s’ stands for symmetric stacking, where the total stacking sequence is ሺ45/െ45/90/0/
0/90/െ45/45ሻ. When the laminate is symmetric, only one half is coded. 
 There is often also a balance condition that requires that the laminate has an equal number of positive 
and negative angles. This means that the number of 45° plies needs to be equal to the number of െ45° 
plies. This is a difficult constraint to enforce, and an easy way out is to require that plies come in groups 
of two: ሺ0°ଶ → 1, േ45° → 2, 90°ଶ → 3ሻ. This, however, may mean wasted plies for 0° or 90° directions. 
 

Genetic operators 
 A key factor of genetic algorithms is working with a population of designs that can mate and create 
child designs. Among the population, two parents are selected based on their goodness (fitness) of their 
objective function values. Then, child designs are created using genetic operations, which takes some 
genes from one parent and some from a second parent. Figure 6-11 shows four basic genetic operators. 
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 The first genetic operator is selection, where good parents are chosen to produce children in the next 
generation. The basic idea is to pass designs with higher fitness to the next generation. This selection 
operation increases population of high fitness design, while removing low fitness designs. Therefore, the 
mean fitness of the population is improved.  
 The crossover operator exchanges some genes from the two parents to produce children. This 
corresponds to the case when a child takes a part of their gene from one parent and the remaining part 
from the other parent. First some chromosomes of the two parents are sliced and exchanged. This 
operation diversifies the population, while the mean fitness is preserved. If the two parent designs are 
good (i.e., having a good fitness value), the chance is high that their child design can produce a better 
fitness. Selection plus crossover form together an exploitation mechanism that looks for combination of 
good designs. Randomness can be included in the selection process of the two parents and in determining 
the crossover location. The genetic representation of designs with a fixed chromosome length makes the 
crossover convenient as their parts can be easily aligned.  
 Mutation changes a chromosome randomly and adds an element of exploration. These two operators 
are used in practically every genetic algorithm. Permutation reverses the order of a portion of 
chromosomes. In the case stacking sequence optimization of composite material, it preserves the in-plane 
properties and changes only the bending properties. Addition/deletion adds/removes one chromosome 
from a design. This operation is useful when the design space needs to be expanded to satisfy design 
constraints.  
 

 
Figure 6-11: Genetic operations.  
 
Example 6-4 
In the stacking sequence design of a composite material, two parents are given in ሾേ45ଶ/0ସ/90ଶሿs  and 
ሾേ45ସ/0ଶሿs with 5-digit genes. When the crossover occurred at the second digit, calculate their child 
designs. 
 
Solution: 
For coding, let us assign 0ଶ → 1, േ45 → 2, 90ଶ → 3. Then, the two parents can be represented as 

Parent 1 ∶ ሾ2/2/1/1/3ሿ 

Parent 2 ∶ ሾ2/2/2/2/1ሿ 

After the crossover at the second digit, the two children become 

Child 1 ∶ ሾ2/2/1/2/1ሿ 

Child 2 ∶ ሾ2/2/1/1/3ሿ 

Therefore, the stacking sequences of the two children are ሾേ45ଶ/0ଶ/േ45/0ଶሿs and ሾേ45ଶ/0ସ/90ଶሿs. 
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Example 6-5 
The first child in Example 6-4 has a mutation at the fourth digit, where a random value of 3 is assigned, 
followed by a permutation between 2-3-4 digits. Calculate the resulting stacking sequence. 
 
Solution: 
From Example 6-4, Child 1 has a design of ሾ2/2/1/2/1ሿ. After a mutation at the fourth digit, it becomes 
ሾ2/3/1/2/1ሿ. Then, a permutation between 2-3-4 digits yields ሾ2/2/1/3/1ሿ. This design corresponds to 
a stacking sequence of ሾേ45ଶ/0ଶ/90ଶ/0ଶሿs. 
 

 

Procedure of genetic algorithms 
 Figure 6-12 illustrates the basic procedure of genetic algorithms using the genetic operators. The 
algorithms start with a population of designs, and the fitness of each design is calculated based on its 
objective function and possibly constraint satisfaction. Then, parent designs are selected based on their 
fitness but with randomness thrown in. From the illustrative figure, the best (green) design was selected 
three times, as was the second best (red). The third best design (blue) was selected twice and the worst 
design (orange) not at all. Once parents are selected, children are created genetic operations. In the figure, 
only crossover is used to create children. After all children are created, they become parents in the next 
generation (iteration). This process is continued until stopping criteria are satisfied. 
 

 
Figure 6-12: Illustration of the procedure of genetic algorithms.  
 
 The procedure of genetic algorithms can be summarized as follows: 
 
 Create a random initial population 
 Generate the next population based on the following steps 

o Scores each design of the current population based on its fitness 
o Selects members, called parents, based on their fitness 
o Choose lower/higher fitness members as elite. These elite members are passed to the next 

population 
o Produces children from the parents using genetic operations 
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o Replaces the current population with children to form the next generation 
 Repeat the process until the stopping criteria are satisfied 
 
 The procedure of genetic algorithms starts from creating initial population of designs randomly. In the 
case of Figure 6-12, the initial population consists of four designs with six digits each. In order to 
generate random designs, random number generator in common computer programs can be used. For 
example, Matlab uses the rand function to generate random numbers from a uniform distribution~𝑈ሾ0,1ሿ. 
However, most random number generators in computer programs are pseudo random based on the initial 
seed. If a same initial seed is used, the same sequence of random numbers are generated. The initial seed 
may reflect some internal computer state, time of day, or some other data available to the generator. It is 
selected so that it is practically random, and different results are expected at different trials. However, 
seed is useful when we want to generate the same sequence of random numbers. In most cases, it is 
necessary to interpret/transform random numbers to design values. 
 Once a population of designs is randomly generated, the next step is to calculate the fitness of each 
design. In unconstrained optimization, the fitness corresponds to the objective function to minimize. In 
the case of a constrained optimization problem, the following three-term augmented objective function is 
commonly used: 

𝑓∗ ൌ 𝑓  𝑝𝑣 െ 𝑏𝑚  signሺ𝑣ሻΔ (6.7)

where 𝑓 is the objective function, 𝑣 is the maximum violation of constraints, 𝑚 is the minimum margin of 
satisfying constraints, and 𝑝, 𝑏, and Δ are constants. By having a large value of 𝑝, the objective function is 
penalized proportional to violated constraints. In addition, there is a small penalty Δ if there is any 
violated constraints, to give a preference to designs that satisfy the constraints over that have very small 
violations. Finally, there is a term that rewards margin with respect the constraint with a bonus. This is 
important when there are multiple designs that have the same value of the objective function, but some 
satisfy the constraint with a larger margin. 
 Some objective functions vary in a wide range, while others vary in a small range. In order to make a 
robust algorithm, it would be necessary to select the fitness so that the difference between the best design 
and the poorest design is large even if their objective function values are close. This prevents stagnation in 
the evolution as we near the optimum. Accentuating the difference may be done by normalizing it as 

fitness ൌ
|𝑓∗ െ 𝑓୫ୟ୶

∗ |

ห𝑓୫୧୬
∗ െ 𝑓୫ୟ୶

∗ ห
 (6.8)

The normalized fitness is insensitive to the range of objective function. 
 The two most common ways of selecting parents are roulette wheel and tournament. In this section, 
only the roulette wheel approach will be explained. Tournament selection is based on selecting randomly 
two individuals from the population and picking the best one as one parent, then repeating to select the 
second parent. Some genetic algorithms pursue elitist strategies, where the top design in a generation is 
always selected to be moved to the next generation. This guarantees monotonic progress, but it has not 
been proven to lead to faster convergence. In fact, putting too much preference to the top design means 
focusing on refining local optimum but limiting exploration of a better design far away from the current 
good one. Finally, often genetic algorithms have a no twin rule, in that both parents cannot be identical. 
 In a roulette wheel approach, each design occupies a slice of the roulette wheel that is proportional to 
its fitness. Spinning the roulette wheel is simulated by generating a random number from a uniform 
distribution~𝑈ሾ0,1ሿ. Figure 6-13(a) shows an illustration of roulette wheel selection with six fitness 
values, ሼ0.62, 0.60, 0.65, 0.61, 0.57, 0.64ሽ. Since the six fitnesses are close, the slices allocated to the six 
designs are close in size. Therefore, if they are randomly selected (arrows in the figure), they all have a 
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similar probability to be selected. If, on the other hand, the fitness is made proportional to the reverse 
rank, then the top design will get a slice of 6/21 of the wheel, the second best 5/21, and the poorest design 
1/21. Therefore, the following reverse rank ሼ3/21, 5/21, 1/21, 4/21, 6/21, 2/21ሽ is used to make the 
roulette wheel, as shown in Figure 6-13(b). The figure also shows the effect of generating six random 
numbers and selecting individuals based on these numbers. With the original fitnesses, each design is 
selected once. With the reverse rank-based fitness, the first and second best designs are selected twice, 
while the third and fourth are selected once, and fifth and sixth are not selected at all. 
 

 
Figure 6-13: Example of roulette wheel selection method.  
 
 Once parents are selected, genetic operators are applied to create child designs. The process of 
moving from parents to children is referred to as a generation, which is equivalent to iteration in 
optimization. While the conventional optimization updates a design to a better design, genetic algorithms 
modify a population of designs via selection and genetic operations, by which, the population evolves 
toward an optimal design. Once child designs are created, they become a new population and the process 
is repeated until the algorithm satisfies stopping criteria. 
 Stopping criteria determine when to stop optimization iteration. Although, the users can determine 
when and how to stop optimization iteration, below are common stopping criteria that are widely used. 
 Stop when the maximum number of generations reaches 
 Stop after running for the maximum computational time reaches 
 Stop when the best fitness becomes less than or equal to the limit 
 Stop when the relative change in fitness is less than the tolerance 
 Stop if there is no improvement during an interval of time 
 Stop if the average relative change in fitness is less than the tolerance. 

 

Genetic algorithm in Matlab 
 Genetic algorithms can be applied to solve optimization problems that are not well suited for standard 
optimization algorithms, including problems in which the objective function is discontinuous, non-
differentiable, stochastic, or highly nonlinear. Matlab provides the ga function for minimizing an 
objective function with linear and nonlinear constraints using genetic algorithms. The ga function can be 
called as 

[x,fval,exitflag,output,population,scores] = … 

ga(fun,nvars,A,b,[],[],lb,ub,nonlcon,IntCon,options) 
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The ga function takes various input parameters. The fun is the function handle of the fitness function, 
nvars is the number of design variables, A and b are for linear inequality constraints in the form of 𝐀𝐱 
𝐛, lb and ub are lower- and upper-bounds of design variables, nonlcon is the function handle of the 
nonlinear inequality constraints, IntCon is for integer variable, and options are optimization option.  
 Once the ga algorithm is finished, it returns with various output results. The variable x includes the 
optimum design, fval is the value of the objective function at the optimum design, population includes the 
final population of designs, and scores include the fitness function values of the population. When the 
exitflag is positive, it means the algorithm stopped normally, while when it is negative, it means the 
algorithm stopped due to erroneous reasons.  
 
Example 6-6 
The Rosenbrock function is frequently used for testing optimization algorithms. The functional has two 
design variables, as  

𝑓 ൌ 100ሺ𝑥ଵ
ଶ െ 𝑥ଶሻଶ  ሺ1 െ 𝑥ଵሻଶ (6.9)

It has a minimum value of zero at design 𝐱 ൌ ሼ1,1ሽ. Find the optimum design of the Rosenbrock function 
using the Matlab ga function. Use the range of design variables െ3  𝑥ଵ, 𝑥ଶ  3. 
 
Solution: 
Figure 6-14(a) shows the plot of the Rosenbrock function with the optimum design at 𝐱 ൌ ሼ1,1ሽ. 
Although the function varies over a wide range ሾ0, 15,000ሿ, it does not vary near the optimum design. 
Therefore, this function is difficult to identify the optimum design. Since the function is quite steep, it 
would be easier to visualize it if the logarithm of the function is plotted instead. Figure 6-14(b) shows the 
plot of the modified Rosenbrock function 𝑓መ ൌ logሺ100  100ሺ𝑥ଵ

ଶ െ 𝑥ଶሻଶ  ሺ1 െ 𝑥ଵሻଶሻ. A value of one 
hundred is added to the function in order to prevent the function from approaching negative infinity. The 
figure also shows the optimum design at 𝐱 ൌ ሼ1,1ሽ. 
 
    

 
Figure 6-14: Plot of Rosenbrock function in logarithm.  
 
 Since this is unconstrained optimization, the objective function is used as the fitness function. To 
minimize the fitness function using ga, the following fitness function Rosenbrock.m is created: 
 

function y = Rosenbrock(x) 
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y = 100 * (x(1)^2 - x(2))^2 + (1 - x(1))^2; 

 
For given input design variables 𝐱 ൌ ሼ𝑥ଵ, 𝑥ଶሽ, the Rosenbrock function returns the value of the objective 
function. The following Matlab script defines the lower- and upper-bounds of the design and calls the ga 
function. 
 

rng default     % For reproducibility 

ndv = 2; 

lb = [-3,-3]; 

ub = [3,3]; 

[x,fval] = ga(@Rosenbrock,ndv,[],[],[],[],lb,ub) 

 
The rng function sets the seed of the random number generator default so that the same result can be 
obtained. After launching the ga function, the optimization stops with the following output: 
 

Optimization terminated: maximum number of generations exceeded. 

x = 1.5083    2.2781 

fval = 0.2594 

 
The x returned by the solver is the best point in the final population computed by ga. The fval is the value 
of the function Rosenbrock evaluated at the point x. ga did not find an especially good solution. The 
maximum generation in Matlab is 100 ∗ 𝑛𝑑𝑣 ൌ 200. Therefore, the algorithm stops after 200 
generations. It turns out that the optimum design is far away from the global optimum. In fact, 200 
generations are often not enough to find a good optimum design. In order to allow more generations, the 
following optimoptions function is used to change the maximum allowed generations: 
 

options = optimoptions('ga','MaxGenerations',10000); 

[x,fval] = ga(@Rosenbrock,ndv,[],[],[],[],lb,ub,[],[],options) 

 
With the increased number of generations, the ga algorithm stops with the following output: 
 

Optimization terminated: average change in the fitness value less than 

options.FunctionTolerance. 

x = 1.0354    1.0721 

fval = 0.0013 

 
At this time, the algorithm stops because the average fitness value does not change much. Now, the 
optimum design is much closer to the global optimum.  
 

 

When to use genetic algorithm? 
 Genetic algorithms are computationally expensive compared to deterministic algorithms.  
Consequently, their domain of application is problems that would be difficult to solve by gradient-based 
algorithms or problems that would be out of range for these algorithms.  Some of the main advantages of 
genetic algorithms are the following: 
 Genetic algorithms do not require continuity or differentiability of the objective function. They do 

not need gradients;  
 They are robust: they are very insensitive to noise; 
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 They are modular and therefore portable; because the evolutionary mechanism is separate from the 
problem representation they can be transferred from problem to problem; 

 They are particularly efficient on discrete and combinatorial problems, which are typically difficult 
to solve by conventional algorithms; they can be used for problems involving both discrete and 
continuous variables; 

 Because they explore the design space with populations, genetic algorithms are “naturally” 
amenable to parallelization. 

 
6.5. Particle swarm optimization 

Many global search algorithms mimic the natural behaviors of animals or insects [*]. Among them 
particle swarm algorithm is introduced by Kennedy and Eberhart [63] in 1995, inspired by social behavior 
and movement dynamics of insects, birds and fish. Particle swarm optimization imitates the basic strategy 
of swarm of bees seeking food. The search direction relies on remembered good locations from the past. 
For each member of the swarm, the search direction is a compromise between the best point visited by the 
swarm and the best point visited by the individual. 
 Similar to genetic algorithms, this algorithm is also based on a population of designs. However, 
instead of creating new population, the particle swarm algorithm moves the existing designs to better 
ones. Since this movement to a new design is continuous, this algorithm has an advantage of handling 
continuous design variables. Similar to other global search algorithm, this algorithm also have stochastic 
property in search. The algorithm is an efficient and robust global search capability. There is some tuning 
of its parameters that is needed for peak efficiency, but commonly used values often give reasonably good 
results. The performance of the algorithm is comparable to that of genetic algorithms, and it is highly 
suitable for parallel computation. The algorithm has successfully been applied to a wide variety of 
problems, including neural networks, structural optimization, and shape and topology optimization. 
 Figure 6-15 illustrates an example of a three-bar truss with two cross-sectional area design variables. 
Initially 20 particles are randomly distributed in the design space. Each particle will have a position, 
which are the values of the design variables. As the search progresses, the swarm coalesces at the 
presumed optimum as is shown in the bottom right figure. 
 

 
Figure 6-15: Initial and optimum particles of particle swarm optimization.  
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 In the particle swarm optimization algorithm, a particle means a design, and the collection of particles 
is the population. Let us assume that 𝑛 be the dimension of design space and 𝑚 be the number of particles 
(i.e., designs). These particles are represented by 𝐱 ൌ ሼ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥ሽ, 𝑖 ൌ 1, ⋯ , 𝑚. The particle swarm 
algorithm considers a design as a location of a particle. A design at a point moves to a different location 
using a design change. Let subscript 𝑘 represent the current design iteration. Then, the location of a 𝑖-th 
particle at the next iteration can be updated as  

𝐱ାଵ
 ൌ 𝐱

  Δ𝐱ାଵ
  (6.10)

where Δ𝐱ାଵ
  is the design change of particle 𝑖 at iteration 𝑘  1. The computational cost of the particle 

swarm algorithm is proportional to the number of particles and the number of iterations: 𝑚 ൈ 𝑘.  
 The main idea of the particle swarm algorithm is to choose the design change such that the new 
design can improve the objective function and move toward to global optimum design. In the gradient-
based optimization algorithms in Chapter 5, the design change is calculated based on the gradient 
information. In the particle swarm algorithm, the design change is calculated based on individual and 
group experiences of the best design. Let 𝐩 be the best design of particle 𝑖 up to the current iteration and 
𝐩 be the best design of the group up to the current iteration. The former represents an individual 
experience, while the latter represents the group experience. Therefore, the design change can be directed 
toward these well-experienced designs. Therefore, the design change can be calculated as 

Δ𝐱ାଵ
 ൌ 𝑤Δ𝐱

  𝑐ଵ𝑟ଵ൫𝐩 െ 𝐱
 ൯  𝑐ଶ𝑟ଶ൫𝐩 െ 𝐱

 ൯ (6.11)

where 𝑤, 𝑐ଵ, and 𝑐ଶ are algorithmic parameters, which determine the importance of each term. The first 
term 𝑤Δ𝐱

  represents the inertial effect, where the particle tends to move in the direction of the previous 
iteration. A typical value of 𝑤 (the inertia fraction) is 0.5. To prevent divergence of the algorithm, the 
inertia fraction must be smaller than 1. The second term 𝑐ଵ𝑟ଵ൫𝐩 െ 𝐱

 ൯ is based on moving towards 𝐩, 
the best past position of the 𝑖th particle. The size of the move is random, controlled by the random number 
𝑟ଵ, uniformly distributed in ሾ0,1ሿ. The multiplier 𝑐ଵ is used to control the mean of the move distance. A 
typical value is 𝑐ଵ ൌ 2, in which case the mean of the move is at 𝐩, and there is a 50% chance of 
overshooting or undershooting it. The third term 𝑐ଶ𝑟ଶ൫𝐩 െ 𝐱

 ൯ is exactly the same structure as the 
second term, but the target is 𝐩, which is the group (swarm) best. Again, a typical value for 𝑐ଶ is also 2.  
With all three terms present, we get motion in an intermediate direction between the three directions of 
the three terms. 
 The procedure of the particle swarm optimization algorithm can be summarized as follows: 
 

1. Initialize Population 
 (a) Set algorithmic parameters 𝑤, 𝑐ଵ, 𝑐ଶ 
 (b) Set 𝑖 ൌ 1, 𝑘 ൌ 1 
 (c) Randomly generate particles 𝐱

  
2. Optimization iteration 
 (a) Evaluate fitness value 𝑓

 using design particle 𝐱
  

 (b) If 𝑓
 ൏ 𝑓ୠୣୱ୲

 , then 𝑓ୠୣୱ୲
 ൌ 𝑓

, 𝐩 ൌ 𝐱
  

 (c) If 𝑓
 ൏ 𝑓ୠୣୱ୲

 , then 𝑓ୠୣୱ୲
 ൌ 𝑓

,  𝐩 ൌ 𝐱
  

 (d) If the stopping condition is satisfied go to 3. 
 (e) Update particle design change Δ𝐱ାଵ

   
 (f) Update particle position vector 𝐱ାଵ

   
 (g) 𝑖 ൌ 𝑖  1. If 𝑖  𝑚 then increment 𝑘 ൌ 𝑘  1, set 𝑖 ൌ 1. 
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 (h) Go to 2(a). 
3. Report results and terminate 

 
 Similar to most population-based optimization algorithms, it would be hard to determine the stopping 
criteria of the particle swarm algorithm. It is partly because there are no optimality criteria for these kinds 
of algorithms. In addition, there is no mathematical theory available to distinguish the global optimum 
from local optima. With these difficulties, the convergence of the particle swarm optimization algorithm 
can be defined in two different ways. (a) All particles converged to a point in the design space, which may 
or may not be the optimum design, and (b) the individual optimum 𝐩 and the swarm’s best-known 
position 𝐩 does not change for many iterations, regardless of how the swarm behaves. In contrast to the 
gradient-based algorithms, the first corresponds to the case when the design change is less than a 
threshold, while the second corresponds to the case when the change of the objective function is less than 
a threshold. 
 Matlab supports the particle swarm optimization based on the original algorithm of Kennedy and 
Eberhart [63] with modifications suggested in Mezura-Montes and Coello Coello [64] and in Pedersen 
[65]. The particle swarm algorithm begins by creating the initial particles, and assigning them initial 
velocities (design change). It evaluates the objective function at each particle location, and determines the 
best (lowest) function value and the best location. It chooses new velocities, based on the current velocity, 
the particles’ individual best locations, and the best locations of their neighbors. It then iteratively updates 
the particle locations (the new location is the old one plus the velocity, modified to keep particles within 
bounds), velocities, and neighbors. 
 The Matlab function for the particle swarm algorithm is particleswarm. The following calling 
convention can be used:  
 

[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options) 

 
The particleswarm function takes various input parameters. The fun is the function handle of the fitness 
function, nvars is the number of design variables, lb and ub are lower- and upper-bounds of design 
variables, and options are optimization options. As mentioned before, the algorithm depends on the 
number of particles, which can be changed using the optimization option: 
 

options = optimoptions('particleswarm','SwarmSize',50); 

 
 Once the particle swarm algorithm is finished, it returns with various output results. The variable x 
includes the optimum design, and fval is the value of the objective function at the optimum design. When 
the exitflag is positive, it means the algorithm stopped normally, while when it is negative, it means the 
algorithm stopped due to erroneous reasons. The output structure includes the summary of the solution 
process, including the number of iterations, the number of function evaluations, and the stopping 
conditions.  
 
Example 6-7 
Optimize the Rosenbrock function in Example 6-6 using the particle swarm algorithm in Matlab. Try 
with different swarm sizes and discuss the optimum design, iterations, the number of function evaluations 
and stopping criteria.  
 
Solution: 



 6-205

The Rosenbrock problem in Example 6-6 has two design variables in the range of െ3  𝑥ଵ, 𝑥ଶ  3. The 
objective function is available in Rosenbrock.m file, and the following Matlab script can be used to solve 
the optimization problem using the particle swarm algorithm with 10 particles: 
 

rng default  % For reproducibility 
nvars = 2; 
lb = [-3,-3]; 
ub = [3,3]; 
options = optimoptions('particleswarm','SwarmSize',10); 
[x,fval,exitflag,output] = particleswarm(@Rosenbrock,nvars,lb,ub,options) 

 
The optimization algorithm stopped because the relative change in the objective value is less than the 
tolerance of 1 ൈ 10ିଵ. The following outputs are returned from the algorithm: 
 

x =    0.9683    0.9375 

fval =    0.0010 

exitflag =     1 

output =  

    iterations: 67 

     funccount: 680 

 
The optimum design is close to the global optimum design 𝐱∗ ൌ ሾ1, 2ሿ with the value of minimum 
objective function value of 0. The algorithm is converged after 67 iterations. Since there are 10 particles, 
each iteration takes 10 function evaluations. Including 10 initial function evaluations, the total number of 
function evaluations become 680. 
 The same optimization algorithm can be used with 50 particles by changing option 'SwarmSize' to 50. 
At this time, the algorithm stopped after consuming the maximum function evaluations 2,000. 
 

x =    1.0308    1.0622 

fval =   9.6164e-04 

exitflag =     1 

output =  

    iterations: 39 

    funccount: 2000 

 
Although the final design and final objective function are close to the previous ones, it only performed 39 
iterations. This is because each iteration requires 50 function evaluations. Figure 6-16 shows the particle 
locations at the initial and optimum designs of the Rosenbrock function. 
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Figure 6-16: Initial and optimum particle distributions of Rosenbrock optimization.  
 

 
6.6. Simulated annealing optimization 

 The particle swarm optimization in the previous section is based on social behavior of a bird flock or 
fish school. The other group of global search algorithms is based on statistical process commonly found in 
nature. Among them, the simulated annealing algorithm in this section is motivated by studies in 
statistical mechanics which deal with the equilibrium of a large number of atoms in solids and liquids by 
gradually decreasing temperature. During the solidification of metals or formation of crystals, for 
example, a number of solid states with different internal atomic or crystalline structures that correspond to 
different energy levels can be achieved depending on the rate of cooling. If the system is cooled too 
rapidly, it is likely that the resulting solid state would have a small margin of stability because the atoms 
will assume relative positions in the lattice structure to reach an energy state which is only locally 
minimal. In order to reach a more stable, globally minimum energy state, the process of annealing is used 
in which the metal is reheated to a high temperature and cooled slowly, allowing the atoms enough time 
to find positions that minimize a steady-state potential energy. It is observed in the natural annealing 
process that during the time spent at a given temperature, it is possible to have the system jump to a 
higher energy state temporarily before the steady state is reached. This characteristic of the annealing 
process makes it possible to achieve near global minimum energy states. 
 A computational algorithm that simulates the annealing process was proposed by Metropolis et al. 
[66] and is referred to as the Metropolis algorithm. Simulated annealing efficiently predicts the behavior 
of a collection of atoms in equilibrium at a given temperature. At a given temperature 𝑇, the algorithm 
perturbs the position of an atom randomly and computes the resulting change in the energy Δ𝐸 of the 
system. If the energy 𝐸 at the perturbed state is lower than that of the initial state, Δ𝐸 ൏ 0, then the new 
position of the atom is accepted. On the other hand, if the perturbed position causes an increase in the 
energy Δ𝐸  0, the new position is accepted with a probability inversely proportional to the energy 
increase. Accepting higher energy state with a probability is the key mechanism to explore the design 
space for possible better design far away from the current design. 
 First, the positive energy change is defined as Δ𝐸ା ൌ maxሺ0, Δ𝐸ሻ. The probability of acceptance, 
𝑃ሺΔ𝐸ሻ, of a higher energy state is computed as 

𝑃ሺΔ𝐸ሻ ൌ 𝑒ቀି
ாశ

் ቁ (6.12)
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Note that when Δ𝐸 ൏ 0, 𝑃ሺΔ𝐸ሻ ൌ 𝑒 ൌ 1. Therefore, the probability is in the range of 0 ൏ 𝑃ሺΔ𝐸ሻ  1. If 
the energy is decreased, it will be accepted with the probability of one. On the other hand, if the energy is 
increased, it will be accepted with a probability of 𝑃ሺΔ𝐸ሻ ൏ 1. The probability is inversely proportional 
to the positive energy change. If the temperature of the system is high, then the probability of acceptance 
of a higher energy state increase. If, on the other hand, the temperature is close to zero, then the 
probability of acceptance becomes very small. The decision to accept or reject is made by randomly 
selecting a number 𝑢~𝑈ሺ0,1ሻ and comparing it with 𝑃ሺΔ𝐸ሻ. If 𝑢 ൏ 𝑃ሺΔ𝐸ሻ, then the perturbed state is 
accepted, if 𝑢  𝑃ሺΔ𝐸ሻ, the state is rejected.  
 The temperature 𝑇 becomes a control parameter and is used to first “melt” the system at a high 
temperature. At each temperature, a pool of atomic structures is generated by randomly perturbing 
positions until a steady state energy level is reached (commonly referred to as thermal equilibrium). The 
iterative simulation is then run at this temperature until the system is considered to be in equilibrium, and 
only then is the temperature reduced by a small fraction. This cooling and equilibrium process continues 
until no further improvement becomes possible and the system is considered “frozen” or crystallized, with 
the design parameters at this condition optimal. The temperature reduction sequence and number of 
iterations allowed for the system to reach equilibrium are considered analogues to an annealing schedule. 
 The analogy between the simulated annealing and the optimization of functions with many variables 
was established recently by Kirkpatrick et al. [67], and Cerny [68]. By replacing the energy state with an 
objective function 𝑓, and using variables 𝑥 for the configurations of the particles, we can apply the 
Metropolis algorithm to optimization problems. The method requires only function values. The move in 
the design space from one point, 𝑥 to another 𝑥  causes a change in the objective function, Δ𝑓 . The 
temperature 𝑇 now becomes a control parameter that regulates the convergence of the process. Important 
elements that affect the performance of the algorithm are the selection of the initial value of the 
“temperature”, 𝑇, and how to update it. In addition, the number of iterations (or combinations of design 
variables) needed to achieve “thermal equilibrium” must be decided before the 𝑇 can be reduced. These 
parameters are collectively referred to as the “cooling schedule”. 
 The procedure of the simulated annealing algorithm can be summarized as follows: 
 

 Set initial design 𝐱 ൌ 𝐱, objective function 𝑓ሺ𝐱ሻ, the maximum number of iterations 𝑀, and 
initial temperature 𝑇 

 Loop for cooling schedule 
o Calculate temperature 𝑇 from the cooling schedule 
o Loop for thermal equilibrium 

o Generate a new candidate design 𝐱୬ୣ୵ randomly near the current design 𝐱 
o Calculate objective function 𝑓ሺ𝐱୬ୣ୵ሻ, and Δ𝑓= 𝑓ሺ𝐱୬ୣ୵ሻ െ 𝑓ሺ𝐱ሻ 
o Calculate the probability of acceptance 𝑃ሺΔ𝑓ሻ ൌ 𝑒ሺെΔ𝑓ା/𝑇ሻ with Δ𝑓ା ൌ maxሺ0, Δ𝑓ሻ 

and generate a random sample 𝑢~𝑈ሺ0,1ሻ 
o If 𝑃ሺΔ𝑓ሻ  𝑢, set 𝐱 ൌ 𝐱୬ୣ୵ 

o End of the thermal equilibrium loop 
 End of the cooling schedule loop  
 Finish the algorithm with optimum design 𝐱 and optimum objective function 𝑓ሺ𝐱ሻ. 

 
From the algorithm, it is obvious that the algorithm has to determine the maximum number of iterations 
𝑀, initial temperature 𝑇, and the cooling schedule. 
 The definition of the cooling schedule begins with the selection of the initial temperature 𝑇. If a low 
value of 𝑇 is used, the algorithm would have a low probability of reaching a global minimum. The initial 
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value of 𝑇 must be high enough to permit virtually all moves in the design space to be acceptable so that 
almost a random search is performed. Typically, 𝑇 is selected such that the acceptance ratio 𝑋 (defined as 
the ratio of the number of accepted moves to the total number of proposed moves) is approximately 𝑋 ൌ
0.95 [69]. Johnson et al. [70] determined 𝑇 by calculating the average increase in the objective function, 
Δ𝑓തതതതሺାሻ, over a predetermined number of moves and solved 

𝑋 ൌ 𝑒
ቆି

തതതതሺశሻ

బ்
ቇ
 (6.13)

leading to 

𝑇 ൌ
Δ𝑓തതതതሺାሻ

lnሺ𝑋
ିଵሻ

 (6.14)

However, since Δ𝑓തതതതሺାሻ is difficult to estimate, the above formula will be an approximate. 
 Once the initial temperature is set, a number of moves in the variable space are performed by 
perturbing the design. The number of moves at a given temperature must be large enough to allow the 
solution to escape from a local minimum. One possibility is to move until the value of the objective 
function does not change for a specified number, 𝑀, of successive iterations. Another possibility 
suggested by Aarts [71] for discrete-valued design variables is to make sure that every possible 
combination of design variables in the neighborhood of a steady-state design is visited at least once with a 
probability of 𝑃. That is, if there are 𝑆 neighboring designs, then 

𝑀 ൌ 𝑆 ln ൬
1

1 െ 𝑃
൰ (6.15)

where 𝑃 ൌ 0.99 for 𝑆  100, and 𝑃 ൌ 0.995 for 𝑆 ൏ 100. For discrete-valued variables, there are often 
many options for defining the neighborhood of the design. One possibility is to define it as all the designs 
that can be obtained by changing one design variable to its next higher or lower value. A broader 
immediate neighborhood can be defined by changing more than one design variable to its next higher or 
lower values. For an 𝑛-variable problem, the immediate neighborhood has 

𝑆 ൌ 3 െ 1 (6.16)

Once convergence is achieved at a given temperature, generally referred to as thermal equilibrium, the 
temperature is reduced, and the process is repeated. 
 Many different schemes have been proposed for updating the temperature (cooling schedule). A 
frequently used rule is a constant cooling update 

𝑇ାଵ ൌ 𝛼𝑇, 𝑘 ൌ 0, 1, ⋯ , 𝐾 (6.17)

where 0.5  𝛼  0.95. Nahar [72] fixes the number of decrement steps 𝐾, and suggests the determination 
of the values of the 𝑇 experimentally. It is also possible to divide the interval ሾ0, 𝑇ሿ into a fixed 𝐾 
number of steps and use 

𝑇 ൌ
𝐾 െ 𝑘

𝐾
𝑇, 𝑘 ൌ 0, 1, ⋯ , 𝐾 (6.18)

The number of intervals typically ranges from 5 to 20. 
 The use of simulated annealing for structural optimization has been quite recent. Elperin [73] applied 
the method to the design of a ten-bar truss problem where member cross-sectional dimensions were to be 
selected from a set of discrete values. Kincaid and Padula [74] used it for minimizing the distortion and 
internal forces in a truss structure. A 6-story 156-member frame structure with discrete valued variables 
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was considered by Balling and May [75]. Optimal placement of active and passive members in a truss 
structure was investigated by Chen et al. [76] to maximize the finite-time energy dissipation to achieve 
increased damping properties. 
 An important difference from iterative improvement procedures such as gradient-based methods is 
that the Metropolis method need not get stuck since transitions out of a local optimum is always possible 
at a nonzero temperature. Like genetic algorithms, this population-based method is relatively insensitive 
to noise and does not require gradient information. A major drawback to this method, however, is the 
problem dependency of algorithm parameters. That is, it is important to use an annealing schedule that is 
tailored to the type of optimization problem being solved, otherwise the optimizer will perform poorly. 
Various statistical methods have been proposed, all with limited success, to obtain optimum cooling rates 
to avoid entrapment in local optima. 
 Matlab provides the simulannealbnd function for solving a minimization problem using the 
simulated annealing algorithm. The calling convention is similar to other optimization algorithms: 
 

[x,fval,exitflag,output] = simulannealbnd(fun,x0,lb,ub,options) 

 
The Matlab implementation of simulannealbnd is for solving unconstrained optimization problems 
with bounds. The annealing schedule can be provided as an option, including the initial temperature in 
InitialTemperature and cooling schedule in TemperatureFcn.  
 
Example 6-8 
Find the minimum of a function 𝑓ሺ𝐱ሻ ൌ ሺ4 െ 2.1𝑥ଵ

ଶ  𝑥ଵ
ସ/3ሻ𝑥ଵ

ଶ  𝑥ଵ𝑥ଶ  ሺെ4  4𝑥ଶ
ଶሻ𝑥ଶ

ଶ with the lower- 
and upper-bounds of design െ64  𝑥ଵ, 𝑥ଶ  64 using the simulannealbnd function of Matlab.  
 
Solution: 
To implement the objective function calculation, the Matlab file obj.m has the following code: 
 

function f = objfun(x) 

x1 = x(1); 

x2 = x(2); 

f = (4-2.1.*x1.^2+x1.^4./3).*x1.^2+x1.*x2+(-4+4.*x2.^2).*x2.^2; 

 
The objective function computes the scalar value of the objective function and returns it in its single 
output argument f. To minimize the objective function using simulannealbnd, pass in a function 
handle to the objective function and a starting point x0 as the second argument. For reproducibility, set 
the random number stream. 
 

x0 = [0.5 0.5];   % Starting point 

lb = [-64 -64]; 

ub = [64 64]; 

rng default % For reproducibility 

[x,fval,exitFlag,output] = simulannealbnd(@objfun,x0,lb,ub) 

 
The outputs from Matlab are as follows: 
 

x = -0.0896    0.7127 

fval = -1.0316 

exitFlag = 1 
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output =  

     iterations: 2465 

      funccount: 2484 

        message: 'Optimization terminated: change in best function value  

                  less than options.FunctionTolerance.' 

       rngstate: [1×1 struct] 

    problemtype: 'boundconstraints' 

    temperature: [2×1 double] 

      totaltime: 0.5566 

 
It shows that the optimization converged as the change in the objective function is less than the tolerance. 
The optimum design was 𝐱∗ ൌ ሺെ0.0896,0.7127ሻ, where the optimum objective function was -1.0316. 
The algorithm took 2,465 iterations with 2,484 function evaluations. When the algorithm stopped, the 
cooling temperatures for both variables were ሺ0.2058 ൈ 10ିଵ, 0.2207 ൈ 10ିଷሻ, which was stored in 
output.temperature. 
 

 
6.7. Exercise 

 
1. For a 2D problem, the current simplex has 𝑓ሺ0,0ሻ ൌ 1, 𝑓ሺ1,0ሻ ൌ 2, 𝑓ሺ0,1ሻ ൌ 3. (a) Where will you 

evaluate 𝑓 next? (b) If the next two points gave us function values of 4 and 5, respectively, where will 
you evaluate the functions next? (c) If instead of scenario (b), the next point (reflection point) gave us 
a function value of 0, where will you evaluate the function next? 
 

2. The first four points selected by the Nelder-Mead algorithm are ሺ𝑥ଵ, 𝑥ଶ, 𝑓ሻ ൌ 1: ሺ0,0,3ሻ, 2: ሺ0,1,7ሻ,
3: ሺ1,1,6ሻ, 4: ሺ1,0,2ሻ. Calculate where the algorithm will select the next point, also naming the 
operation that leads to this point (i.e., reflection, expansion, contraction, or shrinkage). 
 

3. Track and plot the first two iterations of fminsearch on Himmelblau’s function starting from (1,1). 
The form of Himmelblau’s function is defined as 

𝑓ሺ𝑥ଵ, 𝑥ଶሻ ൌ ሺ𝑥ଵ
ଶ  𝑥ଶ െ 11ሻଶ  ሺ𝑥ଵ  𝑥ଶ

ଶ െ 7ሻଶ 
The function has one local maximum at 𝐱 ൌ ሺെ0.270845, െ0.923939ሻ with 𝑓୫ୟ୶ ൌ 181.617 and 
four identical local minima at 𝐱 ൌ ሺ3.0,2.0ሻ, ሺെ2.805118,3.131312ሻ, ሺെ3.779310, െ3.283186ሻ,
ሺ3.584428, െ1.848126ሻ. 
 

4. Consider the following pairs of objective functions to be minimized: ሺ3,9ሻ, ሺ4,1ሻ, ሺ10, െ3ሻ, ሺെ7,11ሻ,
ሺെ8,14ሻ, ሺ7, െ17ሻ, ሺ6,7ሻ, ሺ5,8ሻ. (a) Divide them into ranks, (b) Calculate the crowding distance of the 
points in the second rank. 
 

5. Global optimization balances exploration and exploitation. How is that reflected in genetic 
algorithms? 
 

6. What are all possible child designs of ሾ0ଶ/േ45/90ሿ𝑠 and ሾേ45ଶ/0ሿ𝑠 that are balanced and 
symmetric with uniform crossover? 
 

7. . 
 


