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• Introduction to surrogate modeling
• Polynomial response surface
• Linear regression accuracy
• Sampling plans
• Neural network model
• Radial basis neural network
• Kriging surrogate

Outline of surrogate modeling module
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• An engineering method used when a quantity of interest 
(QoI) cannot be easily directly measured (calculated) so an 
approximate (surrogate) of the QoI is used instead

• Engineering design problems require experiments and/or 
simulations to evaluate design objective and constraints as 
a function of design variables

– Ex) To find the optimal airfoil shape, an engineer simulates the airflow 
around the wing for different shape variables (length, curvature, 
material, ..)

• Single simulation is expensive, and yet, design 
optimization, design space exploration, sensitivity analysis 
and what-if analysis require thousands or millions of 
simulations

What is a surrogate model?

Use surrogate!
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• Surrogate models, response surface models, metamodels 
or emulators

– mimic (approximate) the behavior of the simulation model as closely 
as possible while being computationally cheap(er) to evaluate

– Surrogate models does not concern physics or theory in the 
simulation. It only concerns input-output behavior

– A simple mathematical model is constructed based on limited number 
of input-output pair of data (samples)

– This approach is also known as behavioral modeling or black-box
modeling

– When only a single design variable is involved, the process is known 
as curve-fitting

What is a surrogate model? cont.
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Example of surrogate modeling



Structural & Multidisciplinary Optimization Group
6

• The generation of a surrogate that is as accurate as 
possible, using as few simulation evaluations as possible

– Sample selection (sequential design, optimal experimental design 
(OED), design of experiments (DOE), or active learning)

– Construction of the surrogate model and optimizing the model 
parameters (bias-variance trade-off)

– Appraisal of the accuracy of the surrogate.

• The accuracy of the surrogate depends on the number and 
location of samples (experiments or simulations). 

• Various design of experiments (DOE) techniques cater to 
different sources of errors, in particular, errors due to noise
in the data or errors due to an improper surrogate model.

Goals of surrogate modeling
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• Polynomial response surfaces (PRS), Kriging, Radial basis 
function, Support vector machines, Space mapping, 
Artificial neural networks, and Bayesian networks

• When the nature of true function is not known a priori so it 
is not clear which surrogate model will be most accurate

• When the nature of true function is known, physics-based 
surrogates such as space-mapping based models are the 
most efficient

• There is no consensus on how to obtain the most reliable 
estimates of the accuracy of a given surrogate

• Ensemble of multiple surrogates can be used to reduce the 
risk of using a bad surrogate

Which surrogate is the best?



Structural & Multidisciplinary Optimization Group
8

• Local approximation and local-global approximation
• Surrogate construction
• Linear regression accuracy 1, 2, 3
• Neural network model
• Radial basis neural network
• Kriging surrogate 1, 2
• Sampling plans 1, 2
• Nonlinear regression
• Multi-fidelity surrogate
• Moving least squares method 1, 2

Outline of surrogate modeling module
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Flow-chart of surrogate modeling

Design of experiment

Numerical simulations 
at selected locations

Construction of 
surrogate models 

(model selection and 
identification)

Model validation
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• Design of experiments (DOE): 

– Sampling plan in design variable space 

– How to assess the goodness of such designs

– The number of samples is severely limited by computational cost

• Numerical simulations at selected locations

– Expensive numerical simulation or experiments

– Data may include random noise or error

Flow-chart of surrogate modeling cont.
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• Construction of surrogate model

– Surrogate model selection

– Model identification (determining unknown parameters)

• Model validation

– Predictive capabilities of the surrogate model at unsampled points

Flow-chart of surrogate modeling cont.
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Overview of surrogate modeling

Simulation-
based model 𝑓

Data 𝑓௜

Estimated 
model 𝑓መ
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• Surrogate model: nonlinear inverse problem

– We want to determine a continuous function ሺ𝑓መሻ as a function of 
design variables from a limited amount of data ሺ𝐟ሻ

– The data may be exact or noisy

• Model estimation: constructing a model from available data

• Model appraisal: assessing the errors attached to it

Overview of surrogate modeling cont.

𝑓መଵ

𝑓መଶ

𝑓

𝑥

Multiple possibilities
of surrogates with
given data
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• Surrogate prediction: ௣

• The prediction has expected value ௣ and variance 
௣

Prediction uncertainty

𝐸ሺ𝑓௣)
𝑓

𝑥

𝜙ሺ𝐸ሺ𝑓௣), 𝑉ሺ𝑓௣))



Structural & Multidisciplinary Optimization Group
15

• Minimize error (loss function) + smoothness

– 𝐻: family of surrogate models under consideration

– 𝐿ሺ𝑥ሻ: a loss of cost function used to quantify the empirical error

– 𝜆: regularization parameter ൒ 0

– 𝐷௠𝑓መ: m-th derivative of 𝑓መ, a penalty term on smoothness

Regularization

l
Î

=

= - +å òˆ
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1ˆ ˆ ˆmin [ ( )]
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f L f f D f d
N

x x

Closeness to the data Smoothness of model
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Loss function

• Loss function to determine the closeness of the model to 
the data

• Quadratic loss function (L2-norm):

– Most commonly used 
(easy estimation of the parameters)

– Sensitive to outliers

• Linear loss function (L1-norm):

– Also called Laplace loss function

– Use absolute value of the difference
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• Huber loss function:

– Quadratic for small values of its 
argument and linear otherwise

• -loss function:

– Popular in support vector 
regression surrogate

– Error is considered to be zero 
when the difference is less than 𝜖

Loss functions cont.



Polynomial Response Surface
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• Approximate (surrogate) discrete experimental data 
(output) with different conditions (input) using a simple 
polynomials

• Can compensate noise () in measurement

• Later, extended to approximate simulation results with 
numerical noise

• Approximation Accuracy must be checked

• Polynomial response surface (PRS) approximates data 
using a linear combination of polynomials

• Bases are known (monomials), coefficients are unknown (need to be 
determined)

Background
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• When we fit a curve to data we ask:

– What is the error metric for the best fit?

– What is more accurate, the data or the fit?

• This lecture deals with the following case:

– The data is noisy

– The functional form of the true function is known

– The data is dense enough to allow us some noise filtering

Curve fit metrics
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• Generate samples from y = x (red) at x=1,2,…,30

• Add random noise ~ N(0,1) and fit a linear polynomial (blue)

• Which one is more accurate? The fit or the data?

Ex: Curve fitting

With dense data, functional 
form is clear. Fit serves to filter 
out noise
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[p,s]=polyfit(x,y,1); 
yfit=polyval(p,x); 
plot(x,y,'+',x,x,'r’,

x,yfit,'b')
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• The process of fitting data with a curve by minimizing the 
mean square difference from the data is known as 
regression

• Term originated from first paper to use regression dealt with 
a phenomenon called regression toward the mean (check 
Wikipedia)

• The polynomial regression on the previous slide is a simple 
regression, where we know or assume the functional shape 
and need to determine only the coefficients.

Regression
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• The algebraic function we fit to data is called surrogate, 
metamodel or approximation.

• Polynomial surrogates were invented in the 1920s to 
characterize crop yields in terms of inputs such as water 
and fertilizer.

• They were called then “response surface approximations.”

• The term “surrogate” captures the purpose of the fit: using it 
instead of the data for prediction.

• Most important when data is expensive and noisy, 
especially for optimization.

Surrogate (metamodel)
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• Great interest now in fitting computer simulations

• Computer simulations are also subject to noise (numerical)

• Simulations are exactly repeatable, so noise is hidden.

• Some surrogates  (e.g. polynomial response surfaces) 
cater mostly to noisy data. 

• Some (e.g. Kriging)  
interpolate data. 

Surrogates for fitting simulations



Structural & Multidisciplinary Optimization Group
25

• Approximate function

– 𝑦ሺ𝐱ሻ : response function (stress, displacement, cost, etc)

– 𝐱 : vector of design variables, dim 𝐱 ൌ 𝑛

– 𝛃: vector of unknown parameters, dim 𝛃 ൌ 𝑛𝛃

– 𝑦ොሺ𝐱, 𝛃ሻ : approximation of 𝑦ሺ𝐱ሻ (response surface)

– 𝜖 : approximation error

• Goal: determine so that is minimized

Fitting a function with given data

Question: What is the form of approximate function?
What measure is used to minimize the error?
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• Assumption: The true function is unknown, but we can 
evaluate it at discrete points

• Perform ny experiments: (xi, yi), i = 1, …, ny

• We want to find b that will best fit the experiment data

• Ex) linear polynomials: 

• Ex) rational function:

How to determine ?

௜ ௜ ௜ ௬

𝑦ො 𝐱, 𝜷 ൌ 𝛽ଵ ൅ 𝛽ଶ𝑥

𝑦ො 𝐱, 𝜷 ൌ
𝛽ଵ

𝑥 ൅ 𝛽ଶ
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• Finding b to best fit the data (minimize regression error)

• Need to define the regression error first

– Root-mean-squared (RMS) error

– Average error

– Maximum error

Regression

L2-norm

L1-norm

L∞-norm

𝑒୰୫ୱ ൌ
1

𝑛௬
෍ 𝑦௜ െ 𝑦ො 𝐱௜, 𝜷 ଶ

௡೤

௜ୀଵ

𝑒ୟ୴ ൌ
1

𝑛௬
෍ 𝑦௜ െ 𝑦ො 𝐱௜, 𝜷
௡೤

௜ୀଵ

𝑒୫ୟ୶ ൌ max
௡೤

𝑦௜ െ 𝑦ො 𝐱௜, 𝜷
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• In the curve-fitting example with the true function y = x

• Noisy data are fitted to a linear polynomial y = 1.06x

• The data at x=10 was y10=11.

• What are (a) e, (b) e10, and (c) the surrogate error at x = 10?

Exercise
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• Exact can be found when ௬ . For finite ௬, we can 
only find the estimate of 

• Linear regression: is a linear function of 

– Ex) linear approximation: 𝜉ଵ ൌ 1, 𝜉ଶ ൌ 𝑥 →  𝑦ො 𝑥, 𝛃 ൌ 𝛽ଵ ൅ 𝛽ଶ𝑥

௜ ௜

௡ഁ

௜ୀଵ

Linear regression

given shape function, basis

Only 𝛃 is unknown
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• Regression error vector

– with 𝑛௬ samples ሺ𝐱௜, 𝑦௜ሻ

– In matrix notation

Regress error

x
=

= - ⋅ = -å
b

1
( )

n

j j i i j
i

e y be y X b x

x x x

x x x

x x x

é ùì ü ì ü ì üï ï ï ï ï ïê úï ï ï ï ï ïï ï ï ï ï ïê úï ï ï ï ï ïê úï ï ï ï ï ïï ï ï ï ï ï= -í ý í ý í ýê úï ï ï ï ï ïê úï ï ï ï ï ïï ï ï ï ï ïê úï ï ï ï ï ïê úï ï ï ï ï ïïï ï ï ï î þî þ î þ ë û

b

b

b
b




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( ) ( ) ( )y y
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n

n
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e y b
e y b

e y b

x x x
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x x x ï

𝐗: 𝑛௬ ൈ 𝑛𝛃 design matrix

Evaluation of basis
at sample points
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• We will use RMS error

– The magnitude of 𝑒୰୫ୱ is not the focus, b that minimizes 𝑒୰୫ୱ is

– Therefore, it is equivalent to minimize 𝐞୘𝐞

Determining unknown coefficients

=

= =å 2 T

1

1 1yn

rms i
iy y

e e
n n

e e

= - -

= - - +

T T

T T T T T T

( ) ( )e e y Xb y Xb
y y y Xb b X y b X Xb

=T T Ty Xb b X y Scalar
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• Minimum of function = zero derivative

– Remedy: Solve 𝐗𝐛 ൌ 𝐲 using QR decomposition

• Computationally efficient. Nonlinear regression requires 
solving an optimization problem to determine b

Determining unknown coefficients cont.

=- + =T T Td ( ) 2 2 0
d

e e X y X Xb
b

=T TX Xb X y Equation of linear regression
Normal equation

-= T 1 T( )b X X X y

𝑛𝛃 ൈ 𝑛𝛃 matrix: ill-conditioned for large 𝑛𝛃
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• Linear function with 3 data

• Apply data to the model

Ex) Linear approximation

= + = = =0 1ˆ( , ) , (0) 0, (1) 1, (2) 0y x b b x y y yb






ö é ù ì ü= = + ⋅ ï ï÷ ï ïê ú ì ü÷ ï ï ï ï÷ ï ï ï ïê ú÷= = + ⋅  =í ý í ý÷ ê ú ï ï ï ï÷ ï ïî þ ï ï÷ ê ú÷= = + ⋅ ï ïø ï ïë û î þ

0 1
1

0 1
2

0 1

(0) 0 0 1 0 0
(1) 1 1 1 1 1

1 2 0(2) 0 2

y b b
b

y b b
b

y b b
b

X y

é ù
ê úé ù é ù
ê úê ú ê ú= =ê úê ú ê úë û ë ûê úë û

T

1 0
1 1 1 3 3

1 1
0 1 2 3 5

1 2
X X

ì üï ïï ïé ù ì üï ïï ïï ï ï ïê ú= =í ý í ýê ú ï ï ï ïï ïë û î þï ïï ïï ïî þ

T

0
1 1 1 1

1
0 1 2 1

0
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• Linear regression equation

• Errors

Ex) Linear approximation cont.

=T TX Xb X y
ææ =+ = çç  çç ççç ç+ = =è è

1
00 1 3

0 1 1

3 3 1
3 5 1 0

bb b
b b b

=
1ˆ( , )
3

y x b

=- = =-

= - + + - =

1 2 3

2 2 21 1 2 1
3 3 3 3

1 2 1, ,
3 3 3

[( ) ( ) ( ) ] 0.47rms

e e e

e

0 1 2

y

x

1
3

1
3

2
3

Average value of data
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• Assuming other fits will lead to the form 

• For average error minimize

• For maximum error minimize    

Ex) Linear approximation with other error metrics

= - + - + -  =3 | 0 | |1 | | 0 | 0ave b b b b

( )= - - -  =max max | 0 |,|1 |,| 0 | 0.5e b b b b

Max err. 
fit Av. Err. fitRMS fit

0.50.5770.471RMS error

0.50.3330.444Av. error

0.510.667Max error
0 1 2

y

x
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• Fitting y = x with noisy data

• Use 3 error metrics to fit

• With dense data, difference 
due to metrics is small

• Max error:

Ex) Curve fit cont.

Max err. fit Av. Err. fitRMS fit
1.5361.2831.278RMS error
1.2340.9510.958Av. error
2.9342.9873.007Max error

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35
y
yavyrmsymax

f=@(b,x,y) max(abs(b(1)+b(2)*x-y))
B=fminsearch(@(b) f(b,x,y),[0,1])

= +

= +

= +

rms

max

av

ˆ 0.5981 0.997
ˆ 0.0003 1.0716
ˆ 0.5309 1.0067

y x
y x
y x



Structural & Multidisciplinary Optimization Group
37

• Find other metrics for a fit besides the three discussed in 
this lecture

• Redo the 30-point example with the surrogate y = bx

• Redo the 30-point example using only every third point 
(x=3,6,…). Compare the accuracy of the fit with regard to 
the true function. It is enough to use one error metric

Exercises



Regression Accuracy

Polynomial response surface (PRS)
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• A measure to characterize the overall quality of a surrogate.

– Goal: Evaluate accuracy of surrogate in design space

– Reality: Errors are minimized at sample points

– When ny = nb, surrogate passes through data points and e = 0

• Equivalence measures (between surrogate and data)

– Coefficient of multiple determination

– Adjusted coefficient of multiple determination

• Prediction accuracy measures

– Model independent: Cross validation error

– Model dependent: Standard error

Global predictors of regression fidelity
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• After fitting surrogate , its prediction at 

data points are and the errors are 

• Average error

• Maximum error

• RMS error

– Square-sum-error

• These measures underestimate error at unsampled 
(prediction) points

– Errors are minimized at sample locations

Errors at sample points

=

= åav
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1 yn

i
iy

e e
n

=max max
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e e
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= ⋅ŷ X b = -ˆe y y



Structural & Multidisciplinary Optimization Group
41

• PRS assumes that the model is accurate

but the data has a random noise ~ N(0,s2)

• Unbiased estimate of s

• This is only reasonable when the model form is accurate

– The model form error is embedded in the estimated noise

Estimation of noise in data

x
=

=å
b

1

ˆ( , ) ( )
n

i i
i

y bx b x

s =
- b

2 SSeˆ
yn n
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• Equally spaced 5 samples of y = x with noise ~ N(0,12)

• Fit the sample using 4-th order polynomials (5 coefficients)

• Perfect fit for all data points

• The surrogate fits noise, not
the trend (no noise canceling)

Ex) Fitting noise

0 2 4 6 8 10
0

2

4

6

8

10

12
samples
4-th order polynomials
true function

x = [0,      2.5000, 5.0000, 7.5000, 10.0000]
y = [1.5326, 1.7303, 5.3714, 7.2744, 11.1174] 

= - + - +2 3 4ˆ( ) 1.5326 2.1864 1.3397 0.1970 0.0094y x x x x x



Structural & Multidisciplinary Optimization Group
43

• PRS assumes that the model is correct but data has noise

– Estimated noise will be reasonable when the model is correct

– If the model has an error, it will be included in the estimated noise

• Equally spaced 10 samples of y = x2 with noise ~ N(0,12)

• Fit the samples using linear and quadratic polynomials

Ex) Estimated noise versus model error

x=linspace(0,10,20);
y=x.^2+randn(1,20);

=- +

=- + + 2

ˆ ( ) 16.0902 10.0884
ˆ ( ) 0.4847 0.2050 0.9883

L

Q

y x x

y x x x
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Include model error

• Estimated noise

Ex) Estimated noise versus model error cont.

s s= = = =
- -

SSe SSe8.5807, 1.7683ˆ ˆ
20 2 20 3L Q

0 2 4 6 8 10
-20

0

20

40

60

80

100

120
samples
linear polynomials
quadratic polynomials
true function
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• Equivalence of surrogate with data is measured by what 
fraction of variance in the data is captured by the surrogate. 

• Coefficient of multiple determination

• Adjusted coefficient of multiple determination

• Values larger than 0.9 is satisfactory

– But not directly related to the magnitude of error

Coefficient of multiple determination
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• Compare y1 = x to y2 = 0.1x plus noise ~ N(0,12)

• Estimate eav and R2 between the function (red) and 
surrogate (blue).

• eav is similar, but R2 are significantly different because y1
varies much faster than y2

Ex) R2 does not reflect accuracy

R2=0.9785 R2=0.3016

0 5 10 15 20 25 30
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= +1ˆ 0.598 0.997y x = +2ˆ 0.598 0.097y x
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• Validation consists of checking the surrogate at a set of 
validation points.

• This may be considered wasteful because we do not use all 
the points for fitting the best possible surrogate.

• Cross validation divides data into ng groups.

• Fit the approximation to ng – 1 groups, and use last group 
to estimate error. Repeat for each group.

• When each group consists of one point, error often called 
PRESS (prediction error sum of squares)

• Calculate error at each point and then present RMS error

Cross validation
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• Leave out data at point i

• Construct surrogate :Surrogate with all data

• PRESS residual:

• Error:

• PRESS:

– This requires fitting ny times. But it turns out that

PRESS (prediction error sum of squares)

( )ˆ iy ŷ
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Scaled error with 
1 – Eii term
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Idempotent matrix
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• Property of the idempotent matrix E

– Large Eii: large PRESS residual  high influence point

• Variance of ith PRESS

PRESS (prediction error sum of squares) cont.

-= ⋅ = = ⋅T 1 Tˆ ( )y X b X X X X y E y

Idempotent matrix E: map y ŷ

sé ù æ ö÷çê ú= = ÷ç ÷çê ú ÷ç- -è øë û

2

V[ ] V
1 1

i
pi

ii ii

ee
E E
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• True function: y = x
5 data: (-2,-1.5), (-1,-1.5), (1,1.25), (2,1.75), (0,0)

• Linear fit: y = b1 + b2x

Ex) Example: Linear regression

é ù ì ü- -ï ïï ïê ú ï ïê ú ï ï- -ï ïê ú é ù ì ü ì üï ï ï ï ï ïï ï ï ï ï ïê ú ê ú= = = =  =í ý í ý í ýê ú ê úï ï ï ï ï ïï ï ï ïë û î þ î þï ïê ú ï ïê ú ï ïï ïê ú ï ïï ïë û î þ

T T

1 2 1.5
1 1 1.5

5 0 0 0
, , ,1 0 0

0 10 9.25 0.925
1 1 1.25
1 2 1.75

X y X X X y b

=ˆ 0.925y x { }= - -0.35 0.575 0 0.325 0.1e

=

= - = = =å
5

2 T

1
SSy ( ) 9.125, SSe 0.56875i

i

y y e e
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• Coefficient of multiple determination

• Error measures

• Standard deviation of noise

Ex) Linear regression cont.

= - = = - - =2 2SSe 41 0.9377, 1 (1 0.9377) 0.9169
SSy 3aR R

Linear fit is satisfactory!!

=

= = = =

= =

å
5

av max
1

rms

1 0.27, max 0.575
5

SSe 0.337
5

i i
i

e e e e

e

s = = =
- -b

0.56875 0.4354ˆ
5 2y

SSe
n n s = 0.395
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• Quadratic fit: y = b1 + b2x + b3x2

Ex) Linear regression cont.

=- + + 2ˆ 0.1071 0.925 0.05357y x x

{ }= - - -0.243 0.521 0.107 0.378 0.207e
= = = =2 2SSy 9.125, SSe 0.52857, 0.9421, 0.8841aR R

é ù ì ü- -ï ïï ïê ú ï ïê ú é ù ì ü ì üï ï -- - ï ï ï ïï ï ï ï ï ïê ú ê úï ï ï ï ï ïï ï ï ï ï ïê ú ê ú= = = =  =í ý í ý í ýê ú ê úï ï ï ï ï ïï ï ï ï ïê ú ê úï ï ï ï ïï ï ïë û î þ î þê ú ï ïï ïê ú ï ïï ïë û î þ

T T

1 2 4 1.5
5 0 10 0 0.10711 1 1 1.5

, , 0 10 0 , 9.25 0.9251 0 0 0
10 0 34 0.75 0.053571 1 1 1.25

1 2 4 1.75

X y X X X y b
ïïï

Improved Deteriorated

s= = = =av max rms0.291, 0.521, 0.325, 0.5141ˆe e e
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• we have not gained any predictive capabilities by adding 
the quadratic terms

Ex) Linear regression cont.
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• The common assumptions for linear regression 

– The true function is described by the functional form of the surrogate.

– The data is contaminated with normally distributed error with the 
same standard deviation at every point.

– The errors at different points are not correlated.

• Under these assumptions, the noise standard deviation 
(standard error) is estimated as

• is used as estimate of the prediction error. That is the 
error between the true function and the surrogate

Model based error for linear regression

s =
- b

T

ˆ
yn n
e e

s  ˆyn

Large # of data makes surrogate 
more accurate than data
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• 30 samples from y = x and noise ~ N(0,12)

• Fitting linear function

• Standard error = 1.3228
• mean(noise) = 0.5519, std(noise) = 1.3

Ex) Model-based error vs. PRESS

x=1:30; noise=randn(1,30); y=x+noise;

mean(noise)
neutnoise=noise-mean(noise);
nnrms=sqrt(neutnoise*neutnoise'/29)

X=[ones(30,1),x'];
[B,BINT,R,RINT,STATS] = regress(y',X);  
yfit=B(1)+B(2)*x;
error=y-yfit;
sigma=sqrt(error*error'/28)

= +ˆ 0.5981 0.997y x

Similar, due to finite
samples
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• PRESS = 1.3907

• Two errors are similar (1.3228 vs 1.3907)

– And they are equal to std(noise) = 1.3

– The actual error was only about 0.6 because the large amount of data 
filtered the noise.

• With less data, the differences will be larger. 

Ex) Model-based error vs. PRESS cont.

M=X'*X; E=X*inv(M)*X';    
d=diag(E); 
ep=error'./(1-d);
epress=sqrt(ep'*ep/29)
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• The pairs (0,0), (1,1), (2,1) represent strain (millistrains) 
and stress (ksi) measurements.

– Estimate Young’s modulus using regression.

– Calculate the error in Young modulus using cross validation both from 
the definition and from the formula.

• Repeat the example of y = x, using only data at x = 3, 6, 
9,…, 30. Add noise ~ N(0,12).

Exercises
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• Random noise in data yields uncertainty in coefficients

– Different set of random noise can fit different regression coefficients

– We can consider b as a random vector and estimate uncertainty

• Covariance matrix of coefficient vector b

– Diagonal of Sb: variance of bi

– Off-diagonal of Sb: correlation between bi and bj

Confidence in regression coefficients

S = - - T[ ( )][ ( ]E Eb b b b b E(b): expected 
(average) of b

s -=S 2 T 1( )b X X

Use estimated ŝ
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• Standard deviation of b

• Coefficient of variation of b

• t-statistics

• Backward elimination: eliminate coefficient with the largest 
c.o.v.

Confidence in regression coefficients cont.

s -= = T 1se( ) ( )ˆ
ii b iib s X X

= ib
i

i

s
c

b
ci > 1: very little confidence

on the coefficient
=

1
ic
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• Importance of basis magnitude of coefficients

• Remove those coefficients whose values cannot be 
estimated accurately for given data

– These coefficients do not have much effect on the accuracy of the fit

– May reduce prediction quality in the region where these coefficients 
have a large effect

Eliminating unimportant basis

= + + - + +2 2
1 2 1 2 1 1 2 2ˆ( , ) 10.5 0.01 9.87 5 7.6 0.02y x x x x x x x x

Linear x1 term
is not important

Quadratic x2 term
is not important

= + - +2
1 2 2 1 1 2ˆ( , ) 10.5 9.87 5 7.6y x x x x x x
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• Quadratic model of Example 3.2.1

• Coefficient of variation

Eliminate b1

• Reduced quadratic model

Ex) Backward elimination

=- + + 2ˆ 0.1071 0.925 0.05357y x x

-

é ù é ù- -
ê ú ê ú
ê ú ê ú= =ê ú ê ú
ê ú ê ú- -ë ûë û

S

17 1
35 7

T 1 1
10

1 1
7 14

0 0.1284 0 0.03776
( ) 0 0 , 0 0.02643 0

0 0.03776 0 0.01888
bX X

= = = = = =1 2 3
0.1284 0.02643 0.018883.35, 0.176, 2.56
0.1071 0.925 0.05357

c c c

= + 2
2 3ŷ b x b x

s =

=2

0.5141ˆ
0.8841aR
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• Reduced quadratic model

Ex) Backward elimination cont.

= + 2
1 2ŷ b x b x

é ù ì ü- -ï ïï ïê ú ï ïê ú ï ï- -ï ïê ú ï ïï ïê ú= =  =í ýê ú ï ïï ïê ú ï ïê ú ï ïï ïê ú ï ïï ïë û î þ

2 4 1.5
1 1 1.5

, [0.925, 0.02205]0 0 0
1 1 1.25
2 4 1.75

X y b

= + 2ˆ( ) 0.925 0.02205y x x x

= - -[ 0.262, 0.597, 0, 0.3038, 0.188]e

= = = =2 29.125, 0.5522, 0.9394, 0.9193aSSy SSe R R

b

s s= = =
-

2 SSe 0.1841, 0.429ˆ ˆ
yn n

Improved!
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• Eliminate b2

• Best fit:

Ex) Backward elimination cont.

-
é ù é ù
ê ú ê ú= S =ê ú ê úë ûë û

1
10T 1

1
34

0 0.0184 0
( ) ,

0 0 0.00541bX X

= = =1 2
0.0184 0.147, 3.33
0.925

c c Eliminate b2

= 1ŷ b x

s= = =2ˆ( ) 0.925 , 0.4354, 0.9169ˆ ay x x R Slightly 
decreased

= + 2ˆ( ) 0.925 0.02205y x x x
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• Change (perturb) data y(1) = 1.35 (8% perturbation)

• Quadratic fit

• After eliminating b1

Ex) Backward elimination cont.

=- + + 2ˆ 0.1071 0.925 0.05357y x x

=- + + 2ˆ 0.0729 0.935 0.0465y x x
30%            1%                13%    change

= + 2ˆ( ) 0.925 0.02205y x x x

= + 2ˆ( ) 0.935 0.025y x x x
1%           13%    change



Structural & Multidisciplinary Optimization Group
65

• Assumptions on noise in linear regression allow us to 
estimate the prediction variance due to the noise at any 
point.

• Prediction variance is usually large when you are far from a 
data point.

• We distinguish between interpolation, when we are in the 
convex hull of the data points, and extrapolation where we 
are outside.

• Extrapolation is associated with larger errors, and in high 
dimensions it usually cannot be avoided.

Prediction variance in linear regression
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• Linear regression model

• Define , then

• Ex)

• Prediction variance:

• Standard error of prediction

Prediction variance
b

x
=

=å
1

ˆ ( )
n

i i
i

y b x

x=( ) ( )m
i ix x Tŷ = bx

T 2 T T 1ˆV[ ( )] ( )ˆy s -= =bx X Xx å x x x

T T 1( )ˆys s -= X Xx x

s

s

= =

= =

2

2 2 2

, [ ]
[ ] [ ]

y ax V x
V y a V x a
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• Data sensitivity: how much the prediction at x will vary due 
to a change in data yi?

• Linear regression surrogate

• Differentiate         with respect to ith component of y

– Sensitivity of prediction with respect to change in data

Data sensitivity

{ }T T 1 Tˆ( ) ( )
i

i

y
y

-¶
=

¶
x X X Xx

T T T 1 Tˆ( ) ( )y -= =x b X X X yx x

ˆ( )y x
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

• For a linear polynomial RS y = b1 + b2x1 + b3x2, find the 
prediction variance in the region 

(a) For data at three vertices

Ex) Prediction variance

- £ £ - £ £1 21 1, 1 1x x

ì ü ì ü ì ü- -ï ï ï ï ï ïï ï ï ï ï ï= = =í ý í ý í ýï ï ï ï ï ï- -ï ï ï ï ï ïî þ î þ î þ
1 2 3

1 1 1
, ,

1 1 1
x x x

T
1

2

1 1 1 1 3 1 1
, 1 1 1 , 1 3 1

1 1 1 1 1 3
x
x

ì ü é ù é ù- - - -ï ïï ï ê ú ê úï ïï ï ê ú ê ú= = - = - -í ý ê ú ê úï ïï ï ê ú ê ú- - -ï ï ë û ë ûï ïî þ

X X Xx

-

é ù
ê ú
ê ú= ê ú
ê úë û

T 1

2 1 1
( ) 0.25 1 2 1

1 1 2
X X

Interpolation
region
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• Prediction standard error

• Prediction error increased at an extrapolation point (1,1) 

Ex) Prediction variance: Interpolation vs. Extrapolation

( )T T 1 2 2
1 2 1 2 1 2( ) 0.5 1ˆ ˆys x x x x x xs s-= = + + + + +X Xx x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

s
=

ˆ
2ys

s= ˆys

s= 3 ˆys
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• Find the minimum error location by 

• Minimum

• What is special about this point?

• Prediction variance contour

Ex) Prediction standard error contour

s= = =-1 2
1 1atˆ

33ys x x

¶ ¶
= =

¶ ¶1 2

0y ys s
x x

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x=[-1 -1 1]; y=[-1 1 -1];
[X,Y]=meshgrid(-1:.1:1, -1:.1:1);
Z=sqrt(.5*(1+X+Y+X.^2+Y.^2+X.*Y));
v=linspace(0.6,1.8,7)
scatter(x,y,'filled’); 
grid on; hold on
[C,h]=contour(X,Y,Z,v); 
clabel(C,h)
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• Add additional data at (1,1)

• Error at vertices:

• At the origin minimum is 

Ex) Data at four vertices

s=
1 ˆ
2ys

s=
3 ˆ

2ys

[ ] [ ] [ ] [ ]= - - = - = - =T T T T
1 2 3 41, 1 , 1,1 , 1, 1 , 1,1x x x x

é ù- -
é ùê ú
ê úê ú- ê úê ú= = ê úê ú- ê úê ú ë ûê úë û

T

1  1   1
1  0  0

1  1     1
,    4 0  1  0

1    1   1
0  0  1

1    1     1

X X X

T T 1 2 2
1 2( ) 0.25(1 )x x- = + +X Xx x

Surrogate is more accurate 
than the data
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• Additional sample does not improve the low prediction 
variance, but significantly reduce the large prediction 
variance in the extrapolation region

Ex) Graphical comparison of standard errors

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3 sampling points 4 sampling points
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• Redo analytically the four point example, when the data 
points are not at the corners but inside the domain, at ±0.7. 
What does the difference in the results tells you?

• For a grid of 3x3 data points, compare the standard error 
contours for linear and quadratic fits.

Exercise
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• So far, we consider the case when noise of all data points 
are from an identical random distribution ~ N(0,s2)

• In some cases, noises at different locations may have 
different magnitudes

• Data sensitivity can be used to estimate the prediction 
variance when each data has noise variance 

Prediction variance with variable noise

2 T T 1ˆ[ ( )] ( )V y s -=x X Xx x

s
æ ö¶ ÷ç= ÷ç ÷ç ÷ç ¶è ø

å
2

2ˆ( )ˆ[ ( )] i
i

yV y
y
xx

s2
i
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• Linear fit the data

• PRS

• Data sensitivity

Ex) Example 3.2.1

210-1-2X

1.751.250-1.5-1.5Y

T

1 2 1.5
1 1 1.5

5 0 1
1 0 0

0 10
1 1 1.25
1 2 1.75

x

é ù ì ü- -ï ïï ïê ú ï ïê ú ï ï- -ï ïê ú é ù ì üï ï ï ïï ï ï ïê ú ê ú= = = =í ý í ýê ú ê úï ï ï ïï ïë û î þï ïê ú ï ïê ú ï ïï ïê ú ï ïï ïë û î þ

X y X X x

[ ]T T 1 Tˆ
( ) 0.1 2 2 2 2 2 2 2y x x x x-¶

= = - - + +
¶

X X X
y

x

T T 1 Tˆ( ) ( ) 0.925y x x-= =X X X yx
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• Prediction variance

• Variance of prediction 

• If all data variances are the same, 

• If not, variance of y5 is most important 

– y5 is closest to x = 3

Ex) Example 3.2.1 prediction variance at x=3

[ ] ( )

2 T T 1

2 2 2 2

ˆ[ ( )] ( )
0.2 0 1

1 0.2 0.1 1.1
0 0.1

V y

x x
x

s

s s s

-=
é ù ì üï ïï ïê ú= = + =í ýê ú ï ïï ïë û î þ

x X Xx x

[ ]¶
= - -

¶
ˆ

0.1 4 1 2 5 8y
y

s= 2ˆ[ ( )] 1.1V y x
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• When we calculate statistics from random data 
bootstrapping can provide error estimates.

• If we had multiple sets of samples, we could use them to 
estimate the error in the computation.

• With bootstrapping we perform the amazing feat of getting 
the error from a single set of samples.

• This is done by resampling with replacement of the same 
data.

– We draw a samples from the original data without removing it so that 
the new sample may have repetitions.

• We repeat for many bootstrap samples to get a distribution 
of the statistic of interest.

Bootstrapping
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• bootstat = bootstrp(nboot,bootfun,d1,...) draws nboot 
bootstrap data samples, computes statistics on each 
sample using bootfun, and returns the results in the matrix 
bootstat. bootfun is a function handle specified with @. 
Each row of bootstat contains the results of applying 
bootfun to one bootstrap sample. 

• [bootstat,bootsam] = bootstrp(...) returns an n-by-nboot 
matrix of bootstrap indices, bootsam. Each column in 
bootsam contains indices of the values that were drawn 
from the original data sets to constitute the corresponding 
bootstrap sample

Matlab bootstrp routine
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• Generate 10 randome samples: x = randn(1,10)

• [bootstat,bootsam]=bootstrp(1000,@mean,x);

– Generate 1000 bootstrap sets of samples and means

• bootsam(:,1:5) shows the first 5 sets of bootstrap samples

Ex) Sample mean

Each column contains the indices of 
one set of bootstrap samples. For 
example, the last column indicates that 
we drew x(1), x(10), x(8), x(5), x(6), 
x(3), x(5), x(10), x(6), and x(6). That is, 
we drew x(6) three times, x(5) and 
x(10) twice.

x =[0.5377,  1.8339, -2.2588, 0.8622, 0.3188, 
-1.3077, -0.4336,  0.3426, 3.5784, 2.7694];

6  3  2  8  1
4  9 10  3 10
10  2 10  2  8
9  3  5  3  5
6  2  2  4  6
7  3  3  5  3
6  5  5  6  5
3  4  6  1 10
4 10  3  3  6
5  5  7  9  6
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• mean(x) = 0.6243

• std(x) = 1.7699

• mean(bootstat) = 0.6068

• std(bootstat) = 0.5191

• Standard deviation of sample mean:

• In other cases we may not have a formula. May use 
bootstrapping to estimate accuracy of probability

Ex) Statistics for sample mean
Histogram of
bootstrap means

m

s
s = = 0.56x

n
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• [bootstat,bootsam]=bootstrp(10000,@std,x);

• mean(bootstat)=1.6387

• std(bootstat)=0.3415

• Check ratio

– a=randn(10,10000);

– s=std(a);

– mean(s) = 0.9728

– std(s)=0.2302

• Bootstrap ratio is 0.208, actual ratio 0.237

Ex) Statistics of sample standard deviation
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• The variables x and y are normally distributed with N(0,12) 
marginal distributions and a correlation coefficient of 0.7.

– Generate a sample of 10 pairs and use bootstrap to estimate the 
accuracy of the correlation coefficient you obtain from the sample.

– Compare to the accuracy you can get from a formula or by repeating 
step 1 many times.

Exercise



Statistical View of Linear Regression
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• Statistical model

– Data model:

– Prediction 𝑦 are modeled by a deterministic function of inputs, 𝑓 𝐱; 𝐛 , 
which are contaminated by noise or some error defined by 𝜖

– The noise is assumed to be normally distributed with mean zero and 
variance 𝜎ଶ

– Conditional probability distribution of 𝑦 given 𝑥 is a normal distribution 
with mean function 𝑓 and variance 𝜎ଶ

Linear regression

𝑦 ൌ 𝑓 𝐱; 𝐛 ൅ 𝜖

𝑦|𝐱~𝑁ሺ𝑓 𝐱; 𝐛 , 𝜎ଶሻ

𝑝 𝑦 𝐱 ൌ 𝑁ሺ𝑓 𝐱; 𝐛 , 𝜎ଶሻ
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• The principle of likelihood

– How likely is it that I would have observed the outputs given the 
inputs?

– The likelihood of observing the outputs is the conditional probability of 
making all the observations

– We assume that the data are independent and identically distributed 
(iid)

– The joint probability of our measurements takes a factored form

Probabilistic method

𝑝ሺ𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௡|𝐱ଵ, 𝐱ଶ, ⋯ , 𝐱௡ሻ

𝑝 𝐲 𝐗, 𝐛, 𝜎 ൌ ෑ 𝑝ሺ𝑦௜|𝐱௜ሻ
௡

௜ୀଵ

ൌ ෑ 𝑁ሺ𝑓 𝐱௜; 𝐛 , 𝜎ଶሻ
௡

௜ୀଵ
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• The principle of likelihood

– The joint probability is likelihood function

– Log-likelihood function is defined as

• Maximum likelihood = the stationary point of the log-
likelihood

Maximum likelihood

𝐿 ൌ log 𝑝 𝐲 𝐗, 𝐛, 𝜎 ൌ ෍ log 𝑝 𝑦௜ 𝐱௜, 𝐛, 𝜎
௡

௜ୀଵ

                                       ൌ ෍ log
1

2𝜋𝜎
𝑒𝑥𝑝 െ

1
2𝜎ଶ 𝑦௜ െ 𝑓 𝐱௜; 𝐛 ଶ

௡

௜ୀଵ

𝜕𝐿
𝜕𝐛 ൌ

1
𝜎ଶ 𝐗୘𝐲 െ 𝐗୘𝐗𝐛 ൌ 0
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• Estimated model parameters

– Same with estimated model parameters by minimizing RMS error

• Hessian matrix (information matrix) of likelihood function

– A measure of uncertainty in the estimates

Maximum likelihood cont.

𝐛መ ൌ 𝐗୘𝐗 ିଵ𝐗୘𝐲 𝜎ොଶ ൌ
1
𝑛 𝐲 െ 𝐗𝐛መ

୘
𝐲 െ 𝐗𝐛መ ൌ

1
𝑛 ሺ𝐲୘𝐲 െ 𝐲୘𝐲ොሻ

𝜕𝐿
𝜕𝐛 ൌ

1
𝜎ଶ 𝐗୘𝐲 െ 𝐗୘𝐗𝐛

𝜕ଶ𝐿
𝜕𝐛𝜕𝐛୘ ൌ െ

1
𝜎ଶ 𝐗୘𝐗
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• Uncertainty is defined as covariance matrix

• Hessian matrix is defined as the information matrix

Uncertainty in estimated parameters

cov 𝐛መ ൌ 𝐸 𝐛መ 𝐛መ ୘ െ 𝐸 𝐛መ 𝐸 𝐛መ ୘

     𝐸 𝐛መ 𝐛መ ୘ ൌ 𝐗୘𝐗 ିଵ𝐗୘𝐸 𝐲𝐲୘ 𝐗 𝐗୘𝐗 ିଵ

     𝐸 𝐲𝐲୘ ൌ 𝐸 ሺ𝐗𝐛 െ 𝝐ሻሺ𝐗𝐛 െ 𝝐ሻ୘ ൌ 𝐗𝐛𝐛୘𝐗୘ ൅ 𝜎𝟐𝑰

     𝐸 𝐛መ ൌ 𝐛

cov 𝐛መ ൌ 𝜎ଶ 𝐗୘𝐗 ିଵ

cov 𝐛መ ൌ 𝜎ଶ 𝐗୘𝐗 ିଵ ൌ െ
𝜕ଶ𝐿

𝜕𝐛𝜕𝐛୘

ିଵ

𝐛መ is uncertain but 𝐛 is not.
𝐸 𝝐𝝐୘ ൌ 𝜎𝟐𝐈
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• Prediction

• Estimate of the variance of the prediction

• 95% confidence intervals around the estimate

Uncertainty in prediction

𝑦ො 𝐱 ൌ 𝝃ሺ𝐱ሻ୘𝐛 cov 𝐛መ ൌ 𝜎ଶ 𝐗୘𝐗 ିଵ

𝑉𝑎𝑟 𝑦ො ൌ 𝝃ሺ𝐱ሻ୘cov 𝐛መ 𝝃 𝐱 ൌ 𝝃ሺ𝐱ሻ୘𝜎ଶ 𝐗୘𝐗 ିଵ𝝃 𝐱

𝑆𝑡𝑑 𝑦ො ൌ 𝝃ሺ𝐱ሻ୘𝜎ଶ 𝐗୘𝐗 ିଵ𝝃 𝐱

𝑦ො േ 1.96𝑆𝑡𝑑 𝑦ො
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Example

 Estimation with different polynomial orders
- True equation: 𝑦 ൌ  5𝑥3 െ 𝑥2 ൅ 𝑥 (the standard deviation of noise 100)

- 95% CI of the prediction

(K=1: linear) (K=3: cubic)
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Example

 Estimation with different polynomial orders
- True equation: 𝑦 ൌ  5𝑥3 െ 𝑥2 ൅ 𝑥 (the standard deviation of noise 100)

- 95% CI of the prediction

(K=6: sixth-order) (K=10: 10th-order)
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