
Sampling Plans

Design of Experiments



Structural & Multidisciplinary Optimization Group
93

• Given a domain, we can reduce the prediction error by 
good choice of the sampling points.

• The choice of sampling locations is called “design of 
experiments” or DOE.

• With a given number of points the best DOE is one that will 
minimize the prediction variance.

• The simplest DOE is full factorial design where we sample 
each variable (factor) at a fixed number of values (levels)

– Ex) with four variables and three levels, we will sample 81 points

– not practical except for low dimensions

Sampling plans for linear regression
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• Range: ௜
௟

௜ ௜
௨

• Normalize:

• Full factorial design – include all possible combinations

– Ex) 2 level, n variables → 2௡ DOE 

• Fractional factorial design – use a subset of all combinations

– Ex) n = 10, linear PRS, # of coefficients = 11 ≪ 1024

– Fractional factorial design will lose interpolation property

DOE in boxlike domains
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• 1D 2D

• Interpolation: within the convex hull of data points

• n-dimension simplex (n+1 vertices)

– Convex hull: union of all simplices

Interpolation vs extrapolation

Data points
Interpolation
extrapolation
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n n
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• Surrogate is linear combination of ఉ given shape functions

• For linear approximation: 

• Difference (error)  between ௬ data and surrogate

• Minimize square error:

• Differentiate to obtain: 

Review: linear regression
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• The common assumptions for linear regression 

– The true function is described by the functional form of the surrogate.

– The data is contaminated with normally distributed error with the 
same standard deviation at every point.

– The errors at different points are not correlated.

• Under these assumptions, the noise standard deviation 
(called standard error) is estimated as

• is used as estimate of the prediction error.

Model based error for linear regression
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• Linear regression model

• Define then

• With some algebra

• Prediction standard error 

• Idea: choose sample point to make ௬ minimum

Prediction variance
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• ଵ ଶ ଵ ଶ ଵ ଷ ଶ, ଵ ଶ

• Data: ଵ ଶ ଷ ସ

– Minimum at ሺ0,0ሻ, 𝑠௬,୫୧୬ ൌ
ఙෝ
ଶ

– Maximum at ሺേ1,േ1ሻ, 𝑠௬,୫ୟ୶ ൌ
ଷఙෝ
ଶ

Ex) Full factorial design
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• ଵ ଶ ଵ ଶ ଵ ଷ ଶ, ଵ ଶ

• Data: ଵ ଶ ଷ

– At ሺ0,0ሻ: 𝑠௬ ൌ
ఙෝ
ଶ
, െ1,െ1 , ሺെ1,1ሻ, ሺ1, െ1ሻ: 𝑠௬ ൌ 𝜎ො, ሺ1,1ሻ: 𝑠௬ ൌ 3𝜎ො

– Minimum at ሺെభ
య, െ

భ
యሻ: 𝑠௬,୫୧୬ ൌ

ఙෝ
ଷ

Ex) Fractional factorial design
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• Recall that prediction standard error

• For full factorial design, the domain is normally a box.

• Cheapest full factorial design: two levels (not good for 
quadratic polynomials).

• For a linear polynomial standard error is then

• Maximum error at vertices 

• What does the ratio in the square root represent? 

Prediction variance for full factorial design
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• Two levels (2 samples in each design variable)

• Orthogonal designs: ୘ is diagonal  min variance

• Full factorial design: orthogonal design

• Saturated design: n+1 designs for n variables (simplex)

• How to construct orthogonal designs for saturated design?

– Perfect simplex: the distance b/w all pts are the same

DOEs for linear PRS
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• 3 points linear PRS ଵ ଶ ଵ ଷ ଶ

• Select 

• At (0,0), 

• At , 

• But, will increase “bias error” (modeling error)

Ex) DOEs for linear PRS
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• A quadratic polynomial has coefficients, so 
we need at least that many points.

• Need at least three different values of each variable.

• Three-level full factorial design, # of samples = ௡

– Impractical for n>5

– Also unreasonable ratio between number of 
points and number of coefficients

– Ex) n=8  3଼ ൌ 6561 samples for 45 coefficients.

• Rule of thumb is that you want twice as many points as 
coefficients

DOE for Quadratic PRS
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• Includes 2n vertices, 2n face points plus nc repetitions of 
central point

– # of samples = 2௡ ൅ 2𝑛 ൅ 𝑛௖

• Can choose ௡/ସ so as to

– achieve spherical design, achieve rotatability 
(prediction variance is spherical)

– Stay in box (face centered) FCCCD, 𝛼 ൌ 1

• Still impractical for n>8

Central Composite Design
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• Unlike linear PRS, prediction variance is high at origin.

– Repetition at origin decreases variance and improves stability 
(uniformity).

– Repetition also gives an independent measure of magnitude of noise.

Repeated observations at origin

Contours of prediction variance 
for spherical CCD design (no repetition)

With five repetitions, the max prediction 
variance is significantly reduced and 
greatly improve the uniformity.
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• Useful for irregular domain or reduced # of samples

• Select the best ௬ points out of large candidates that 
minimize variance or modeling error

• Variance-based optimal design

– D-optimality: minimum coefficient variance

– A-optimality: minimum sum of individual variance

– G-optimality: minimum prediction variance

Optimal point selection
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• Maximizes the determinant of ୘ to reduce the volume of 
uncertainties about the coefficients.

• Recall

• Moment matrix

• Coefficient of variation ଵ
𝐌

• Maximize  combinatorial optimization problem

• Finding D-optimal design in higher dimensions is a difficult 
optimization problem often solved heuristically

D-optimal design

2 T 1 2 T
T T
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• For ଵ ଵ ଶ ଶ with 2 data points (0,0) and (1,0), find 
the optimum third data point (p,q) in the unit square.

• We have 

• arg max ୘ 

• So that the third point is (p,1), for any value of p

• D-optimal design permits any number of points

• Leads to asymmetrical designs

• Time consuming and not converge well for large ௬

Ex) D-optimal design

2
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• Repeat the previous example with A-optimality design

• Minimize ௜௜
ିଵ at ଶ and ଶ

• 

Ex) A-optimal design
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%With 6 points:
ny=6;nbeta=6;
[dce,x]=cordexch(2,ny,'quadratic');
>> dce'

1     1    -1    -1     0     1
-1     1     1    -1    -1     0

scatter(dce(:,1),dce(:,2),200,'filled')
>> det(x'*x)/ny^nbeta  ans = 0.0055

%With 12 points:
ny=12;
[dce,x]=cordexch(2,ny,'quadratic');
>> dce'
-1     1    -1     0     1     0     1    -1     

1     0    -1     1
1    -1    -1    -1     1     1    -1    -1     

0     0     0     1

scatter(dce(:,1),dce(:,2),200,'filled')
>> det(x'*x)/ny^nbeta  ans =0.0102

Ex) D-optimality DOE Matlab

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0.8

1



Structural & Multidisciplinary Optimization Group
112

• Bias error: modeling error

• 2nd design moment

– Approximated 2nd moment

• Minimum bias design

– Find sample locations that make the approximated moment to be the 
same as design moments

• Min variance design: pts toward boundary, may not low bias

• Min bias design: pts toward centroid, lower variance

Minimum bias design

linear

quadratic
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• Select 4 pts for ଵ
ଶ

ଶ
ଶ using linear PRS ଵ ଶ

୘

• Pic 4 points with symmetry

– Case 1: േ𝑎, 0 , ሺ0, േ𝑎ሻ

– Case 2: ሺേ𝑏,േ𝑏ሻ

Ex) Minimum bias design
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• Case 1:

• Case 2:

• Fitting with full factorial design:

– Min bias design is better than full factorial design!

Ex) Minimum bias design cont.
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• DOE for noisy data tend to place points on the boundary

• When the error in the surrogate is due to unknown 
functional form, space filling designs are more popular.

– use values of variables inside range instead of at boundaries

• Space-filling DOE is appropriate only for low-dimension

– For 10 dimensional space, need 1024 points to have one per orthant.

• Space-filling DOEs

– Monte Carlo sampling (MCS)

– Latin hypercube sampling (LHS) uses as many levels as points

– Orthogonal arrays (OA)

Space-Filling DOEs
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• Regular, grid-like DOE runs the risk of deceptively accurate 
fit, so randomness appeals.

• Given a region in design space, we can assign a uniform 
distribution to the region and generate sample points

– MSC ~ Sampling according to probability distribution

• It is likely, though, that some regions will be poorly sampled

• In 5-dimensional space, with 32 sample points, what is the 
chance that all orthants will be occupied?

31
32 ൈ

30
32 ൈ⋯

1
32 ൌ 1.8 ൈ 10ିଵଷ

Monte Carlo sampling (MCS)

-1 1 x
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• General 20 samples of ଵ ଶ and plot marginal 
histogram

Ex) MCS

0 0.5 1
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• With 20 points there is evidence of 
both clamping and holes

• The histogram of x1 (left) and x2
(above) are not that good either.
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• Each variable range divided into ௬ equal probability 
intervals. One sample at each interval.

– Choose one sample randomly within the interval

• Uniform distribution

• Normal distribution

Latin hypercube sampling (LHS)
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• designs, samples (intervals)

• Create matrix

• Each column: permutation of 1, 2, …, n

• Ex) 2 designs, 3 samples (levels)

• Choose location randomly within an interval

LHS procedure

X

X

X

1 3
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3 2
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• ଵ: normal distribution, ଶ: uniform distribution

• Choose 5 sample using LHS

Ex) LHS

𝒙𝟐𝒙𝟏
21
32
43
14
55

Chosen intervals
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• For n points with m variables: m by n matrix, with each 
column a permutation of 1,…,n

• Examples

• Points are better distributed for each variable, but can still 
have holes in m-dimensional space.

Latin Hypercube definition matrix

1 2 4
1 3

4 1 2
2 1

3 3 3
3 2

2 4 1

 
   
   
   
    

 
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• Since some LHS designs are better than others, it is 
possible to try many permutations. What criterion to use for 
choice?

• One popular criterion is minimum distance between points 
(maximize). Another is correlation between variables 
(minimize).

Improved LHS
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• Matlab lhsdesign uses by 
default 5 iterations to look for 
“best” design.

• The blue circles were obtained 
with the minimum distance 
criterion. Correlation coefficient 
is -0.7.

• The red crosses were obtained 
with correlation criterion, the 
coefficient is -0.055.
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• With 5,000 iterations the two sets of designs improve. 

• The blue circles, maximizing minimum distance, still have a 
correlation coefficient of 0.236 compared to 0.042 for the 
red crosses.

More iterations
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• With more iterations, 
maximizing the 
minimum distance 
also reduces the size 
of the holes better.

• Note the large holes 
for the crosses around 
(0.45,0.75) and 
around the two left 
corners.
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• We can reduce randomness further by putting the point at 
the center of the box.

• Typical results are shown in the figure. 

• With 10 points, all will be at 0.05, 0.15, 0.25, and so on.

Reducing randomness further
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• Questions before DOE
– Large or small noise
– Type of surrogate
– # of variables (n)
– # of samples (ny)
– All the simulations at once or adaptive sampling

• DOE recommendations

1. Low dimension with large noise

– Full factorial design or CCD (box domain)

– D-optimal design (irregular domain) + adaptive sampling

Review of various DOWs
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2. Low dimension + small noise

– Minimum bias, LHS, orthogonal arrays (box domain)

– MCS, optimized distance design (irregular domain)

3. High dimension + large noise

– Block design, fractional factorial design, CCD (box domain)

– D-optimal design (irregular domain)

4. High dimension + small noise

– LHS, optimized distance design

Review of various DOWs


