
Neural Network Model

Structural & Multidisciplinary Optimization Group
128

• Computing systems vaguely inspired by the biological
neural networks that constitute animal brains

– The data structures and functionality of neural nets are designed to
simulate associative memory

– Learn by processing input and output data (samples)

– After learn by enough data, neural nets can predict results from inputs

• Relationship between the number and diversity of samples
processed by a neural net and the prediction accuracy

• Fancy description, but basically neural network is a kind of
surrogate model

– Determine (train) unknown parameters using samples and predict

Artificial neural network

Structural & Multidisciplinary Optimization Group
129

• based on a collection of connected units or nodes called
artificial neurons

– loosely model the neurons in a biological brain

– Each connection can transmit a signal to other neurons

– A neuron receives a signal then processes it and sends the signal to
the neurons connected to it

• Implementation

– "signal" at a connection is a real number, and the output of each
neuron is computed by a nonlinear function of the sum of its inputs

– Neurons typically have a weight that adjusts as learning proceeds

– Input layer (inputs), hidden layer (not shown), and output layer
(prediction)

Artificial neural network cont.

Structural & Multidisciplinary Optimization Group
130

• part of a broader family of machine learning methods based
on artificial neural networks with representation learning

– Learning can be supervised, semi-supervised or unsupervised

• The adjective "deep" comes from the use of multiple layers
in the network

– Deep learning is a modern variation
which is concerned with an unbounded
number of layers of bounded size

– permits practical application and
optimized implementation

Deep learning

Structural & Multidisciplinary Optimization Group
131

• first introduced in 1943 by Warren McCulloch, a
neurophysiologist, and a mathematician Walter Pitts

• In 1949, Donald Hebb published a book, “The Organization
of Behavior,” where he formulated the classical Hebbian
rule, which is proved to be the basis of almost all neural
learning procedures

• John Hopfield invented associative neural network in 1982,
which is now more commonly known as Hopfield Network

• backpropagation algorithm, a generalization of Widrow-Hoff
learning algorithm, was invented by Rumelhart, Hinton and
Williams  renaissance of research in neural network

History of neural network

Structural & Multidisciplinary Optimization Group
132

• Feedforward NN (Svozil et al. 1997): conveys the
information in one direction

• Radial basis function network (Orr 1996): uses the
Gaussian radial basis function

• Recurrent NN (Bodén 2001): local feedback connections
between the input and outputs, and so forth

• Fuzzy-neural (Liu and Li 2004), wavelet (He et al. 2004),
associative-memory (Bicciato et al. 2001), modular (Happel
and Murre 1994) and hybrid (Zhang and Yuen 2013,
Rovithakis et al. 2004) neural networks

Types of NN

Structural & Multidisciplinary Optimization Group
133

• Neurons or nodes: basic processing units in NN

– they can be grouped into different layers such as input layer, output
layer and hidden layer

• Input layer: receiving input data from outside

• Output layer: send processed data out of the NN (prediction)

• Hidden layer: between input and output layers, no
interaction with outside (not shown to users)

• Feedforward NN

– information only moves in forward direction from input layer, through
hidden layer and to output layer

– no feedback or flow within layers

Feedforward NN model

Structural & Multidisciplinary Optimization Group
134

Illustration of feedforward NN model

𝐲ො

Structural & Multidisciplinary Optimization Group
135

• Feedforward: information flows from input layer to hidden
layer to output layer

• Parameters

– Weight: interconnection parameter between different nodes, 𝑤௫, 𝑤௛

– Bias: threshold value added after weighted sum of inputs from
previous layer, 𝑏௛, 𝑏௭

• Transfer (activation) function

– Integrate the linear combination of information from the previous
layers using weights and bias

Illustration of feedforward NN model

Structural & Multidisciplinary Optimization Group
136

• finding the optimal parameters, weights and biases, such
that the network model accurately represents the
relationship between inputs and outputs

• backpropagation: propagates the error between training
data and the network outputs backward

– optimization process to find the best weights and biases to minimize
the mean square error between network predictions and training data

– parameters (gradient or Jacobian) for hidden weights and output bias
(output layer) are updated first

– then, parameters for input weights and hidden biases (hidden layer)
are updated next based on the updated parameters in the output
layer

Training process

Structural & Multidisciplinary Optimization Group
137

• Relationship between input nodes and hidden nodes :

– 𝐖௫: ሺ𝑛௛ ൈ 𝑛௫ሻ input weight matrix

– 𝐛௛: ሺ𝑛௛ ൈ 1ሻ hidden bias vector

– 𝑑௛ሺ ሻ:transfer function in the hidden layer

• Relationship between hidden nodes and output nodes :

– 𝐖௛: ሺ𝑛௭ ൈ 𝑛௛ሻ hidden weight matrix

– 𝐛௭: ሺ𝑛௭ ൈ 1ሻ output bias vector

– 𝑑௭ሺ ሻ: transfer function in the output layer

Feedforward mechanism

()= +h x hdh W x b

()ˆ z h zd= +y W h b
We will consider
𝑛௭ ൌ 1 case only

Structural & Multidisciplinary Optimization Group
138

• First, the network structure must be decided

– The number of input nodes, hidden nodes, and output nodes

• Training process determines all weights, ௫ and ௛, and
all biases, ௛ and ௭

• Training data: ௜ ௜ ௬

• Minimize the error between ௜ and ௜

– This is similar to regression

– In general, need to solve optimization problem for nonlinear transfer
functions

Training process

Structural & Multidisciplinary Optimization Group
139

• Apply training data to

– 𝐗 𝑛௫ ൈ 𝑛௬ : matrix of training input data

– 𝐁௛ ሺ𝑛௛ ൈ 𝑛௬ሻ: hidden bias matrix

– 𝐇 ሺ𝑛௛ ൈ 𝑛௬ሻ: matrix of hidden layer outputs

– 𝐲ො ሺ1 ൈ 𝑛௬ሻ: vector of network simulation outputs

– 𝐰௛ ሺ1 ൈ 𝑛௛ሻ: hidden weight row vector

– 𝐛௭ ሺ1 ൈ 𝑛௬ሻ: output bias vector

Training process cont.

()= +h x hdh W x b ()ˆ z h zy d b= +W h

() ()ˆ, h x h z h zd d= + = +H W X B y w H b

Structural & Multidisciplinary Optimization Group
140

• Two input nodes, one hidden node, linear transfer function
௛ and ௭ (௫ ௛ ௭)

– Hidden layer

– Output layer

– Equivalent one-layer network model

Ex) FFNN with linear transfer function

[]
é ù
ê ú= = = = =ê úë û

1
1 2 1 3 2

2

, , , , x h h z

x
w w b w b

x
W x b W b

= + = + +1 1 2 2 1x h w x w x bh W x b

()
()

3 1 1 2 2 1 2

1 3 1 2 3 2 3 1 2

ˆ h z

w w x w x b b

w w x w w x w b b

= +

= + + +

= + + +

y W h b

* * * * * *
1 1 2 2 1 1 3 1 2 3 2 3 1 2 1ˆ , , , w x w x b w w w w w w w b b b= + + = = + =y

𝑦ො

Structural & Multidisciplinary Optimization Group
141

• When ௛ and ௭

– One layer NN model with 𝐰௛𝐖௫ ଵൈ௡ೣ being input weights and
𝐰𝐡𝐁௛ ൅ 𝐛௭ ଵൈ௡೤ being the output bias

– Multi-layer NN model with pure linear transfer function can be
converted into a single-layer NN model

Training process with pure linear transfer function

ˆ () () ()h x h z h x h h z= + + = + +y w W X B b w W X w B b

Structural & Multidisciplinary Optimization Group
142

• We consider a dynamic response of a system. Input = time,
output = QoI

• Data

– 𝐭 ൌ ሼ𝑡ଵ, 𝑡ଶ, ⋯ , 𝑡௡೤, 𝑡௡೤ାଵ, 𝑡௡೤ାଶሽ

– 𝐲 ൌ ሼ𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௡೤, 𝑦௡೤ାଵ, 𝑦௡೤ାଶሽ

• Use 3 previous data as input ௫ for predicting ௞

– 𝐱 ൌ 𝑦௞ିଵ, 𝑦௞ିଶ, 𝑦௞ିଷ
୘

• Input matrix Output vector

Input data in time-domain NN

+

+
´

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

1 2

2 3 1

3 4 2

y

y

y
x y

n

n

n n n

y y y

y y y

y y y

X






4 5 3ˆ ˆ ˆ ˆ{ , , , }
yny y y +=y 

+= 4 5 3{ , , , }
yny y yy 

Structural & Multidisciplinary Optimization Group
143

– characterize the relationship between two adjacent layers

– should be differentiable: need for backpropagation training process

– Pure linear function: 𝑦ො ൌ 𝑥

– Sigmoid function: 𝑦ො ൌ ଵି௘షమೣ

ଵା௘షమೣ

Transfer functions

-inf -2 -1 0 1 2 inf-inf

-2

-1

0

1

2

inf

x

z

-inf -2 -1 0 1 2 inf

-1

-0.5

0

0.5

1

x

z

Structural & Multidisciplinary Optimization Group
144

• 2-layer NN model: 1 input node, 1 (or 5) hidden node, and
1 output node

– Generate random weights and biases from ~Uሺെ5,5ሻ

– Repeat 5 times:

Ex) Complexity of NN model

()= +h x hdh W x b ()ˆ z h zd= +y W h b

-1 -0.5 0 0.5 1-6

-4

-2

0

2

x

d

-1 -0.5 0 0.5 1-10

-5

0

5

x

d

1-hidden node 5-hidden nodes

𝑦ො 𝑦ො

Structural & Multidisciplinary Optimization Group
145

– a training method to determine weights and biases through a
learning/optimization algorithm by backward propagation of the errors
between the training data and the network outputs

– layer-by-layer updating

1. Setting initial values of parameters (weights & biases)

– Usually random number in ሾെ1, 1ሿ, or fixed value of 1

2. Feedforward to simulation outputs ௜ using ௬ inputs

3. Mean-squared-error (MSE)

Backpropagation process

2

1

1 ˆMSE [y (, , ,)]
yn

i i x h h z
iy

y
n =

= -å W B w b

Structural & Multidisciplinary Optimization Group
146

4. Using optimization algorithm and gradients of MSE,
calculate ௛ and ௭ of the output layer

– Gradient descent or Levenberg-Marquardt (LM) algorithm

5. Calculate ௫ and ௛ of the hidden layer

– Δ𝐖௫ and Δ𝐁௛ depend on Δ𝐰௛ and Δ𝐛௭

6. Update the weights and biases of NN model

7. Repeat Steps 1 ~ 6 until satisfying a stopping criterion

Backpropagation process cont.

Structural & Multidisciplinary Optimization Group
147

• define a network model  set up configurations  train the
network model  prediction with different inputs

• feedforwardnet: creates a two-layer network model with
user-defined number of hidden nodes

• configure: Optional step to normalize input and output
data and assigns them to each node

• train: trains the network model with the LM
backpropagation for training method and the MSE for the
error function

• sim: simulates/predicts the network outputs at new inputs
based on the identified weights and biases during the
training process

Matlab functions for feedforward NN

Structural & Multidisciplinary Optimization Group
148

– Randomly divide data: training (70%), validation (15%), test (15%)

– use training set to update the weights and biases based on their error

– The error of the training set keeps decreasing, and the error in the
validation set also decreases: the training process goes well

– The error in the validation set starts increasing after some phase of
training process, i.e., good performance at the training set but bad
performance at the validation set (new points, prediction points): the
network model overfits the training data

– Therefore, the training process stops when the validation error starts
increasing

– The test data sets are not used during the training process but used
for testing the prediction accuracy with trained parameters

Stopping criterion based on validation error

Structural & Multidisciplinary Optimization Group
149

• Predict y at ୬ୣ୵ using one hidden-node NN

• Matlab code
x=[0 5 10 15 20]; %[1 x 5] training input data
y=[1 0.99 0.99 0.94 0.95]; %[1 x 5] training output data
nh=1; % num. of hidden node
net=feedforwardnet(nh); % create two-layer network model
net=configure(net,x,y); % this is optional
[netModel,trainRecor]=train(net,x,y); % train the model ‘net’
xNew=-5:0.1:25; % new input points
z=sim(netModel,xNew); % simulation results

Ex) Feedforward NN model

[] []= = =
T T () 0 5 10 15 20 , 1 0.99 0.99 0.94 0.95x t y

𝑦ො

Structural & Multidisciplinary Optimization Group
150

• # of training data (3) # of parameters (4): not accurate

• epoch: one complete presentation of the data set to be
learned to a learning machine
bestE=trainRecor.best_epoch;
bestP=trainRecor.best_vperf;
hold on; plot(bestE,bestP,'o');

Ex) Feedforward NN model cont.

-5 0 5 10 15 20 25
0.92

0.94

0.96

0.98

1

1.02

x

D
eg

ra
da

tio
n

le
ve

l

Data
NN simulation

𝑦ො

Structural & Multidisciplinary Optimization Group
151

• Uncertainty

– the initial values of parameters are assigned differently. Also, the
train, validation, and test sets change when the training is re-started.
These two are the sources of uncertainty in the neural network
process and make different results

Ex) Feedforward NN model cont.

Simulation #5

𝑦ො

Radial Basis Neural Network

Structural & Multidisciplinary Optimization Group
153

• Real-valued function whose value depends only on the
distance from its origin to the evaluation point

– It is also called radial kernel function

• Use ௜ as a distance and as a spread parameter

• Gaussian

• Multiquadric

• Inverse quadratic

Radial basis function (RBF)

f f= -() ()i ix x c ci: center

2
() rr e ef -=

2() 1r rf e= +

2
1()

1
r

r
f

e
=

+

Structural & Multidisciplinary Optimization Group
154

• Spread parameter determines the influence range of the
radial basis function

• Center ௜ shifts the basis function

Parameters in radial basis function

Effect of spread parameter Effect of center

c1 c2

f - 1()x c f - 2()x c

Structural & Multidisciplinary Optimization Group
155

• Radial basis function (RBF) model

– Linear combination of radial basis functions

– Model parameters: coefficient 𝑏௜, center 𝑐௜, spread parameter 𝜖௜

– When the centers and spread parameters are fixed, linear regression
can be used to determine unknown coefficients 𝑏௜

Approximation using radial basis functions

f
=

=å
RBF

1

ˆ() ()
N

i i
i

y x b x

Structural & Multidisciplinary Optimization Group
156

• Radial basis as a transfer function
x = -3:.1:3; a = radbas(x);
plot(x,a); title('Radial Basis Function');
xlabel('X'); ylabel('\phi (x) ');

• Weight = center position, bias = width of RBF (spread)

• Linear combination of 3 RBFs
a2 = radbas(x-1.5); a3 = radbas(x+2);
a4 = a + a2*1 + a3*0.5;
plot(x,a,'b-',x,a2,'b--',x,a3,'b--',x,a4,'m-')
title('Weighted Sum of RBFs');
xlabel('X'); ylabel('\phi (x)');

Ex) Matlab radial basis function

2

(, ,) x wx w e ef e - -=

Structural & Multidisciplinary Optimization Group
157

Ex) Matlab radial basis function cont.

-3 -2 -1 0 1 2 3
X

0

0.2

0.4

0.6

0.8

1

(x
)

Radial Basis Function

-3 -2 -1 0 1 2 3
X

0

0.2

0.4

0.6

0.8

1

1.2

(x
)

Weighted Sum of RBFs

0.8326
RBF = 0.5 at distance = 0.8326

Structural & Multidisciplinary Optimization Group
158

• NN model with input, hidden, and output layer

– Hidden nodes have RBF as a transfer function

– Use the weight as a center point and bias as a spread

Radial basis neural network (RBNN) model

2

(, ,) x wx w e ef e - -=

Structural & Multidisciplinary Optimization Group
159

• Exact design (newrbe)

– produce a network with zero error on training vectors (interpolation)

– net = newrbe(x,y,spread)

– Generate same number of hidden nodes with the input samples with
the weights being the location of input samples

– User provides bias (spread): 𝜖 ൌ 0.8326/spread

– Determine output weights ሺ𝑛௬ሻ and output bias (1) using linear
regression

Matlab radial basis neural network newrbe

1

ˆ ()
yn

z hi i
i

y b w xf
=

= +å

Structural & Multidisciplinary Optimization Group
160

• Regression error vector

– with 𝑛௬ samples ሺ𝐱௜, 𝑦௜ሻ

– In matrix notation

Regress for RBNN

1
()

yn

h z j j hi i j z
i

e y w bf
=

= - ⋅ - = - -åe y X w b x

1
1 1 2 1 11 1

2
2 2 1 2 2 2 2

1 2

() () () 1

() () () 1

() () () 1

y

y

y

y y
y y y y

h
n

h
n

n
n n n n n n

z

w
e y

w
e y

w
e y

b

f f f

f f f

f f f

ì üï ïé ù ï ïì ü ì üï ï ï ï ïê úï ï ï ï ïï ï ï ï ê ú ïï ï ï ï ïê úï ï ï ïï ï ï ï ï= -í ý í ý í ýê úï ï ï ï ïê úï ï ï ï ïï ï ï ï ïê úï ï ï ï ïê úï ï ï ï ïï ï ï ïî þ î þ ïë û ïî

x x x

x x x

x x x






      


ïïïïï
ïïïïïïïþ

𝐗: 𝑛௬ ൈ ሺ𝑛௬ ൅ 1ሻ design matrix

Evaluation of basis
at sample points

Structural & Multidisciplinary Optimization Group
161

• Minimum of function = zero derivative

– Remedy: Solve 𝐗𝐰 ൌ 𝐲 using QR decomposition

Regression for RBNN cont.

T T Td () 2 2 0
d

=- + =e e X y X Xw
b

T T=X Xw X y Equation of linear regression
Normal equation

T 1 T()-=w X X X y

𝑛௬ ൈ 𝑛௬matrix: ill-conditioned for large 𝑛௬

Structural & Multidisciplinary Optimization Group
162

• 21 training samples
x = -1:.1:1;
y = [-.9602 -.5770 -.0729 .3771 .6405 .6600 .4609 ...

.1336 -.2013 -.4344 -.5000 -.3930 -.1647 .0988 ...

.3072 .3960 .3449 .1816 -.0312 -.2189 -.3201];
plot(x,y, '+'); title('Training samples');
xlabel('x'); ylabel('y(x)');

Ex) Matlab radial basis approximation

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y(
x)

Training samples

Structural & Multidisciplinary Optimization Group
163

• Three different spreads (0.01, 1.0, 100.0)
sc = 0.01; net1 = newrbe(x,y,sc); Y1 = net1(X);
sc = 1.0; net2 = newrbe(x,y,sc); Y2 = net2(X);
sc = 100.0; net3 = newrbe(x,y,sc); Y3 = net3(X);
plot(x,y,'+b',X,Y1,'-k',X,Y2,'-r',X,Y3,'-b'); hold on;
xlabel('x'); ylabel('y(x)');
legend({'samples','spread=0.01','spread=1.0','spread=100.0'});

Ex) Effect of spread (exact design newrbe)

-1 -0.5 0 0.5 1
x

-1.5

-1

-0.5

0

0.5

1

y(
x)

samples
spread=0.01
spread=1.0
spread=100.0

Even if newrbe is designed to
interpolate all samples, it may
not pass samples when the
spread is too large

When the spread is too small,
most points predict the minimum
sample values, except for
actual sample points

Structural & Multidisciplinary Optimization Group
164

• Efficient design (newrb)

– iteratively creates a radial basis network one neuron at a time

– net = newrb(x,y,goal,spread)

– Neurons are added until MSE become less than GOAL or the max #
of neurons has been reached

– Iteration 𝑖, 𝐱௜ that lowers MSE the most is used to create a neuron

• Compared with NN, RBNN requires more neurons

– RBF are local, while linear or sigmoid transfer functions are global

– But RBNN training is more efficient

Matlab radial basis neural network newrb

Structural & Multidisciplinary Optimization Group
165

• RBNN fit
eg = 0.02; % sum-squared error goal
sc = 1; % spread constant
net = newrb(x,y,eg,sc);
X = -1:.01:1; Y = net(X);
plot(x,y,'+b',X,Y,'-r'); hold on;
xlabel('x'); ylabel('y(x)');
legend({'Samples','RBNN'});

• How to choose spread?

– larger than the distance between adjacent input samples

– smaller than the distance across the whole input space

Ex) Matlab RBNN approximation cont.

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y(
x)

Samples
RBNN

f - -=
2

(, ,) b x wx w b e

Structural & Multidisciplinary Optimization Group
166

• Repeat with spread = 0.01

sc = 0.01; % spread constant

– Too small spread constant (underlapping neurons)

– No two radial basis neurons cover the same point

Ex) Matlab RBNN approximation cont.

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y(
x)

Samples
RBNN

Structural & Multidisciplinary Optimization Group
167

• Repeat with spread = 100

sc = 100; % spread constant

– Too large spread constant (overlapping neurons)

– All radial basis neurons are 1 at any point

Ex) Matlab RBNN approximation cont.

-1 -0.5 0 0.5 1
x

-1.5

-1

-0.5

0

0.5

1

y(
x)

Samples
RBNN

