

Kriging Surrogate Model

Kriging and cost of surrogates

- In linear regression, the process of fitting involves solving a set of linear equations once.
- Moving least squares performs the fit for each function evaluation, using only nearby points.
- Radial basis surrogates use shape functions that are based around data points and decay away from them, so that nearby data have more influence on prediction.
- Kriging, is even more expensive, we have a spread constant in every direction and we have to perform optimization to calculate the best set of constants (hyperparameters).
 - With many hundreds of data points this can become significant computational burden.

Introduction to Kriging

- Method invented in the 1950s by South African geologist Daniel G. Krige (1919-2013) for predicting distribution of minerals.
 - Formalized by French engineer, Georges Matheron in 1960.
 - Statisticians refer to a more general Gaussian Process regression.
- Became very popular for fitting surrogates to expensive computer simulations in the 21st century.
- It is one of the best surrogates available.
- It probably became popular late mostly because of the high computer cost of fitting it to data.

Kriging philosophy

- We assume that the data is sampled from an unknown function that obeys simple correlation rules.
- The value of the function at a point is correlated to the values at neighboring points based on their separation in different directions.
- The correlation is strong to nearby points and weak with far away points, but strength does not change based on location, only separation between points.
- Normally Kriging is used for noise free data so that it interpolates exactly the function values.

Reminder: Covariance and Correlation

Covariance of two random variables X and Y

$$cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

- The covariance of a random variable with itself is the square of the standard deviation. $Var(X) = [\sigma(X)]^2$

• Covariance matrix
$$\Sigma_{XY} = \begin{bmatrix} Var(X) & cov(X,Y) \\ cov(X,Y) & Var(Y) \end{bmatrix}$$

• Correlation
$$cor(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$
 $-1 \le cor(X,Y) \le 1$

The correlation matrix has 1 on the diagonal.

Correlation between functions at near and far points

Generate 10 random samples, translate them by a bit (0.1),

and by more (1.0)

```
x=10*rand(1,10);
xnear=x+0.1; xfar=x+1;
ynear=sin(xnear);
y=sin(x);
yfar=sin(xfar);
```

Compare corelations:

```
r=corrcoef(y,ynear)
rfar=corrcoef(y,yfar)
```

- 0.9894; 0.4229;
- 0.5

 -0.5

 -1

 1 2 3 4 5 6

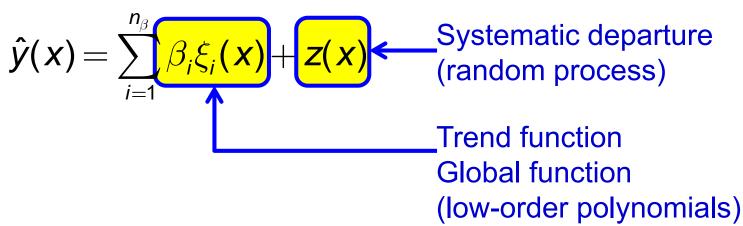
 High correlation

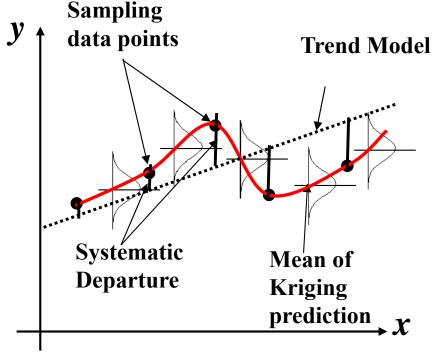
Low correlation

- Decay to about 0.4 over one sixth of the wavelength.
 - Wavelength on sine function is 2π ~6

Universal Kriging approximation

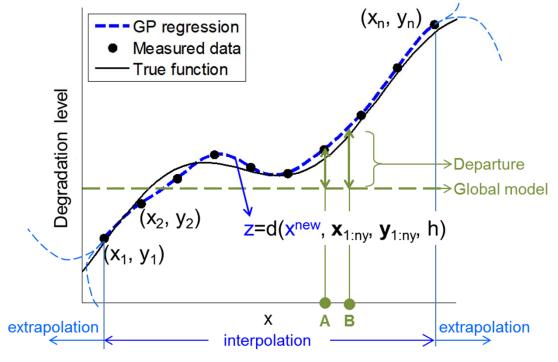
Kriging is similar to RBF, but starting from statistical view





Ordinary and simple Kriging

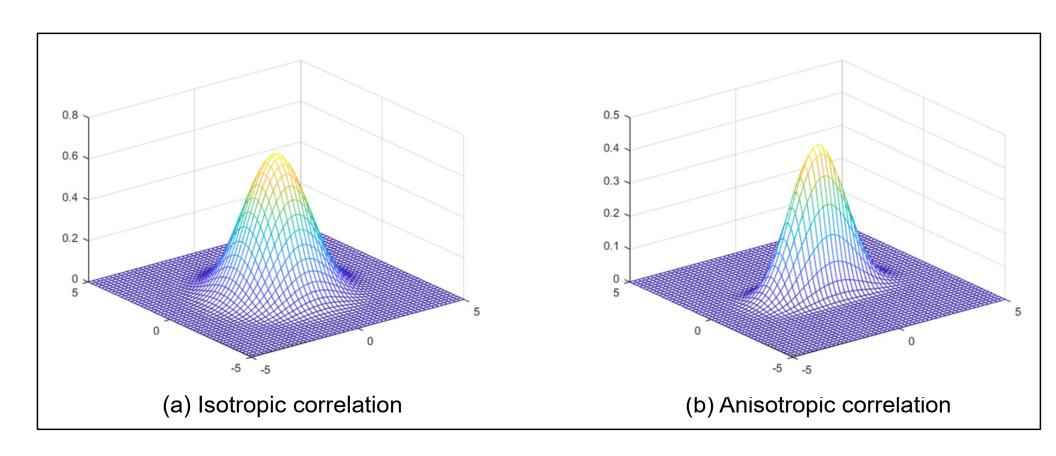
- Ordinary Kriging: constant trend function
- Simple Kriging: constant trend function is known (often 0)
- Assumption: Systematic departures z(x) are correlated.
- Kriging prediction comes with a normal distribution of the uncertainty in the prediction
- At the sample points, the uncertainty is zero



Correlation model

- Kriging assumes that predictions are correlated inversely proportional to the distance
- Systematic departure captures this correlation
 - Zero mean: E[z(x)] = 0
 - Covariance of data: $cov[z(\mathbf{x}^{(i)}), z(\mathbf{x}^{(j)})] = \sigma^2 \phi(\theta, \mathbf{x}^{(i)}, \mathbf{x}^{(j)})$
 - Variance of function: $\sigma^2 = \text{cov}[z(x), z(x)]$
- Isotropic correlation: $\phi(\theta, \mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \prod_{k=1}^{n} \phi(\theta, |\mathbf{x}_k^{(i)} \mathbf{x}_k^{(j)}|)$
- Anisotropic correlation: $\phi(\theta, \mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \prod_{k=1}^{n} \phi_j(\theta_j, |\mathbf{x}_k^{(i)} \mathbf{x}_k^{(j)}|)$

Isotropic vs. anisotropic correlation functions



Gaussian correlation function

Correlation between point x and point s

$$C(z(\mathbf{x}), z(\mathbf{s}), \mathbf{\theta}) = \prod_{k=1}^{n} \exp \left[-\left(\frac{x_k - s_k}{\theta_k}\right)^2 \right]$$

- θ_k : hyperparameter, decaying rate
- The correlation should decay to about 0.4 at one sixth of the wavelength l_i and $e^{-1} = 0.37 \approx 0.4$.
- Approximately $(l_i/6\theta_k)^2 = 1$ or $\theta_i = l_i/6$
- For the function $y = \sin(x_1) * \sin(5x_2)$ we would like to estimate $\theta_1 \approx 1$, $\theta_2 \approx 0.2$

Notation

- n_y sample points $(\mathbf{x}^{(i)}, y_i)$, with n-dimension of input $x_k^{(i)}$, $k=1,\dots,n$ and $y_i=y(\mathbf{x}^{(i)})$
- Given decay rates θ_k , the covariance matrix of the data

$$\operatorname{cov}(y_i, y_j) = \sigma^2 \exp \left[-\sum_{k=1}^n \left(\frac{x_k^{(i)} - x_k^{(j)}}{\theta_k} \right)^2 \right] = \sigma^2 R_{ij}, \quad i, j = 1, \dots, n_y$$

- The correlation matrix \mathbf{R} is formed from the covariance matrix, assuming a constant standard deviation σ , which measures the uncertainty in function values (stationary covariance)
- Small σ for dense data, large σ for sparse data
 - How do you decide whether the data is sparse or dense?

Kriging vs. PRS

Kriging

$$\hat{\mathbf{y}}(\mathbf{x}) = \sum_{i=1}^{n_{\beta}} \beta_i \xi_i(\mathbf{x}) + \mathbf{z}(\mathbf{x})$$

PRS

$$\hat{\mathbf{y}}(\mathbf{x}) = \sum_{i=1}^{n_{\beta}} \beta_i \xi_i(\mathbf{x}) + \varepsilon(\mathbf{x})$$

- PRS assumes that $\hat{y} = \sum \beta_i \xi_i(x)$ is a correct form, but data have error $\epsilon \sim N(0, \sigma^2)$ that are statistically independent
- Kriging assumes that data are accurate, but the model form is uncertain → Kriging fits data

$$y_k = \hat{y}(x_k) = \sum_{i=1}^{n_\beta} \beta_i \xi_i(x_k) + z(x_k)$$

• At prediction points, error in Kriging is described by local departure $z(x) \sim N(0, \sigma^2)$

Determining the global function

- Global function coefficients, β , and variance of data, σ^2
- Error b/w data and global function

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta} = \begin{cases} y_1 \\ y_2 \\ \vdots \\ y_{n_y} \end{cases} - \begin{vmatrix} -\xi(\mathbf{x}_1) - | \beta_1 \\ -\xi(\mathbf{x}_2) - | \beta_2 \\ \vdots \\ -\xi(\mathbf{x}_{n_y}) - | \beta_{n_p} \end{cases}$$

- Assumption: error $e \sim N(0, \sigma^2)$ and correlation between data
- Maximum likelihood estimate (MSE)
 - Likelihood: PDF of getting data y for given parameters, β and σ^2

$$f(\mathbf{y} \mid \mathbf{\theta}, \mathbf{\beta}, \sigma^2) = \frac{1}{\sqrt{(2\pi)^{n_y} (\sigma^2)^{n_y} |\mathbf{R}|}} \exp\left(-\frac{(\mathbf{y} - \mathbf{X}\mathbf{\beta})^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{y} - \mathbf{X}\mathbf{\beta})}{2\sigma^2}\right)$$

Maximum likelihood estimate (MLE)

Logarithmic likelihood (ignore θ for now)

$$\ln\left[f\left(\mathbf{y}\mid\boldsymbol{\beta},\sigma^{2}\right)\right] = -\frac{n_{y}}{2}\ln(2\pi) - \frac{n_{y}}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln\left|\mathbf{R}\right| - \frac{\left(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\right)^{\mathsf{T}}\mathbf{R}^{-\mathsf{T}}\left(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\right)}{2\sigma^{2}}$$

Stationary condition

$$\frac{\partial \ln f}{\partial \beta} = \frac{\mathbf{X}^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{y} - \mathbf{X} \beta)}{\sigma^{2}} = 0$$

$$\frac{\partial \ln f}{\partial \sigma^{2}} = -\frac{n_{y}}{2} \frac{1}{\sigma^{2}} + \frac{(\mathbf{y} - \mathbf{X} \beta)^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{y} - \mathbf{X} \beta)}{2\sigma^{4}} = 0$$

• Solve for β and σ^2

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{X}\right)^{-1} \left\{\mathbf{X}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y}\right\}$$

$$\hat{\sigma}^{2} = \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\mathsf{T}}\mathbf{R}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n_{y} - n_{\beta}}$$

PRS linear regression

$$\mathbf{b} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\hat{\sigma}^{2} = SSe$$

$$n_{\mathsf{y}} - n_{\mathsf{g}}$$

For unbiased estimate

Local departure

- Kriging passes data point \rightarrow Kriging can be expressed by a linear combination of data and weights: $\hat{y}(\mathbf{x}) = \mathbf{w}(\mathbf{x})^T \mathbf{y}$
- Minimizing mean squared error (MSE)

$$\varepsilon(\mathbf{x}) = \hat{y}(\mathbf{x}) - y(\mathbf{x}) = \mathbf{w}(\mathbf{x})^{\mathsf{T}} \mathbf{y} - y(\mathbf{x})$$
- Data: $\mathbf{y} = \mathbf{x}\hat{\boldsymbol{\beta}} + \mathbf{z}$ Weight function

- True function: $y(\mathbf{x}) = \xi(\mathbf{x})\hat{\boldsymbol{\beta}} + z(\mathbf{x})$

$$\varepsilon(\mathbf{x}) = \mathbf{w}(\mathbf{x})^{\mathsf{T}} \{ \mathbf{X} \hat{\boldsymbol{\beta}} + \mathbf{z} \} - \left(\xi(\mathbf{x}) \hat{\boldsymbol{\beta}} + \mathbf{z}(\mathbf{x}) \right)$$

$$= \left(\mathbf{w}(\mathbf{x})^{\mathsf{T}} \mathbf{X} - \xi(\mathbf{x}) \right) \hat{\boldsymbol{\beta}} + \mathbf{w}(\mathbf{x})^{\mathsf{T}} \mathbf{z} - \mathbf{z}(\mathbf{x})$$

$$= \left(\mathbf{Global error} \right)$$
Departure error

Minimize MSE

 To keep the global function unbiased, a constraint of global error being zero is added

$$\mathbf{w}(\mathbf{x})^{\mathsf{T}}\mathbf{X} - \boldsymbol{\xi}(\mathbf{x}) = \mathbf{0}$$

•
$$MSE = E[\varepsilon(\mathbf{x})^2] = E[(\mathbf{w}^T\mathbf{z} - \mathbf{z})^2] = E[\mathbf{w}^T\mathbf{z}\mathbf{z}^T\mathbf{w} - 2\mathbf{w}^T\mathbf{z}\mathbf{z} + \mathbf{z}^2]$$

$$\implies MSE = \sigma^2 \left(\mathbf{w}^\mathsf{T} \mathbf{R} \mathbf{w} - 2 \mathbf{w}^\mathsf{T} \mathbf{r} + 1 \right)$$

$$cov[z(\mathbf{x}), z(\mathbf{x})] = \sigma^{2}$$

$$cov[z(\mathbf{x}_{k}), z(\mathbf{x})] = \sigma^{2}\mathbf{r}$$

$$cov[z(\mathbf{x}_{k}), z(\mathbf{x}_{l})] = \sigma^{2}\mathbf{R}$$

$$\mathbf{r}(\mathbf{x}) = [R(\mathbf{x}_{k}, \mathbf{x})]$$

- MSE is the variance (uncertainty) in Kriging prediction
- Goal: find w(x) that minimizes MSE while satisfying the unbiased constraint

Lagrange function for constrained optimization

Lagrange function (min. MSE with constraint)

$$L(\mathbf{w}, \lambda) = \sigma^2 \left(\mathbf{w}^\mathsf{T} \mathbf{R} \mathbf{w} - 2 \mathbf{w}^\mathsf{T} \mathbf{r} + 1 \right) - \lambda \left(\mathbf{X}^\mathsf{T} \mathbf{w} - \mathbf{\xi}^\mathsf{T} \right)$$

Stationary conditions (KKT)

Lagrange multiplier

$$\begin{cases} \frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = 2\sigma^{2} (\mathbf{R}\mathbf{w} - \mathbf{r}) - \mathbf{X} \lambda^{\mathsf{T}} = \mathbf{0} \\ \frac{\partial L(\mathbf{w}, \lambda)}{\partial \lambda} = \mathbf{X}^{\mathsf{T}} \mathbf{w} - \mathbf{\xi}^{\mathsf{T}} = \mathbf{0} \end{cases}$$

$$\Rightarrow \begin{cases} \mathbf{w} = \mathbf{R}^{-1} \mathbf{r} + \mathbf{R}^{-1} \mathbf{X} \frac{\lambda^{\mathsf{T}}}{2\sigma^{2}} \\ \frac{\lambda^{\mathsf{T}}}{2\sigma^{2}} = (\mathbf{X}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{X})^{-1} \left\{ \mathbf{\xi}^{\mathsf{T}} - \mathbf{X}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{r} \right\} \end{cases}$$

$$\hat{y}(\mathbf{x}) = \mathbf{w}(\mathbf{x})^{\mathsf{T}} \mathbf{y}$$

Kriging prediction

Kriging as linear combination of data and weight functions

$$\hat{y}(\mathbf{x}) = \mathbf{w}(\mathbf{x})^{\mathsf{T}} \mathbf{y}$$

$$= \left(\mathbf{R}^{-1} \mathbf{r} + \mathbf{R}^{-1} \mathbf{X} \frac{\lambda^{\mathsf{T}}}{2\sigma^{2}} \right)^{\mathsf{T}} \mathbf{y}$$

$$= \mathbf{r}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{y} + \frac{\lambda}{2\sigma^{2}} \mathbf{X}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{y}$$

$$= \mathbf{r}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{y} + \left(\xi - \mathbf{r}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{X} \right) \left(\mathbf{X}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{X} \right)^{-1} \left\{ \mathbf{X}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{y} \right\}$$

$$\Rightarrow \hat{y}(\mathbf{x}) = \xi(\mathbf{x})\hat{\boldsymbol{\beta}} + \mathbf{r}(\mathbf{x})^{\mathsf{T}}\mathbf{R}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Trend function Local departure

– Local departure term is the weighted sum of the trend function error $\left(y-X\widehat{\beta}\right)$ based on the correlation term $r(x)^TR^{-1}$

Simplification for ordinary Kriging

• For ordinary Kriging, $\mathbf{X} = [1]$ and $\hat{\beta} = \hat{\mu}$ (mean of data)

$$\hat{y}(x) = \hat{\mu} + \mathbf{r}(x)^T \mathbf{R}^{-1} (\mathbf{y} - 1\hat{\mu}) = \hat{\mu} + \mathbf{b}^T \mathbf{r}(x)$$

- Linear in $\mathbf{r}(\mathbf{x})$ that the radial basis $r_i(\mathbf{x}) = \exp \left[-\sum_{k=1}^n \left(\frac{x_k^{(i)} x_k}{\theta_k} \right)^2 \right]$
- The prediction is linear in the data y, in common with linear regression, but b is not calculated by minimizing MSE.
- Note that far away from data, $\hat{y}(\mathbf{x}) \sim \hat{\mu}$ (not good for substantial extrapolation)

Estimating hyperparameters θ

- Estimating $\hat{\beta}$ and $\hat{\sigma}$ depends on hyperparameter θ in \mathbf{R}
- Maximizing the log-likelihood that the data comes from a Gaussian process defined by θ_k .

$$\ln\left[f\left(\mathbf{y}\mid\boldsymbol{\theta},\boldsymbol{\beta},\sigma^{2}\right)\right] = -\frac{n_{y}}{2}\ln(2\pi) - \frac{n_{y}}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln\left|\mathbf{R}\right| - \frac{(\mathbf{y}-\mathbf{X}\boldsymbol{\beta})^{T}\mathbf{R}^{-1}(\mathbf{y}-\mathbf{X}\boldsymbol{\beta})}{2\sigma^{2}\uparrow}$$

$$\Rightarrow \quad \theta = \arg\max\left[\ln\left[f\left(\mathbf{y}\mid\boldsymbol{\theta},\boldsymbol{\beta},\sigma^{2}\right)\right] = -\frac{n_{y}}{2}\ln(\sigma^{2}) - \frac{1}{2}\ln\left|\mathbf{R}\right|\right] \qquad \begin{array}{c} \mathbf{R}^{-1} \text{ will be canceled with} \\ \mathbf{R}^{-1} \text{ will be canceled with} \end{array}$$

$$oldsymbol{\Theta} = \operatorname{argmin} \left[\ln \left(\hat{\sigma}^{2(n_y - n_\beta)} \times |\mathbf{R}| \right) \right]$$
 Equivalent

- Maximum likelihood is a tough optimization problem
 - the likelihood often varies slowly in a wide range of argument
 - Some Kriging codes minimize the cross-validation error instead

Estimating hyperparameters θ (ordinary Kriging)

 Once θ is found, the estimate of the mean and standard deviation is obtained as (ordinary Kriging)

$$\hat{\boldsymbol{\mu}} = \frac{\mathbf{1}^T \mathbf{R}^{-1} \mathbf{y}}{\mathbf{1}^T \mathbf{R}^{-1} \mathbf{1}}, \quad \hat{\boldsymbol{\sigma}}^2 = \frac{\left(\mathbf{y} - \mathbf{1}\hat{\boldsymbol{\mu}}\right)^T \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{1}\hat{\boldsymbol{\mu}}\right)}{n_y - n_\beta}$$

Prediction uncertainty

- Kriging prediction $\hat{y}(\mathbf{x}) = \xi(\mathbf{x})\hat{\beta} + \mathbf{r}(\mathbf{x})^T\mathbf{R}^{-1}(\mathbf{y} \mathbf{X}\hat{\beta})$ is the mean prediction and MSE is the variance
- Kriging prediction is Gaussian distribution

$$\hat{\mathbf{Y}}(\mathbf{x}) \sim \mathcal{N}\left(\xi\hat{\boldsymbol{\beta}} + \mathbf{r}^{\mathsf{T}}\mathbf{R}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}), \sigma^{2}(\mathbf{w}^{\mathsf{T}}\mathbf{R}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{r} + 1)\right)$$

- This is an estimated uncertainty using data
- When the # of data is small, use t-distribution

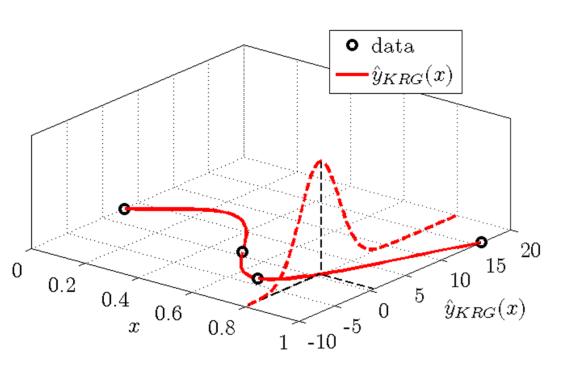
$$\hat{\mathbf{Y}}(\mathbf{x}) \sim \xi \hat{\boldsymbol{\beta}} + \mathbf{r}^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}}) + t_{n_{y} - n_{\beta}} \cdot \hat{\boldsymbol{\sigma}} \sqrt{\mathbf{w}^{\mathsf{T}} \mathbf{R} \mathbf{w} - 2\mathbf{w}^{\mathsf{T}} \mathbf{r} + 1}$$

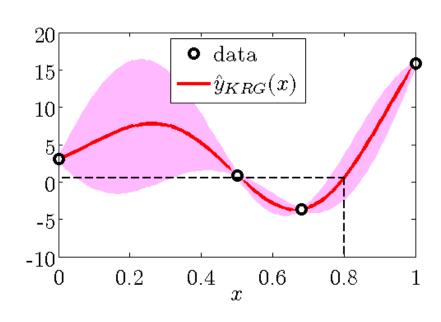
Ordinary Kriging

$$V[\hat{\mathbf{Y}}(\mathbf{x})] = \sigma^2 \left[1 - \mathbf{r}^\mathsf{T} \mathbf{R}^{-1} \mathbf{r} + \frac{(1 - \mathbf{1}^\mathsf{T} R^{-1} \mathbf{r})^2}{\mathbf{1}^\mathsf{T} R^{-1} \mathbf{1}} \right]$$

Prediction variance

- Square root of variance is called standard error.
- The uncertainty at any x is normally distributed.
- $\hat{y}(x)$ represents the mean of Kriging prediction.

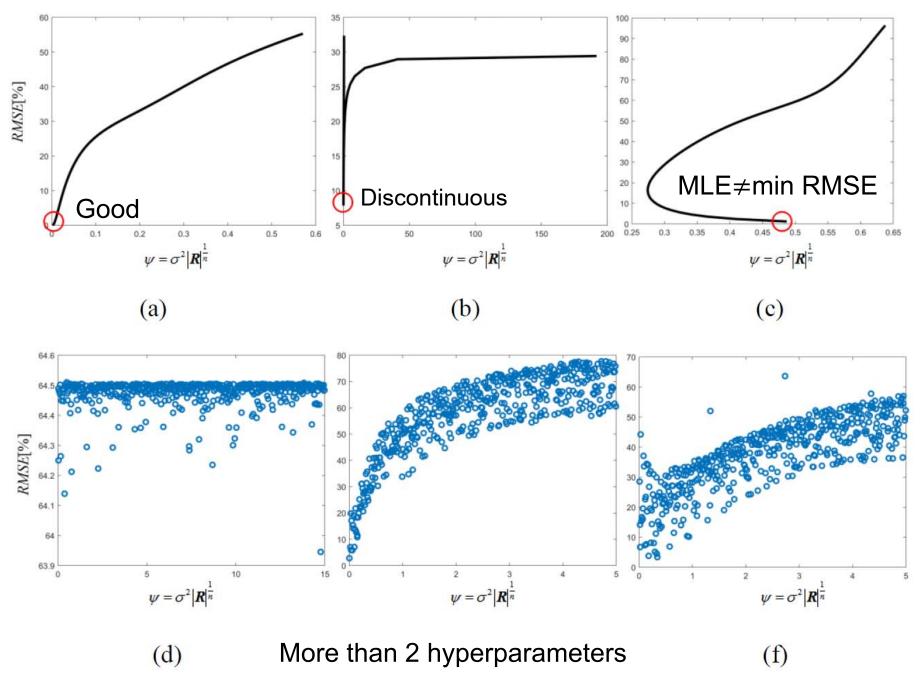




Kriging fitting issues

- MLE or cross-validation optimization problem solved to obtain the kriging fit is often ill-conditioned leading to poor fit, or poor estimate of the prediction variance.
- Poor estimate of the prediction variance can be checked by comparing it to the cross validation error.
- Poor fits are often characterized by the kriging surrogate having large curvature near data points.
- It is recommended to visualize by plotting the kriging fit and its standard error.

Comparison b/w RMSE and MLE

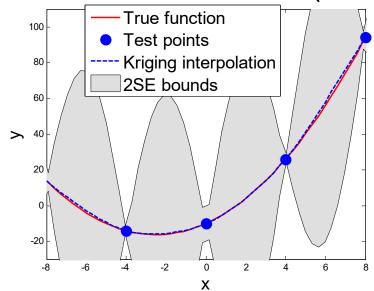


194

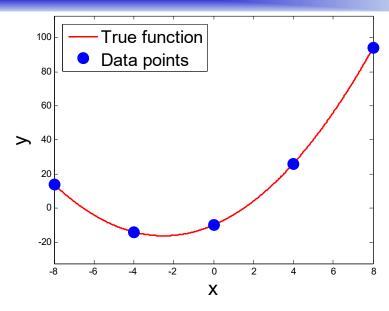
Ex) Quadratic function fit

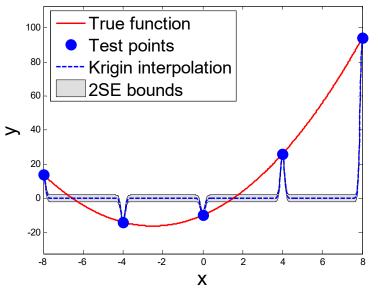
- Use 9 data and a constant global function $\xi(x) = 0$ to fit a quadratic function $y(x) = x^2 + 5x 10$
- Covariance

$$cov(x_i, x_j) = exp\left(-\left(\frac{x_i - x_j}{\theta}\right)^2\right)$$



Too large θ Good fit with poor variance





195

Ex) Kriging fit

• Fit data $\mathbf{x} = \{0, 5, 10, 15, 20\}^{\mathrm{T}}, \, \mathbf{y} = \{1, 0.99, 0.99, 0.94, 0.95\}^{\mathrm{T}}$ for the global function using ordinary Kriging with $\theta = 5.2$

```
- For ordinary Kriging, X = [1, 1, 1, 1, 1]^T and \xi(x) = [1]
y=[1 0.99 0.99 0.94 0.95]'; % measurement data
x=[0 5 10 15 20]'; % input variable
X=ones(5,1); % design matrix
ny=length(y); np=size(X,2);
```

Correlation matrix R

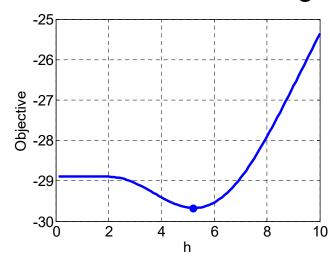
Global function parameters

```
Rinv=inv(R); thetaH=(X'*Rinv*X)\(X'* Rinv*y); sigmaH=sqrt(1/(ny-np)*((y-X*thetaH)'*Rinv*(y-X*thetaH))); \hat{\beta} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{X}\right)^{-1}\left\{\mathbf{X}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{y}\right\} = 3.0989^{-1} \times 3.0226 = 0.9754 \hat{\sigma}^2 = \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\mathsf{T}}\mathbf{R}^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n_v - n_\beta} = 7.28 \times 10^{-4}, \ \hat{\sigma} = 0.0270
```

- Estimate the optimum hyperparameter
 - Instead of optimization the hyperparameter, we calculate it graphically

$$-\theta_{opt} = 5.2$$

– We used this value in calculating $\hat{\beta}$ and $\hat{\sigma}^2$



Matlab code for the graph

```
h=zeros(20,1); Obj=zeros(20,1);
for i=1:20
  h(i)=0.5*i;
  for k=1:ny; for l=1:ny;
     R(k,l)=exp(-(norm(x(k,:)-x(l,:))/h(i))^2);
  end; end;
  Rinv=inv(R);
  thetaH=(X'*Rinv*X)\(X'* Rinv*y);
  sigmaH=sqrt(1/(ny-np)*((y-X*thetaH)'*Rinv*(y-X*thetaH)));
  Obj(i)=log(sigmaH^(2*(ny-np))*det(R));
end
plot(h,Obj,'linewidth',2); grid on;
```

• Prediction at x=10

$$\mathbf{r} = \{R(\mathbf{x}_k, \mathbf{x})\} = \begin{bmatrix} 0.0248 & 0.3967 & 1 & 0.3967 & 0.0248 \end{bmatrix}^T$$

$$\hat{\mathbf{y}}(10) = \xi \hat{\boldsymbol{\beta}} + \mathbf{r}^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = 0.9754 + 0.0146 = 0.99$$

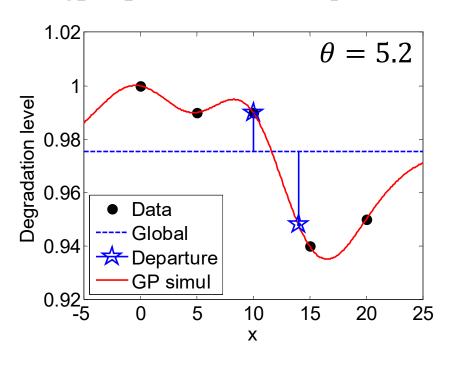
– Exact at the sample point!

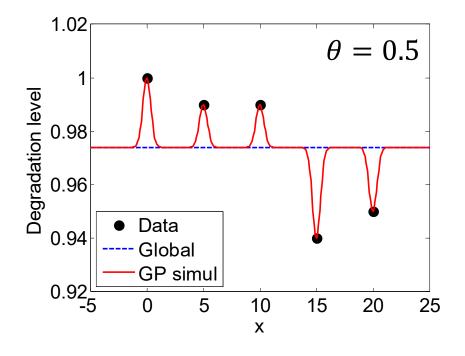
• Prediction at x = 14

$$\mathbf{r} = \begin{bmatrix} 0.0007 & 0.05 & 0.5534 & 0.9637 & 0.2641 \end{bmatrix}^T$$

 $\hat{\mathbf{y}}(14) = \xi \hat{\boldsymbol{\beta}} + \mathbf{r}^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = 0.9754 - 0.0272 = 0.9482$

```
xNew=10; %or xNew=14
for k=1:ny; r(k,1)=exp(-(norm(x(k,:)-xNew)/h)^2); end;
gpDepar=r'*Rinv*(y-X*thetaH);
```

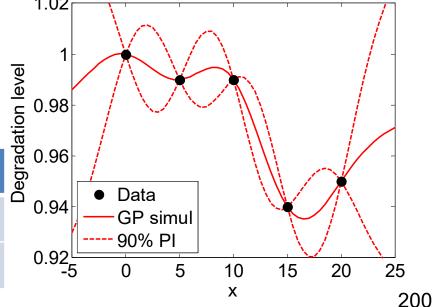




90% confidence intervals

```
- Standard error: s_v = \hat{\sigma} \sqrt{\mathbf{w}^T \mathbf{R} \mathbf{w}} - 2 \mathbf{w}^T \mathbf{r} + 1
 xi=1;
 w=Rinv*r+Rinv*X*((X'*Rinv*X)\setminus(xi'-X'*Rinv*r));
 zSigmaH=sigmaH*sqrt(w'*R*w-2*w'*r+1);
 % using the inverse calculation
 gpMean=0.9482; % from Example 5.2
 PI=[gpMean + tinv(0.05,ny-np)*zSigmaH, ...
              qpMean + tinv(0.95,ny-np)*zSiqmaH]
 % using the random samples
                                             1.02
 ns=5e3i
 tDist=trnd(ny-np,1,ns);
 yHat=qpMean+tDist*zSiqmaH;
                                             0.98
 PI=prctile(yHat,[5 95])
```

X _{new}	5 percentile	95 percentile	90% P.I.
x = 10	0.99	0.99	0
x = 14	0.9394	0.9570	0.0176



Kriging with nuggets

 Nuggets – refers to the inclusion of noise at data points.

 The more general Gaussian Process surrogates or Kriging with nuggets can handle data with noise (e.g. experimental results with noise).

