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Kriging and cost of surrogates

* In linear regression, the process of fitting involves solving a
set of linear equations once.

* Moving least squares performs the fit for each function
evaluation, using only nearby points.

« Radial basis surrogates use shape functions that are based
around data points and decay away from them, so that
nearby data have more influence on prediction.

* Kriging, is even more expensive, we have a spread
constant in every direction and we have to perform
optimization to calculate the best set of constants
(hyperparameters).

— With many hundreds of data points this can become significant
computational burden.
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Introduction to Kriging

* Method invented in the 1950s by South African geologist
Daniel G. Krige (1919-2013) for predicting distribution of

minerals.
— Formalized by French engineer, Georges Matheron in 1960.

— Statisticians refer to a more general Gaussian Process regression.

« Became very popular for fitting surrogates to expensive
computer simulations in the 21st century.

* |t is one of the best surrogates available.

* |t probably became popular late mostly because of the high
computer cost of fitting it to data.
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Kriging philosophy

* We assume that the data is sampled from an unknown
function that obeys simple correlation rules.

* The value of the function at a point is correlated to the
values at neighboring points based on their separation in
different directions.

* The correlation is strong to nearby points and weak with far
away points, but strength does not change based on
location, only separation between points.

* Normally Kriging is used for noise free data so that it
interpolates exactly the function values.
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Reminder: Covariance and Correlation

 Covariance of two random variables X and Y
cov(X,Y ) =E[(X — u )Y — i )] = E[XY [ — py pay

The covariance of a random variable with itself is the

square of the standard deviation. Var(X) = [o(X)]?
(

N
- . Var(X X,Y
Covariance matrix |2, = ar(X) cov(X,Y)
cov(X,Y) Var(Y)
\ Y

- cov(X Yf
« Correlation |cor(X,Y )= : —1<cor(X,Y)<1
\ O-XO-Y )

The correlation matrix has 1 on the diagonal.
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Correlation between functions at near and far points

* Generate 10 random samples, translate them by a bit (O 1)
and by more (1.0) 1

sm(x)
sin(x+0.1)
sin(x+1.0)

x=10*rand(1,10); 05"
xnear=x+0.1; xfar=x+1;
ynear=sin(xnear);

y=sin(x); 0
yfar=sin(xfar);

-0.5

« Compare corelations: o1 2 3 4 5 8
r=corrcoef(y,ynear) 0.9894; High correlation
rfar=corrcoef(y,yfar) 0.4229; Low correlation

« Decay to about 0.4 over one sixth of the wavelength.

— Wavelength on sine function is 2r~6
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Universal Kriging approximation

+ Kriging is similar to RBF, but starting from statistical view
n L Systematic departure
y(X)= Z[ﬁl § (X)] (random process)

T Trend function
Global function
(low-order polynomials)

Sampling
" data points Trend Model

Systematic Mean of
Departure Kriging
prediction X
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Ordinary and simple Kriging

 Ordinary Kriging: constant trend function
« Simple Kriging: constant trend function is known (often 0)
« Assumption: Systematic departures z(x) are correlated.

* Kriging prediction comes with a normal distribution of the
uncertainty in the prediction

_——

I

—==GP regression (Xn, y"))’/é_\\\
* At the sample points, & Hesuediiof / 4

the uncertainty is zero

—>Departure
> Global model

Degradation level

/

extrapolation 5 extrapolation

\'4

interpolation
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Correlation model

* Kriging assumes that predictions are correlated inversely
proportional to the distance

« Systematic departure captures this correlation

— Zeromean: E[z(x)] =0
— Covariance of data: Cov[z(x(i)),z(x(”)] — Ung(ﬁ,x(i),x(j))
— Variance of function: g° = COV[Z(X), Z(X)]

x(') x(”‘)

« |sotropic correlation:  #(4,x"),x Hgb

» Anisotropic correlation: ¢(6,x",x qu —x{)
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Isotropic vs. anisotropic correlation functions

0.6

0.4

0.2 4

\\
5" NN
'0"0"':'0'0‘0.“0“““ L
SOOOOKX . .

otededet i tiete
S delelete 0 3e2:

(a) Isotropic correlation

0-5 ~

0.4

(b) Anisotropic correlation
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Gaussian correlation function

« Correlation between point x and point s
([ )

Too| (5.

C(z(x), z(s), ) = 1_[ 57
\_ )

k=1

* 0, hyperparameter, decaying rate

* The correlation should decay to about 0.4 at one sixth of
the wavelength [; and e~ = 0.37 = 0.4.

 Approximately (I;/60,)* =1 or 6; =1;/6

 For the function y = sin(x;) * sin(5x,) we would like to
estimate 8; = 1, 6, = 0.2

UNIVERSITY o f 179
UF FLORID Structural & Multidisciplinary Optimization Group

rT ion




- n, sample points (x, y;), with n-dimension of input
(i)

x,, k=1,..,nand y; = y(xM)
* Given decay rates 6,, the covariance matrix of the data

, )
B z": x}(cl) . x}({])
O

k=1

2

cov(y;, ;) = o2 exp = o?R

ij’ i}j: 1’-..’ny

* The correlation matrix R is formed from the covariance
matrix, assuming a constant standard deviation g, which
measures the uncertainty in function values (stationary
covariance)

« Small o for dense data, large o for sparse data

— How do you decide whether the data is sparse or dense?
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Kriging vs. PRS

Kriging PRS
J(x)= 0B () + 2(x) J(x) =3 B00) +e(x)

 PRS assumes that y = ), 5;¢;(x) is a correct form, but data
nave error e~N (0, 02) that are statistically independent

* Kriging assumes that data are accurate, but the model form
IS uncertain = Kriging fits data

Vi = Y(X)= Zﬁifi(xk)_'_ Z(X)

=1
At prediction points, error in Kriging is described by local
departure z(x)~N (0, o%)
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Determining the global function

« Global function coefficients, B, and variance of data, o*

* Error b/w data and global function

yi| [—&0x)—]|[ 5]
e:y—XB:< y:2 - _g():(z)_ 4 6:2 >

Yo | [7€(X )| 5

yJ

pJ

 Assumption: error e~N (0, 0%) and correlation between data

« Maximum likelihood estimate (MSE)

— Likelihood: PDF of getting data y for given parameters, B and o2

g T -1 )
f(y|9,ﬁ,02): 1 exp _(y—X8) RZ(Y—XB)

Je2ry ()R 20
> / 182
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Maximum likelihood estimate (MLE)

 Logarithmic likelihood (ignore 0 for now)
Inf (ylﬁ,az)]:—%ln(zw)—%ln(az)—%ln\m—(V_XB) R (y—X3)

20°

« Stationary condition
oinf _ X'R'(y—-X8) _,
— 4 —

o3 o
onf _ M, 1 (y=XB)R(y—X8)_,
Oo* 2 o° 20*
« Solve for B and ¢*
C_ ) PRS linear r?gression
B=(XR"X) {XR"y} b = (X"X) X"y

2 (y=XB8)'R'(y—XB) & . sse
4 B n, —n, y [n, —ny)

For unbiased estimate
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Local departure

* Kriging passes data point = Kriging can be expressed by a
linear combination of data and weights: (x) = w(x)'y

e Minimizing mean squared error (MSE)

e(x) =y (x)—y(x) = w(x)"y —y(x)

L Weight function

— True function: y(x) = ¥(x)B + z(x)
= <(x) = W(x)"{XB + 2} — (£(x)B + 2(x))
— (w(x)TX — E(X))é +w(x)'z—2z(x)

\ ] \ J
! I

Global error Departure error

— Data:y = XB + z
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* To keep the global function unbiased, a constraint of global
error being zero is added

| W(x)"X —£(x) = 0]
» MSE = E[s(x)z} — E[(sz — 2)2] — E[szsz —2wW'zz + 22]
=:>[|\/|SE =o? (W'Rw —2w'r + 1)]

cov [z(x), z(x)] o’
cov [z(x, ), z(x)|

cov( ), Z(x )}
r(x) =R (x,.x)

 MSE is the variance (uncertainty) in Kriging prediction

« Goal: find w(x) that minimizes MSE while satisfying the
unbiased constraint
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Lagrange function for constrained optimization

« Lagrange function (min. MSE with constraint)
I L(W,\)= 0" (WTRW —2wW'r + 1) — >\(XTW =3 )]

Lagrange multiplier

« Stationary conditions (KKT)

" OLWA) 52 (Rw 1) - XAT = 0
_ OW
aL(Wa>\) — XTW . gT _ 0

- O
N / .

" w=RTr+R X —) Y(x)=w(x)'y
o)

= 1 AT o )
2 =(X"R'X)"{¢" - X'R 'r}
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Kriging prediction

* Kriging as linear combination of data and weight functions

~n

y(x)=w(x)'y

O

AT
— [R1r +R X > ] y
N
X'R’ .
20° y 3
— Ry + (€ rTR1xI(xTR1x)‘1 {XTR1y}]

— rTR—1y i

-:>[y“<x>=a<xT>6+r(x)TRT1<y—x6>]

Trend function Local departure

— Local departure term is the weighted sum of the trend function error

(y — Xﬁ) based on the correlation term r(x)TR™!
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Simplification for ordinary Kriging

» For ordinary Kriging, X = [1] and 8 = ji (mean of data)

| 90 =a+r @R -1p) = +bTr() |

 Linear in r(x) that the radial basis
can be viewed as basis functions

a0\
K~ Xk
ri(x) = exp |- E ( 7 )

* The prediction is linear in the data y, in common with linear
regression, but b is not calculated by minimizing MSE.

* Note that far away from data, y(x)~ (not good for

substantial extrapolation)
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Estimating hyperparameters 0

» Estimating # and & depends on hyperparameter 8 in R

« Maximizing the log-likelihood that the data comes from a
Gaussian process defined by 6;,.

In[f (y16,8,0%)] = —%ln(zw)—%ln(az)—%ln\m - (V_XB)ZRUZ (y —XB)
R~ will be

n 1
|n[f (Y | 9,5,02)] = —7y|n(02)—§|n‘R‘ canceled with

0.2

=) 0=argmax

= 0-— argmin[ln(&z(”y'”ﬁ) X \RD] Equivalent

 Maximum likelihood is a tough optimization problem
— the likelihood often varies slowly in a wide range of argument
— Some Kriging codes minimize the cross-validation error instead
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Estimating hyperparameters 0 (ordinary Kriging)

 Once 0 is found, the estimate of the mean and standard
deviation is obtained as (ordinary Kriging)

r

=
g

1Ry

TR ™

.
L (y=13) R (y—15)

ny —nﬁ y
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Prediction uncertainty

» Kriging prediction y(x) = £(x)3 +r(x)'R™"(y — X3) is the
mean prediction and MSE is the variance

+ Kriging prediction is Gaussian distribution

[\? (x)~N(£B +r"R'(y—X3),0%(WRw —2w'r + 1))]

— This is an estimated uncertainty using data

— When the # of data is small, use t-distribution

Y(x)~£B+r' R (y — XB) 1t GW'RW — 2w r + 1
* Ordinary Kriging

- A
- 2 Ty 1 (1—1TR_1r)2
z/[Y(x)}_a 1—-rR r+ T J
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Prediction variance

« Square root of variance is called standard error.
* The uncertainty at any x is normally distributed.

* y(x) represents the mean of Kriging prediction.

O data
— Y rc(T) 20 ' '
; ; O data )
‘ : ‘ 157 "
— Yk rc(T)
101
5c/\
) it ity ,
|
5t i
|
10 ' :
0 0.2 0.4 0.6 0.8 1
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Kriging fitting issues

* MLE or cross-validation optimization problem solved to
obtain the kriging fit is often ill-conditioned leading to poor
fit, or poor estimate of the prediction variance.

* Poor estimate of the prediction variance can be checked by
comparing it to the cross validation error.

« Poor fits are often characterized by the kriging surrogate
having large curvature near data points.

* |t is recommended to visualize by plotting the kriging fit and
its standard error.
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Comparison b/w RMSE and MLE

RMSE]%]

RMSE[%]

F

The Fou
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Ex) Quadratic function fit

Use 9 data and a constant global *I1 "o Data points
function &(x) = 0 to fit a quadratic
function y(x) = x? + 5x — 10 -

20 -

Covariance

cov(xl, x]) = exp

Xi—Xj 2 ]
9 X

100 -

80+

60 -

> 401

20

OH

— True function
® Test points

----- Kriging interpolatio

[ 12SE bounds

Y

n 4/

100 -

| - Krigin interpolation
|[]2SE bounds

— True function
® Test points

-20_8 4 2 @ 4 6 4 2 0 2
X X
Too large 6 Too small 6

Good fit with poor variance Bad fit with poor variance

UF FL6RIDA
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Ex) Kriging fit

» Fitdatax = {0,5,10,15,20}', y = {1,0.99,0.99,0.94, 0.95}'
for the global function using ordinary Kriging with § = 5.2

— For ordinary Kriging, X =[1,1,1,1,1]T and &(x) = [1]

y=[1 0.99 0.99 0.94 0.95]7; % measurement data
x=[0 5 10 15 20]"; % 1nput variable
X=ones(5,1); % design matrix

ny=length(y); np=size(X,2);

— Correlation matrix R
h=5_.2;
for k=1:ny; for I=1:ny;

R(k, D=exp(-(norm(x(k, :)-x(1,:))/h)"2);
end; end; [ 4 0.3967 0.0248 0.0002 O
0.3967 1 0.3967 0.0248 0.0002
R =0.0248 0.3967 1 0.3967 0.0248
0.0002 0.0248 0.3967 1 0.3967

0 0.0002 0.0248 0.3967 1 196
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Ex) Kriging fit cont.

* Global function parameters
Rinv=inv(R);
thetaH=(X"*RInv*X)\(X"* Rinv*y);
sigmaH=sgrt(1/(ny-np)*((y-X*thetaH) "*Rinv*(y-X*thetaH)));

3= (xTR—1x)‘1 {X'R7'y} =3.0989" x3.0226 = 0.9754

S )
G2 = (y_xﬁg R n(y—XB) —7.28x10™* 6 =0.0270
y B

« Estimate the optimum hyperparameter

— Instead of optimization the hyperparameter, we calculate it graphically

-25

R
=}

— HOPt — 52

N
\l

— We used this value in calculating
S and 62

Objective
N
oo

R
©

W
S

197
Structural & Multidisciplinary Optimization Group

UUUUUUUUUU

‘RS f
UF FLORID
The Foundation fo sator Nat

r The ( ion




Ex) Kriging fit cont.

« Matlab code for the graph

h=zeros(20,1); Obj=zeros(20,1);

for 1=1:20
h(1)=0.5*1;
for k=1:ny; for I=1:ny;

R(k, D=exp(-(norm(x(k, :)-x(1,:))/h(1))"2);

end; end;
Rinv=inv(R);
thetaH=(X"*Rinv*X)\(X"* Rinv*y);
sigmaH=sqrt(1/(ny-np)*((y-X*thetaH) "*Rinv*(y-X*thetaH)));
Obj (1)=log(sigmaH*(2*(ny-np))*det(R));

end

plot(h,Obj, " linewidth",2); grid on;

 Prediction at x = 10
r = {R(x,,x)} =[0.0248 0.3967 1 0.3967 0.0248]'

y(10)=¢3 +r"R"(y — X3) = 0.9754 + 0.0146 = 0.99

— Exact at the sample point !
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Ex) Kriging fit cont.

 Prediction at x = 14

r—[0.0007 0.05 0.5534 0.9637 0.2641]
y(14) = £8+r"R7'(y — XB3) = 0.9754 —0.0272 = 0.9482

XNew=10; %or XxXNew=14
for k=1:ny; r(k,1l)=exp(-(norm(x(k, :)-xNew)/h)"2); end;
gpDepar=r"*Rinv*(y-X*thetaH);

1.02

‘ ‘ 1.02 ‘
6 =5.2
6 = 0.5
_ 1 f 10
0 [)
@ o
S oe8.__ AN = 0.98; A A A
= o - -- - - -
3 0.96 &
. r ©
% ® Data @ 0.96
8 ----- Global & ® Dat
I 1 a) ata
0.94 —‘ﬁi'—Departure 094 Global
092-——GP&mul | | | 092-——GPamm
5 0 5 10 15 20 25 "S5 0 5 10 15 20 25
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Ex) Kriging fit cont.

90% confidence intervals

— Standard error: s, —a\/w Rw —2w'r +1
X1=1;

w=RInNv*r+Rinv*X*((X**Rinv*X)\(xi1 " -X"*RiInv*r));

zSigmaH=sigmaH*sqrt(w"*R*w-2*w"*r+1);

% using the i1nverse calculation

gpMean=0.9482; % from Example 5.2

PI=] gpMean + tinv(0.05,ny-np)*zSigmaH, ...
gpMean + tinv(0.95,ny-np)*zSigmaH]

% using the random samples 1.02

ns=5e3;

tDist=trnd(ny-np,1,ns); 4

yHat=gpMean+tDist*zSigmaH;

Pl=prctile(yHat,[5 95])

- 5 percentile|95 percentile| 90% P.l.
o Data
----- 90% PI

x=14 0.9394 0.9570 0.0176 0.92

o
©
oo

o
©
(0))

Degradatlon level

s 0 5 10 15 20 25
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Kriging with nuggets

* Nuggets — refers to the inclusion
of noise at data points. 20

= == = Trye function value y(x)
Surrogate Prediction

* The more general Gaussian . ° Data p
Process surrogates or Kriging
with nuggets can handle data
with noise (e.g. experimental
results with noise).

0 0.2 0.4 0.6 0.8 1
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