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• Optimization methods help us find solutions to problems where 
we seek to find the best of something

• Curve-fitting by minimizing error between the curve and data is 
an example of optimization

• This section is about how we formulate/solve the problem 
mathematically.

• Gradient-based methods

– Searching for local minima

– Function must be continuous and smooth

• Gradient-free methods

– Direct search

– Genetic algorithm, simulated annealing, etc.

OPTIMIZATION

Minimize

Maximize
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• Optimization assumes that we have choices and that we 
can attach numerical values to the ‘goodness’ of each 
alternative.

• This is not always the case. We may have problems where 
the only thing we can do is compare pairs of alternatives 
and tell which one is better, but not by how much.

QUANTITATIVE MEASURES
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• Structural design: a procedure to improve or enhance the 
performance of a structure by changing its parameters

• Performance: a measurable quantity (constraint and goal)

– weight, stiffness or compliance; the fatigue life; noise and vibration 
levels; safety

• Constraint: As long as the performance satisfies the criterion, its 
level is not important

– Ex: the maximum stress should be less than the allowable stress

• Goal: the performance that the engineer wants to improve as 
much as possible (cost, objective)

• Design variables: system parameters that can be changed 
during the design process

– Plate thickness, cross-sectional area, shape, etc.

STRUCTURAL DESIGN
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• What Is Design Optimization?

– To find the best design parameters that meet the design goal and 
satisfies constraints.

• Design Variables: Anything the Designer Can Change

– Thickness of a plate, Cross-sectional geometry of a beam or truss, 
Geometric dimensions

• Design Goal: Objective Function, Cost Function

– Design criterion that will be minimized (or maximized)

– Mass, Stress, Displacement, Natural Frequency, ETC

• Constraint: Conditions that the system must satisfy

– Stress, Displacement, ETC

• Note: Design variables must affect the goal and constraints

DESIGN OPTIMIZATION
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• Design variables: Parameters that change during 
optimization

– Material properties

– Sizing (parameter): thickness, cross-section

– Shape: domain

– Topology: birth or death

• Continuous vs. discrete

• Independent

• Feasible design

– A set (subdomain) of design variables that satisfies all constraints 

DESIGN VARIABLES

{ }= feasible designsS
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STRUCTURAL OPTIMIZATION FLOW CHART
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• Data

• Stress-strain model: 

• Find E that minimizes the differences between the data and 
the model

• Goodness: (a) the maximum difference or (b) the root-
mean-square (RMS) difference

• Design variable: E

• Objective: the maximum or RMS difference

EXAMPLE: LEAST-SQUARES FITTING OF YOUNG MODULUS

421Strain (me)

321Stress (ksi)

Es e=
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• Minimize max. difference: 

• Minimize RMS of error:

• Different optima: Emax = 5/6, ERMS = 17/21.

• RMS is popular because the objective function is smooth
(nonlinear) in design variable

UNCONSTRAINED FORMULATIONS
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• Put five items in the knapsack to maximize the total value 
while the total weight is less than 20 lbs

• Design variables: binary design

• Objective: Total value minus $10 if weight exceeds 20 lb

EXAMPLE: KNAPSACK PROBLEM

54321Item

310764Weight (lb)

527121212Value ($)

( )1 2 3 4 5{0,1}

1 2 3 4 5

Maximize  12 27 5

10 sgn(4 6 7 10 3 20)
ib

value b b b b b

b b b b b
Î

= + + + +

- ´ + + + + -

bi = 1 if item i is chosen
bi = 0 if item i is not chosen
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• Formulate an optimization problem for each of the following 
situations, identifying the design variables and objective 
function.

– Find the aspect ratio of a rectangle with the highest ratio of area to 
square of the perimeter

– You need to fly to a city in Florida, rent a car, and visit Gainesville, 
Jacksonville and Tampa and fly back from the last city you visit.  What 
should your itinerary be to minimize your driving distance?

– You need to perform a task once a month, on the same day of each 
month (e.g., the 13th). It is more inconvenient to do on a weekend. 
Select the day of the month to minimize the number of times it will fall 
on a weekend in one given year (not a leap year).

EXERCISES
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• To avoid a non-smooth function, we can add a bound 
design variable a, as well as error bound constraints

• The objective function is equal to one design variable, a. 
E appears only in the constraints.

• Both objective and constraints are smooth and linear

• Since we know the sign of the differences, we can rewrite

CONSTRAINED OPTIMIZATION FORMULATION

,
Minimize

subject to , 1,2,3
E

i iE i
a

a

a s e a- £ - £ =

,

1 1 2 2 3 3

Minimize

subject to , ,
E

E E E
a

a

s e a s e a a s e- £ - £ - £ -
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• Graphical methods can be used to solve the optimization 
problem when it has only one or two design variables

• Graphical methods are expensive but help to visualize the 
design space and to understand the nature of design 
problem

• Procedure

– Draw the design space (lower- & upper-bounds of DVs)

– Plot constraints on the graph (feasible set)

– Plot contour lines of objective function

– Find the optimum point (the objective function has the lowest value 
within the feasible set)

GRAPHICAL OPTIMIZATION
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GRAPHICAL OPTIMIZATION cont.
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EXAMPLE: GRAPHICAL OPTIMIZATION
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• Unbounded problems

• Problems with multiple optima

• Problems with zero feasible regions

• Problems with no active constraints

POSSIBLE DIFFICULTIES



Optimization Problem Formulation

How to deal with 
different optimization 

problems?

Use a standard form
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• Design Parameterization
– Clear identification

– Independence of designs

• Objective Function
– Must be a function of design parameters

– Minimization ( –Maximization)

• Constraint Functions
– Inequality constraints 

– Equality constraints

– Equality constraints must be less than the number of design 
parameters

THREE-STEP PROBLEM FORMULATION

h

w

t2

t1
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• Standard form of design optimization

• Feasible set: the set of designs that satisfy constraints

STANDARD FORM

minimize ( )
subject to ( ) 0, 1, ,

( ) 0, 1, ,

, 1, ,

i

j

L U
l l l

f
g i K
h j M

b b b l N

£ =

= =

£ £ =

b
b
b






{ }T
1 2

1

1

: Design variables
( ) : Objective function
( ), , ( ) : Inequality constraints
( ), , ( ) : Equality constraints
, : Lower and upper bounds

N

K

M
L U

b b b
f
g g
h h

=b
b
b b
b b

b b






{ }( ) 0, 1, , , ( ) 0, 1, ,i jS g i K h j M= £ = = =b b b 
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• Maximization problem

– maximize 𝐹ሺ𝑥ሻ → minimize 𝑓 𝑥 ൌ െ𝐹ሺ𝑥ሻ

• Greater than or equal to constraints

– 𝑔 𝑥 ൒ 𝑔୫୧୬ → 𝑔୫୧୬ െ 𝑔 𝑥 ൑ 0

• The number of equality constraints must be less than that 
of design variables, 

STANDARD FORM cont.
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• Linear programming (LP) problem

– Both objective and constraints are linear functions of designs

– Many specialized numerical algorithms are available

– An optimum design is the global optimum

• Quadratic programming (QP) problem

– The objective is a quadratic function of designs, while all constraints 
are linear functions of designs.

• Nonlinear programming (NLP) problems

– Both objective and constraints are nonlinear functions of designs

– Most general but most difficult to solve

Standard Types of Optimization Problems
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• Standard form of Young’s modulus fit

EXAMPLE: STANDARD FORM

,
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subject to 0
0, 1,2,3
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• Different objective and constraints have different orders of 
magnitudes

– Stress: Allowable stress of steel = 500 MPa = 5 ൈ 10଼Pa

– Displacement: Allowable displacement ~10ିଷm

• Although the standard form is fine for mathematical 
viewpoint, it is numerically difficult to handle such a huge 
difference in the orders of magnitude

• Normalize the objective and constraints such that their 
magnitude is in the order of 1

– 𝜎୫ୟ୶ ൑ 𝜎ୟ୪୪୭୵ୟୠ୪ୣ → ఙౣ౗౮
ఙ౗ౢౢ౥౭౗ౘౢ౛

െ 1 ൑ 0

– Normalize the objective function using the initial value or target value

Normalization
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• Height is fixed, design variables are R and t

• Objective function is cross-sectional area

• Three failure modes

EXAMPLE: COLUMN DESIGN
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• Let : radius and thickness 

– 𝐴 ൌ 2𝜋𝑅𝑡, 𝐼 ൌ 𝜋𝑅ଷ𝑡

•

• Stress constraint ௉
ଶగோ௧ ௔

• Buckling load ௕
గయாோయ௧

ସ௛మ

• Local buckling failure ௦
ଶா௧

ଶୖ ଷሺଵିఔమሻ ௔

• Side constraints ୫୧୬ ୫ୟ୶ ୫୧୬ ୫ୟ୶

EXAMPLE: COLUMN DESIGN FORMULATION 1
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• Let ௢ ௜ : outer and inner radii

– 𝐴 ൌ 𝜋ሺ𝑅௢
ଶ െ 𝑅௜

ଶሻ, 𝐼 ൌ గ
ସ

ሺ𝑅௢
ସ െ 𝑅௜

ସሻ

• ௢
ଶ

௜
ଶ

• Stress constraint ௉
గሺோ೚

మିோ೔
మሻ ௔

• Buckling load ௕
గయா
ଵ଺௛మ ௢

ଶ
௜
ଶ

• Local buckling failure ௦
ଶாሺோ೚ିோ೔ሻ

ሺோ೚ାோ೔ሻ ଷሺଵିఔమሻ ௔

• Side constraints ௢୫୧୬ ௢ ௢୫ୟ୶ ௜୫୧୬ ௜ ௜୫ୟ୶

EXAMPLE: COLUMN DESIGN FORMULATION 2
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• Dimensionless form

• Normalized constraints are better both numerically and for 
communicating degree of satisfaction.

EXAMPLE: COLUMN DESIGN STANDARD FORM

,

1

2

3

min max

min max

Minimize 2

subject to ( , ) 1 0

( , ) 1 0

( , ) 1 0

R t

a

b

a

s

h Rt

g R t

Pg R t
P

g R t

R R R
t t t

 







  

  

  

 

 
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• Design: A1, A2, L, h

• Objective: weight

• Constraints: 
– si ≤ sY, ui ≤ uigiven, sC ≤ sbuckling

• Standard form

EXAMPLE

w

A2

A1, L

h

2 2
1 2Minimize ( )

subject to 1 0

1 0

1 0

, ,

i

Y

i

i given

C

buckling

L u L u L u
i

A L A L h

u
u

A A A L L L h h h








 

 

 

 

     
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• Design the beer can size so that the 
minimum amount of sheet metal
can be used 
(minimize manufacturing cost)

• Constraints

– It is required to hold at least 400 ml of fluid. 

– The diameter of the can should be no more 
than 8 cm. In addition, it should not be less 
than 3.5 cm (shipping & handling). 

– The height of the can should be no more 
than 18 cm and no less than 8 cm. 

EXAMPLE: BEER CAN DESIGN

D

H
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• Standard form

• Feasible domain

EXAMPLE: BEER CAN DESIGN cont.

2 2

2 3

Minimize ( ) cm
2

subject to 400 0 cm
4

3.5 8 cm
8.0 18 cm

f DH D

D H

D
H

b
b 



 

 

 
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EXAMPLE: BEER CAN OPTIMIZATION
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• Provide two formulations in standard form for minimizing 
the surface area of a cylinder of a given volume when the 
diameter and height are the design variables. One 
formulation should use the volume as equality constraint, 
and another use it to reduce the number of design 
variables.

• Formulate in standard normal form the problem of finding 
an open-top rectangle with an area of at least 50 and 
minimum perimeter.

• You need to go from point A to point B in minimum time 
while maintaining a safe distance from point C. Formulate 
an optimization problem in standard normalized form to find 
the path with no more than three design variables when 
A=(0,0), B=(10,10), C=(4,4), and the minimum safe 
distance is 5.

EXERCISES
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• A straight line connecting two points will not dip below the 
function graph

• Convexity of a function

• Convex function will have a single minimum

CONVEX FUNCTION

Sufficient condition: 
Positive semi-definite 
Hessian everywhere.

(2) (1)

(2) (1)

( ) ( ) (1 ) ( )
(1 )

f f fa a

a a

£ + -

= + -

b b b
b b b

2

2

( ) convex PSD
( ) strictly convex PD

f f

f f

 

 

b
b

(b1, f(b1))
(b2, f(b2))

b1 b2b
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• Convex Problem: f(b) is a convex function over a convex 
feasible set S

• If a problem is convex, KKT condition is necessary as well 
as sufficient

• Any local minimum is also a global minimum

• Convex set:

CONVEX PROBLEM

(1) (2)

(2) (1)

For all ,
(1 ) 0 1

S

S
a a a

Î

= + - £ £
 Î

b b
b b b

b

Convex set Non-convex set
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• Check for convexity the following functions. If the function is 
not convex everywhere, check its domain of convexity.

EXERCISES: PROBLEMS CONVEXITY

3 2
1 2

2 2
1 1 2 2

3 2 2 2
1 1 2 2 1

1. 2
2. 3 2 2 8
3. 12 2 5

b b
b b b b

b b b b b

+
+ + -

+ + +
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• Often constraint/objective is inversely proportional to design

• An intermediate variable can make the relationship linear

• Good for displacement and stress (statically determinate)

RECIPROCAL APPROXIMATION

,
A
L F

E A
F

d s= =

1y
A

= ,yL F
E

yF
d s= =

F
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• Reciprocal approximation (yi = 1/bi) is desirable in many 
cases because it captures decreasing returns behavior.

• Linear approximation (convex, but inaccurate)

• Reciprocal approximation

RECIPROCAL APPROXIMATION cont.
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• At times we benefit from conservative approximations

• Conservative-convex approximation

CONSERVATIVE-CONVEX APPROXIMATION

0
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• All second derivatives of fC are non-negative

• Called convex linearization (CONLIN), Claude Fleury

CONSERVATIVE-CONVEX APPROXIMATION cont.
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• Minimize quadratic objective in a ring

• Is feasible domain convex?

• Solve the optimization problem with fmincon using two 
functions: quad2 for the objective and ring for constraints

EXERCISE

2 2
1 2

2 2 2 2
1 2

Minimize ( ) 10
subject to i o

f b b

r b b r

= +

£ + £

b
10, 20i or r= =
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• Construct the linear, reciprocal, and convex approximation 
at (1,1) to the function 

• Plot and compare the function and the two approximations.

• Check on their properties of convexity and 
conservativeness.

EXERCISE: APPROXIMATIONS

1 2 1

3 1( ) 1f
b b b

= + -
+

b


