
Linear Programming

When objective 
and constraints 

are linear,

the global 
optimum exists 

on a vertex
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• Old name for linear optimization

– Linear objective functions and constraints

• Optimum always at boundary of feasible domain

• First solution algorithm, Simplex algorithm developed by 
George Dantzig, 1947

– What is a simplex (e.g. triangle, tetrahedron)?

• Applications

– Resource allocation, transportation, product mix, scheduling, 
networking, etc.

• We will study limit design of skeletal structures as an 
application of LP.

LINEAR PROGRAMMING (LP)
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• Linear function

• Standard LP problem

• Inequality constraints

∑ 𝑎௜௝𝑥௝
௡
௝ୀଵ ൑ 𝑏௜   → ∑ 𝑎௜௝𝑥௝

௡
௝ୀଵ ൅ 𝑠௜ ൌ 𝑏௜, 𝑠௜ ൒ 0: slack variable

∑ 𝑎௜௝𝑥௝
௡
௝ୀଵ ൒ 𝑏௜   → ∑ 𝑎௜௝𝑥௝

௡
௝ୀଵ െ 𝑠௜ ൌ 𝑏௜, 𝑠௜ ൒ 0: surplus variable

Linear programming (LP) problem 

min 𝑓ሺ𝐱ሻ
s. t.  𝑔௜ 𝐱 ൌ 0,  𝑖 ൌ 1, ⋯ , 𝑘
        𝑔௜ 𝐱 ൑ 0, 𝑖 ൌ 𝑘 ൅ 1, ⋯ , 𝑚

𝑓 ൌ 𝑐ଵ𝑥ଵ ൅ 𝑐ଶ𝑥ଶ ൅ ⋯ ൅ 𝑐௡𝑥௡ ൌ ෍ 𝑐௜𝑥௜

௡

௜ୀଵ

ൌ 𝐜୘𝐱

min 𝑓 𝐱 ൌ 𝐜୘𝐱
s. t.  𝐀𝐱 ൌ 𝐛
𝐱 ൒ 0, 𝐛 ൒ 0
𝐱 ∈ 𝑅௡, 𝐛 ∈ 𝑅௡, 𝐀 ∈ 𝑅௠ ൈ 𝑅௡
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• Free in sign

– If 𝑥 is free in sign, let 𝑥 ൌ 𝑦 െ 𝑧, where  𝑦, 𝑧 ൒ 0

• All linear problems are convex

– Feasible set with linear constraints is convex, linear objective is 
convex

– Any local minima is also a global minimum

• Optimum solutions are on the constraint boundary

– Any solution of LP must satisfy 𝐀௠ൈ௡𝐱௡ൈଵ ൌ 𝐛௠ൈଵ

– 𝑚 ൏ 𝑛 is the usual case, and assume rank 𝐀 ൌ 𝑚

– When rank 𝐀 ൌ 𝑚, the system is called consistent

Linear programming (LP) problem cont.
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• Decompose into dependent and independent 

• Let , after Gauss elimination

– The system is consistent if 𝐩 ൌ 0  the system has infinite solutions

– If 𝑟 ൌ 𝑚, 𝐈𝐱௠ ൅ 𝐐௠ൈሺ௡ି௠ሻ𝐱ሺ௡ି௠ሻ ൌ 𝐪௠ Canonical representation

– 𝐱ሺ௡ି௠ሻ is arbitrary and 𝐱௠ ൌ 𝐪௠ െ 𝐐௠ൈሺ௡ି௠ሻ𝐱ሺ௡ି௠ሻ

Canonical representation

1 2 1 2
( )

[ ], , [ ]D D

m m m n m I I´ ´ -

ì ü ì üï ï ï ïï ï ï ï= =  =í ý í ýï ï ï ïï ï ï ïî þ î þ

x x
A A A x A A b

x x
1

1 2 1 2( )D I D I
-+ =  = -A x A x b x A b A X

( )

( ) ( ) ( ) ( ) ( )

r r n r r r

m r r m r n r n r n r

´ -

- ´ - ´ - - -

é ù ì ü ì üï ï ï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ïï ï ï ïë û î þ î þ

I Q x q
0 0 x p
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• A particular solution is when ሺ௡ି௠ሻ  Basic solution

• Basic feasible solutions also satisfy 

– 𝐱௠ ൌ 𝐪: Basic variable

– 𝐱ሺ௡ି௠ሻ ൌ 𝟎: non-basic variable

• No. of basic solutions for is finite

• Minimizing solution is one of basic feasible solution

Canonical representation cont.

𝑛
𝑚 ൌ

𝑛!
𝑚! ሺ𝑛 െ 𝑚ሻ!
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• Basic feasible solutions: the corner points of convex 
feasible set of constraints

• Simplex algorithm: Starting from one corner point, move to 
next corner point to reduce the objective function

Canonical representation cont.

( ) ( ) ( )m n m m-+ =Ix Qx q

Dependent
basic variable

Independent
non-basic variable

Basic feasible solution
Basic solution (non-feasible)
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– Basic solution of 𝐴𝑥 ൌ 𝑏

Example of basic feasible solution

min 𝑓 𝐱 ൌ െ4𝑥ଵ െ 5𝑥ଶ
s. t.  𝑔ଵ 𝐱 ൌ െ𝑥ଵ ൅ 𝑥ଶ ൑ 4
        𝑔ଶ 𝐱 ൌ 𝑥ଵ ൅ 𝑥ଶ ൑ 6
        𝑥ଵ, 𝑥ଶ ൒ 0

min 𝑓 𝐱 ൌ െ4𝑥ଵ െ 5𝑥ଶ
s. t.  𝑔ଵ 𝐱 ൌ െ𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷ ൌ 4
        𝑔ଶ 𝐱 ൌ 𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ସ ൌ 6
        𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ ൒ 0

Value𝑥ସ𝑥ଷ𝑥ଶ𝑥ଵBasic

4011-1𝑥ଷ

61011𝑥ସ

-2-110-2𝑥ଷ

61011𝑥ଶ

10.5-0.501𝑥ଵ

50.50.510𝑥ଶ

61011𝑥ଵ

101120𝑥ଷ

1 1 1 0
1 1 0 1

é ù-
ê ú=
ê úë û

A

Initial basic 
feasible solution

Infeasible

Feasible

Feasible
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• Solving nonlinear problem using a sequence of LP

1. Start with 𝑥ሺ଴ሻ

2. Linearize the problem using Taylor series expansion

3. Solve the LP problem w.r.t. Δ𝑥 and update 𝐱௡

4. Introduce move limits

Sequential linear programming (SLP)

min 𝑓ሺ𝐱ሻ
s. t.  𝑔௜ 𝐱 ൌ 0,  𝑖 ൌ 1, ⋯ , 𝑘
        𝑔௜ 𝐱 ൑ 0, 𝑖 ൌ 𝑘 ൅ 1, ⋯ , 𝑚

Nonlinear programming problem

𝑓 𝐱 ଴ ൅ Δ𝐱 ≅ 𝑓 𝐱 ଴ ൅ ∇𝑓 𝐱 ଴ · Δ𝐱

𝑔 𝐱 ଴ ൅ Δ𝐱 ≅ 𝑔 𝐱 ଴ ൅ ∇𝑔 𝐱 ଴ · Δ𝐱=0
Linear w.r.t. Δ𝐱

𝐱ሺ௡ାଵሻ ൌ 𝐱ሺ௡ሻ ൅ Δ𝐱ሺ௡ሻ

Δ𝐱ሺ௡ሻ ൑ 𝛅
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• Linear optimization problem

EXAMPLE: LP

1 2

1 1 2

2 1 2

1 2

Minimize ( ) 4 50
subject to ( ) 2

( ) 2 8
0, 0

f b b
g b b
g b b
b b

= - - +

= - £
= + £

³ ³

b
b
b

b1 – b2 = 2

b1 + 2b2 = 8

b1

b2 f = – 4b1 – b2 + 50

2 40

2

4
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• Simplest form solves

f=[-4 -1];
A=[1 -1; 1 2; -1 0; 0 -1];
c=[2 8 0 0]‘;
[b,obj]=linprog(f,A,c)
Optimization terminated.
b =4.0000

2.0000
obj =-18.0000

SOLUTION WITH MATLAB linprog

Matrix formTMinimize

subject to 
b

f b

Ab c 1 2

1 2

1 2

1 2

Minimize 4 50
subject to 2

2 8
0 0

[ 4 1]
1 1 2
1 2 8
1 0 0

0 1 0

f b b
b b
b b
b b

f

A c

   

 

 

 

  

   
   
    
   
      
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• Solve the following problem using linprog and also
graphically (do not use the equality constraint to reduce the 
number of variables)

EXERCISE: linprog

1 2

1 2

1 2

1 2

1 2

Maximize 4
subject to 2 5

4
3

, 0

b b
b b
b b
b b
b b

+
+ £
+ =
- ³

³
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• Elastic-perfectly plastic behavior

• Normally, beyond yield the stress will continue to increase, 
so the assumption is conservative.

• We will see it will simplify estimating the collapse load of a 
truss.

LIMIT ANALYSIS OF TRUSSES

Strain, e

St
re

ss
s0

Stress-strain curve for elasto-perfectly plastic material 
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THREE BAR TRUSS EXAMPLE

Elongations due to vertical displacement  at D: 
, 0.5 (Recall cos60 0.5)

Strains:   / / 4

Member forces: 0.25
4

Equilibrium 0.5( ) 1.25
Elastic solu

B A C

B A C

B A C B

A C B A C B

v
e v e e v

v v
EA EAn v n n v n

n n p n n n n

  
   

  

   

    



 

 

tion: 0.2 , 0.8A C Bn n p n p  
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• Recall 

• Member B yields first

• However, load can be increased until members A and C 
also yield

BEYOND YIELD

0.2 , 0.8A C Bn n p n p  

0 00.8 , 1.25B yieldn p A p A   

0

0

0.5( )
2

A B C

B A C

collapse

n n n A
p n n n
p A





  

  


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• The Lower Bound Theorem: If a stress distribution can be 
found that is in equilibrium internally and balances the 
external loads, and also does not violate the yield 
conditions, these loads will be carried safely by the 
structure.

• Leads to an optimization problem with equations of 
equilibrium as equality constraints, and yield conditions as 
inequality constraints.

LOWER BOUND THEOREM
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• Implication of lower bound theorem: Any p for which we can 
find n’s that satisfy the equation is safe

• LP problem: Find loads to maximize p subject to above 
constraints

• Non-dimensionalize!

LP FORMULATION OF TRUSS COLLAPSE LOAD

0 0

0.5( )
, ,

0.5 3( )
B A C

A B C
A C

n n n p
A n n n A

n n p
 

  
  

 

0 0

,A
A

n pN P
A A 

 
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• LP problem

f=[0 0 0 -1]; A=eye(4); c=[1 1 1 1000]';

Aeq=[0.5 1 0.5 -1; sqrt(3)/2 0 -sqrt(3)/2 -1]; ceq=zeros(2,1);

lb=-[1 1 1 0]; b=linprog(f,A,c,Aeq,ceq,lb)’

Optimization terminated.

b =1.0000    1.0000   -0.4641    1.2679

NON-DIMENSIONAL FORM

Maximize
subject to 0.5( ) 0

0.5 3( ) 0
1 , , 1

B A C

A C

A B C

P
N N N P

N N P
N N N

   

  

  

A

B

C

N
N
N
P

 
    
 
  

b
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• Limit design is to select truss cross sectional areas to 
minimize the weight of the truss subject to a given collapse 
load p. Formulate the limit design of the truss for given 
loads p as an LP and solve using linprog. 

• Define a nominal area:

• The non-dimensional design variables will now be the 
areas divided by A and the three member loads, divided by

EXERCISE: LIMIT DESIGN

0/nomA p 

0nomp A 


