
Optimality Criteria

Unconstrained Optimization

How do I know the 
current design is an 

optimum

Optimum design 
should satisfy 

optimality conditions
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• Optimization algorithm searches for local minimum…global 
minimum is not guaranteed

• Starting with different initial designs will result in different 
designs

GLOBAL VERSUS LOCAL MINIMUM

Global
optimum

Design

Objective
Local optimum

Global optimum
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• A point b* is called a global minimum for f(b) if

• No mathematical method to find the global minimum

• Weierstrass theorem: Existence of global minimum

– If f(b) is continuous and the set S is closed and bounded, then there 
is a global minimum

• Local Optimum

– A point b* is called a local minimum 
for f(b) if 

– for all bS in a small neighborhood of b*

GLOBAL OPTIMIZATION

  *( ) ( )f f Sb b b

*( ) ( )f fb b Global min

Local min
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• Normally no functional expression available

– For a given design, we can calculate objective & constraints

• We find optima using numerical search

• We know that there is no
better design in the 
immediate neighborhood

• But, we don’t know if that 
is the global optimum

• We can only guarantee
a local optimum

GLOBAL OPTIMIZATION

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

f = b + sin(2b)
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• We are accustomed to think that if f(b) has a minimum then 

but….

ONE DIMENSIONAL OPTIMIZATION

d ( ) 0
d
f b

b


No derivative
at b = 5 for a 
non-smooth
function

Optimality criteria
only consider
smooth functions

0 1 2 3 4 5 6 7 8 9 10
b

0

1

2

3

4

5
|b-5|
0.2*(b-5)2
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• A point with zero derivative is a stationary point

• b = 5 can be 

– a minimum 

– a maximum

– an inflection point  

1D OPTIMIZATION JARGON

 25f b 

210f b b 

 30.2 5f b 
0 1 2 3 4 5 6 7 8 9 10

-25

-20

-15

-10

-5

0

5

10

15

20

25
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• Unconstrained problems (one variable)

• Necessary condition for b* to be a local min

• For b* to be minimum, 

OPTIMALITY CONDITIONS

Minimize ( )
b

f b

*( ) 0f b  Kuhn-Tucker (KT) condition
1st-order necessary condition

* * * * 21
2( ) ( ) ( ) ( ) ( ) H.O.T.f b f b b f b f b b f b b         

* * * 21
2( ) ( ) ( ) ( ) H.O.T.f f b f b f b b f b b        

*

*

( ) 0 for arbitrary
( ) 0

f f b b b
f b

    

 

bb*

Db
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• Now,

• Sufficient condition

OPTIMALITY CONDITIONS cont.

* 2 *1
2 ( ) H.O.T. 0 ( ) 0f f b b f b       

*( ) 0f b  2nd-order necessary condition

*( ) 0f b 
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• Classify the stationary points of the following functions from 
the optimality conditions, then check by plotting them
– f(b) = 2b3 + 3b2

– f(b) = 3b4 + 4b3 – 12b2

– f(b) = b5

– f(b) = b4 + 4b3 + 6b2 + 4b

• Answer true or false
– A function can have a negative value at its maximum point

– If a constant is added to a function, the location of its minimum point 
can change.

– If the curvature of a function is negative at a stationary point, then the 
point is a maximum.

EXERCISES
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• Expanding f(b1, b2, …, bN) about a candidate minimum b*

• The condition for stationarity

TAYLOR SERIES EXPANSION IN N DIMENSIONS

    
2

* * *

1 1 1

T T

1( ) ( *) ( *) ( *)
2

1( *) ( *) ( *)
2

N N N

i i i i j j
i j ii i j

f ff f b b b b b b
b b b

f f

  

 
      

  

       

 b b b b

b b b b H b b





   * *If 0  choose  of opposite sign and other 0

0

i i j j
i

f b b b b
b

f


   



  
T

1 2 N

f f ff
b b b

   
      

0So must have 0f 
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• Sufficient condition for a minimum is that 

• That is, the matrix of second derivatives (Hessian) is 
positive definite

• Simplest way to check positive definiteness is eigenvalues: 
All eigenvalues need to be positive

• Necessary conditions: Hessian matrix is positive-semi 
definite, i.e., all eigenvalues are non-negative

CONDITIONS FOR MINIMUM

T T1( ) ( *) ( *) ( *) H.O.T.
2

f f fb b b b b H b b       

T ( *) 0  for all b H b b b 0    
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• Multi-variable case

– KT condition

– Second-order necessary condition

– Sufficient condition

OPTIMALITY CONDITION FOR UNCONSTRAINED PROBLEM

*( )f =b 0

{ } 1,...,
i

ff i N
b
¶

 = =
¶

Column vector

2
, 1,...,

i j

f i j N
b b

é ù¶ê ú= =
ê ú¶ ¶ë û

H

Hessian matrix
T *( ) 0 for all NRD D ³ D Îb H b b b

T *( ) 0 for all , NRD D > D ¹ D Îb H b b b 0 b
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• Positive definite: Minimum

• Positive semi-definite: possibly minimum

• Indefinite: Saddle point

• Negative semi-definite: possibly maximum

• Negative definite: maximum

TYPES OF STATIONARY POINTS

T : quadratic form
0 : . 0 : . .
0 : . 0 : . .

otherwise : indefinite

q
q P D q P S D
q N D q N S D

= D D
> ³
< £

b H b
H H
H H
H
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EXAMPLE
1 22 2

1 1 2 2
1 2

1 2

2 2

2
1 21

2 2

2
1 2 2

1,2

2
2

Stationary point: 0
Hessian matrix

2 1
1 2

Eigenvalues: 1,3 minimum

b b
f b b b b f

b b
b b

f f
b bb

H
f f

b b b
l

ì ü+ï ïï ï= + +  = í ýï ï+ï ïî þ
= =

é ù¶ ¶ê ú
ê ú¶ ¶ é ù¶ê ú ê ú= =ê ú ê ú¶ ¶ ë ûê ú
ê ú¶ ¶ ¶ë û

= 

-2
-1

0
1

2

-2
-1

0
1

2
0

2

4

6

8

10

12

x1x2

-2
-1

0
1

2

-2
-1

0
1

2
-5

0

5

10

15

20

x1x2

2 2
1 1 2 2

1,2

3
Eigenvalues: 1,5 saddle point
f b b b b

l
= + +

= - 
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• Find the stationary points of the following functions and 
classify them:

EXERCISES

2 2 2
1 1 2 1 3 2 2 3 3

2 2 2
1 2 3 2 3

2
2 2

1 1 2
1

1. ( ) 4 2 7 6 5

2. ( ) 2 4

3. ( ) 40

f b b b b b b b b b

f b b b b b

bf b b b
b

b

b

b

     

   

  
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• Set of vectors: ሺଵሻ ௞ ௜ ௡ has components

• Linear combination ௜
௜௞

௜ୀଵ

• Linear independence

– From linear combination and set it to zero, 𝐀𝐱 ൌ 0, if 𝐱 ൌ 0 is the only 
solution, then columns of 𝐀 are linear independent

– Non-trivial solutions ሺ𝐱 ് 0ሻ exist if 𝐀 is rank deficient

– If it has only 𝐱 ൌ 0 unique solution, 𝑟𝑎𝑛𝑘 𝐀 ൌ 𝑘

Review of linear algebra

,          ଵ ௞
௡ൈ௞
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• Set of vectors must be closed under addition and scalar 
multiplication

• Let ଷ
ଵ , let ଵ ் ଶ ், 

then ଵ ଶ ் does not belong to . 
Therefore is not a vector space

• No. of linearly independent vectors in a set is called 
dimension of the vector space

• Linear independent vectors form the basis of the vector 
space

Vector space

,x y S x y S
R y Sa a

æ Î  + Îççç Î  Îè
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• Orthogonal: ሺ௜ሻ் ሺ௝ሻ

• If ௜ ௝ , then the set is called an 
orthogonal set

• If ሺ௜ሻ , then the set is called an orthonormal set

• In , columns of form a basis 
for k-dim subspace

• Null space: ்

– Collection of all 𝐲ሺ௡ൈଵሻ such that 𝐀்𝐲 ൌ 0 is called the null space

– No. of independent vector of null space ൌ 𝑛 െ 𝑘

Orthogonality of vectors

a1

a2

a3

x

y

z

ij

k
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• 3D plane: 

• n-dimension hyperplane: ଵ ଵ ଶ ଶ ௡ ௡

– Vector notation: 𝐚்𝐱 ൌ 𝑐 or 𝐚, 𝐱 ൌ 𝑐

– Vector 𝐚 is normal to the plane

– Let 𝑓 𝐱 ൌ 𝐚, 𝐱 െ 𝑐, then ∇𝑓 ൌ 𝐚: gradient is normal to the surface

– If 𝐚 ൌ 1, then 𝑐 is the least distance from the origin to the hyperplane

– If 𝐚 is not a unit vector, then the distance ൌ ௖
𝐚

• If two points are on the plane, then

– 𝐚, 𝐱 ൌ 𝑐, 𝐚, 𝐲 ൌ 𝑐, 𝐚, 𝐱 െ 𝐲 ൌ 0  →   𝐚 is normal to 𝐱 െ 𝐲

Hyperplane
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• A set of vectors satisfying is not a subspace

– 𝐚, 𝐱 ൌ 𝑐, 𝐚, 𝐲 ൌ 𝑐, 𝐚, 𝐱 ൅ 𝐲 ൌ 2𝑐  → not a subspace

• If (hyperplane passes through the origin), then 
vectors satisfying form a subspace

– 𝐚, 𝐱 ൌ 0: vector 𝐚 forms a basis for subspace of dimension one

– Null space of vector 𝐚 has dimension 𝑛 െ 1

• Reisz representation

– Given a vector 𝐱 ∈ 𝑅௡, 𝐱 can be decomposed into sum of two vectors 
𝐲, 𝐳  →   𝐱 ൌ 𝐲 ൅ 𝐳 when 𝐲 ∈ 𝐹 and 𝐳 ∈ 𝐹ୄ

– 𝐹: subspace of m (<n) dim. 𝐹ୄ: Null space of F dim(𝑛 െ 𝑚)

Hyperplane cont.
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• Inequality constraint example

• Constraint is not active   ignore

• Hessian is positive definite (sufficient)

CONSTRAINED PROBLEM (INACTIVE CONSTRAINT)

2 2
1 2

1 2

Minimize ( ) ( 1) ( 1)
subject to ( ) 4

f b b
g b b

b
b
   

  

b2

b1

feasible

optimum

1 1
1

2 2
2

2( 1) 0 1

2( 1) 0 1

f b b
b
f b b
b


   




   



 
  
 

2 0
0 2

H

Inactive constraints 
do not affect optimum
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• Inequality constraint example

• Constraint is active

• At (3,3), f = 0, g = 3+3−4 = 2 >0 (infeasible)

• At (2,2), f = 2, g = 0 (constraint is active)

CONSTRAINED PROBLEM (ACTIVE CONSTRAINT)

2 2
1 2

1 2

Minimize ( ) ( 3) ( 3)
subject to ( ) 4

f b b
g b b

= - + -
= + £

b
b

b2

b1

feasible

optimum

Optimum design is located on the boundary of active constraints
At optimum design, 𝑔 𝐛 ൌ 𝑏ଵ ൅ 𝑏ଶ ൌ 4. Inequality becomes equality



Structural & Multidisciplinary Optimization Group
64

• Equality constraint example

• Equality constraint is always active

• Let ଶ ଵ, then the original constrained problem 
becomes unconstrained problem with ଵ ଵ

ଶ

ଵ
ଶ

– Equality constraint can reduce design variables

– If constraints are implicit, we cannot reduce design variables

CONSTRAINED PROBLEM (EQUALITY CONSTRAINT)

b2

b1

feasible

optimum

2 2
1 2

1 2

Minimize ( ) ( 1) ( 1)
subject to ( ) 4

f b b
h b b

b
b
   

  
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• With an equality constraint:

• Lagrange function:

• 1st-order necessary condition:

• Multiple constraints:

OPTIMALITY CONDITION (EQUALITY CONSTRAINT)

Minimize ( )

subject to ( ) 0

f

h =
b

b

b

l
l l= +

,
Minimize ( , ) ( ) ( )f h

b
b b b

l =( , )b 0 0

( ) 0

f h

h

l
¶ ¶

+ =
¶ ¶

=
b b
b

l l
=

= +å
1

( , ) ( ) ( )
M

i i
i

f hb b b

Lagrange function transforms to unconstrained optimization by
introducing additional variable (Lagrange multiplier)
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Derivation of Lagrange multiplier (equality constraint)
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Derivation of Lagrange multiplier (equality constraint) cont.
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• Ex)

• Lagrange function

• KKT conditions

EXAMPLE: EQUALITY CONSTRAINT

2 2
1 2

1 2

Minimize ( ) ( 1) ( 1)

subject to ( ) 4

f b b

h b b

= - + -

= + =
b

b

b

l l= - + - + + - 2 2
1 2 1 2( , ) ( 1) ( 1) ( 4)b b b bb

l

l

l

¶
= - + =

¶

¶
= - + =

¶
¶

= + - =
¶







1
1

2
2

1 2

2( 1) 0

2( 1) 0

4 0

b
b

b
b

b b

1

2

2
2
2

b
b
l

=
=
= -
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• Quadratic objective and constraint

• Lagrangian:

• Stationarity conditions

• Four stationary points 

EXAMPLE: QUADRATIC FUNCTION

2 2
1 2

2 2
1 2

Minimize ( ) 10
subject to ( ) 100 ( ) 0

f b b

h b b

= +

= - + =

b
b

( )l= + + - - 2 2 2 2
1 2 1 210 100b b b b

l l

l

¶ ¶
= - = = - =

¶ ¶

¶
= - + =

¶

 



1 1 2 2
1 2

2 2
1 2

2 2 0, 20 2 0

100 ( ) 0

b b b b
b b

b b

1 2

1 2

0, 10, 10( 1000, maxima)
10, 0, 1( 100, minima)

b b f
b b f

l
l

= =  = =
=  = = =
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EXAMPLE: QUADRATIC FUNCTION cont.

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

b1

b2

Maximum

Minimum
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• Solve the problem of minimizing the surface area of a 
cylinder of given volume V. The two design variables are 
the radius and height. The equality constraint is the volume 
constraint.

EXERCISE: LAGRANGE MULTIPLIERS
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• Optimization with inequality constraints

• Introducing a slack variable (convert to equality constraint)

• Lagrange function

INEQUALITY CONSTRAINTS

Minimize ( )
subject to ( ) 0 1,...,i

f
g i K£ =

b
b

l
=

= + +ål
l 2

, , 1
Minimize ( , , ) ( ) ( )

K

i i i
i

f g s
x s

x s x

2( ) 0 ( ) 0i i ig g s£  + =b b 2 0 slack variableis ³

unknown : , , ( )N K K+ +x sl
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• KT condition

• Slack variable

INEQUALITY CONSTRAINTS

l

l

=

ìï ¶ ¶ï + =ïï¶ ¶ïïïïï =  + =íïïïïïï =ïïïî

å

l

1

2

0

( , , ) 0 0

2 0

K
i

i
i

i i

i i

f g

g s

s

b b

b s

N equations

K equations

K equations

Nonlinear equation

0 0i i i is gl l=  = Complementary slackness (switching cond)

0, 0
0, 0

i i

i i

g
g

l
l

= <
> =

: inactive constraint

: active constraint
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• Optimization Problem

• Lagrange Function

EXAMPLE: INEQUALITY CONSTRAINT

2 2
1 2

1 2

1 2

Minimize ( ) ( 3) ( 3)
subject to ( ) 4

( ) 3 1

f b b
g b b
h b b

= - + -
= + £

= - =

b
b
b

l

l l

= - + -

+ - - + + - +

 2 2
1 2

2
1 1 2 2 1 2

( , ,s) ( 3) ( 3)
( 3 1) ( 4 )

b b

b b b b s

b

Feasible
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EXAMPLE: INEQUALITY CONSTRAINT cont.
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• Observation (Assume all gi are active, i.e., si = 0)

• is a positive linear 
combination of

• Only with active constraints!

LAGRANGE MULTIPLIER

l l
=

= +å
1

( , ) ( ) ( )
K

i i
i

f gb b b

l l
=

 =  +  =å
1

( , ) ( ) ( ) 0
K

i i
i

f gb b bb b b

1
( ) ( )

K

i i
i

f gl
=

 = - åb bb b

( )f-b b
( )igb b

െ𝛻𝑓

𝜆ଵ𝛻𝑔ଵ
𝜆ଶ𝛻𝑔ଶ

g1=0
g2=0

Feasible region
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• Lagrange function

• First-order condition: 

• Sufficient condition (unconstrained): 

• Sufficient condition (constrained):          P.D. for all feasible 
directions

SECOND-ORDER CONDITIONS

m l
= =

= + + +å åm l 2

1 1
( , , , ) ( ) ( )

M K

i i i i i
i i

f h g sb s b

 =m l( , , , ) 0b s
2 P.D.f

 bb

g

g 0
feasible set

d

Equality:

Inequality:

But,                            direction 

becomes inactive 

0
0

i

i

h
g

 ⋅D =
 ⋅D £

b
b

0ig ⋅D <b

Assume that small feasible move keeps the constraint active
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• Second-order necessary condition

• Second-order sufficient condition

SECOND-ORDER CONDITIONS cont.

= D  D ³ D ¹T[ ] 0 for all satisfyingq bbb b b 0

0 for all active inequalities
0 for all equalities

i

i

g
h

æ ⋅D =çççè ⋅D =
b
b

(1)

= D  D > D ¹T[ ] 0 for all satisfying (1)q bbb b b 0
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• Let’s work with non-standard form for the moment

• Optimum design:  b* = b*(a, c)

• Optimum objective: f = f(a, c)

• Optimum Lagrange multipliers:

• How much will f change due to Da and Dc?

EFFECT OF CONSTRAINT LIMIT

( ) , ( )i i j jh a g c= £b b

* * * *for ( ) and for ( )i i i ih gm lb b
* *,i i

i i

f f
a c

m l
¶ ¶

= - = -
¶ ¶

( , ) ( , ) H.O.T.i i j j i j i j
i j

f ff a a c c f a c a c
a c
¶ ¶

+D +D = + D + D +
¶ ¶

* *

1 1

M K

i i j j
i j

f a cm l
= =

D = - D - Då å

ai, cj: constraint bounds
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• Change in optimal objective (Df) due to change in 
constraint bound (Dc2)

EFFECT OF CONSTRAINT LIMIT cont.

1g 0 2g 0

2c-D

fD

* *

1 1

M K

i i j j
i j

f a cm l
= =

D = - D - Då å
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• Assuming that objective and constraints depend on 
parameter p

• Optimum solution: b*(p)

• Optimum objective: f*(p)=f(b*(p),p) 

• Sensitivity of f*(p) w.r.t. p

• Lagrange multipliers are called “shadow prices” because 
they provide the price of imposing constraints

SENSITIVITY OF OPTIMUM SOLUTION TO PARAMETERS

Minimize  ( , )
subject to   ( , ) 0j

f p
g p £

b
b

Td *
d

jgf f
p p p

l
¶¶

= +
¶ ¶



Structural & Multidisciplinary Optimization Group
82

• Side panels ($10/ft2), ends & floor ($15/ft2), volume >= 125ft3

• Optimization problem (cost)

• Lagrange function

• Optimum design

• Increase volume to 130ft3

• Actual optimum

EXAMPLE: CONTAINER DESIGN

2 3 1 3 1 2

1 2 3

Minimize ( ) 20 30 15
subject to ( ) 125

f b b b b b b
g b b b

= + +

= ³

b
b

l l= + + + - 2 3 1 3 1 2 1 2 3( , ) 20 30 15 (125 )b b b b b b b b bb

* * *
1 2 3

* *

4.8075, 7.2112, 3.6056
( ) 1560.0, 8.320

b b b

f l

= = =

= =b

* 8.32 ( 5) 41.6f clD = - D = - ´ - =
* 1601.3, 41.3f f= D =

b2

b3

b1
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• Optimization problem

• For p = 100 we found l = 1

• Which agrees with

EXAMPLE: QUADRATIC OBJECTIVE INSIDE A CIRCLE

2 2
1 2

2 2
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• For find the minimum for p 
= 0, estimate the derivative df*/dp, and check by solving 
again for p = 0.1 and comparing to finite difference 
derivative

• Calculate the derivative of the cylinder surface area with 
respect to change in volume using the Lagrange multiplier 
and compare to the derivative obtained by differentiating 
the exact solution

EXERCISE: SENSITIVITY OF OPTIMA

( , ) sin , 0 2f b p b pb b p= + £ £


