
Numerical Optimization

Gradient-based unconstrained optimization

How to find 
optimum design?

Move one design 
to another to 

improve
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• Optimality criteria are only applicable for limited cases

– When the expressions of obj and constraints are known

– Compliance objective in topology optimization

• Most other cases, numerical methods are used to find 
optimum design

• Some numerical algorithms start from a design and find a 
new design that can improve the objective function

• Other algorithms populate designs until they cannot find a 
design that can improve the objective function

NUMERICAL OPTIMIZATION ALGORITHMS
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• In FEA, we don’t know the explicit relationship, f(b), 
between design parameters and objective (or constraint) 
function.

• But, we can calculate f(b) for a given b by solving the finite 
element equation.

• Then, how can we find the optimum design?

Use Numerical Methods

• Numerical Method

– From the current design, find the next design that can reduce the 
objective function and satisfy constraints

– Repeat the search until there is no way to improve the objective 
function further

NUMERICAL METHODS
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• We do not know the function before optimization

• We can only evaluate the function and gradient at a given 
design

GRADIENT-BASED METHODS

Optimum 
solution

Design

Objective

Start

Move
Gradient

Check
Gradient = 0

Stop
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• Basic Algorithm

1. Start with b(k) and k = 0 Initial design must be given

2. Evaluate function values and their gradients Using FEA

3. Using information from Step 2, determine ∆b(k) Design change

4. Check for termination Stop if converged

5. Update design

6. Increase k = k + 1 and go to Step 2 Design iteration (cycle)

NUMERICAL METHODS cont.

( 1) ( ) ( )k k k+ = +Db b b
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• Change in Design

– ak: Step size

– d(k): Search direction vector

– Design change means the determination of search direction and step 
size.

NUMERICAL METHODS cont.

( ) ( )k k
KaD =b d

b(k)

d(k)

k
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• Minimize  f(b)

• Requirement:

• Taylor series expansion:

• Descent direction:

UNCONSTRAINED PROBLEM

( 1) ( )

( 1) ( ) ( )

( ) ( )k k

k k k

f f+

+
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= +D

b b
b b b

( 1) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) H.O.T.k k k k

k k
k k

f f f

f f

+ = + ⋅D +

@ + ⋅D <
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c b

( ) ( )

( ) ( )

0
0

k k

k k
ka

⋅D <

⋅ <

c b
c d

d(k)

c(k)

( ) ( ) 0k k⋅ <c d Descent direction

Search direction must satisfy this condition

( ) ( )( )k kf= c b
Objective gradient

( )( )k
kf f= b
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• For the moment, let’s assume that the descent direction d(k)

is given

• Step size calculation : find ak that minimizes the objective 
function in the direction of d(k)

• Single variable (ak) problem: 1D line search

DETERMINATION OF STEP SIZE

( ) ( )Minimize ( )k k
Kf a+b d

( ) ( )( ) ( )k k
k kff a a= +b d

(0)

Must have initially negative slope



b(k)

d(k)

k
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• Step size termination criterion

• At minimum

DETERMINATION OF STEP SIZE cont.

(0) Kff =

0, 0f f¢ ¢¢= >

( 1)
( 1) ( )

( 1)
d 0d

k
k k

k
f

f
a

+
+

+
¶¢ = ⋅ = ⋅ =

¶
b c d

b

( 1) ( ) 0k k+ ⋅ =c d Step size termination criterion

Determine ak to satisfy this condition
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• 0th-order methods: Bracketing, Quad. Interpolation, 
Fibonacci & golden section search

• 1st-order methods: Bisection, cubic interpolation

• 2nd-order methods: Newton’s method

• Fibonacci & golden section method

– Reducing interval based on function value

– Maintain the reduction ratio constant

NUMERICAL LINE SEARCH

()

a0 1 3 4 2 b0
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• Quadratic interpolation

NUMERICAL LINE SEARCH cont.

2( )
( ) 2 0
( ) 2 0

a b c
a b
a

f a a a

f a a

f a

= + +
¢ = + =
¢¢ = >

* 0, 02
b a b
a

a = - > <

()

1 2 *            3
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• Properties of

– Normal to the surface f = constant

– f(b) increases in the direction of c(k)

– Increasing ratio is max in the direction of c(k)

SEARCH (DESCENT) DIRECTION

{ }= 
T

1 2d d d, , ,d d d
Nb b b

s s s
T

\ ^c T

d d d 0d d d
f f
s s
= ⋅ = ⋅ =

b c Tb

T

c

s

( ) ( )k kf= c

T: Tangent vector
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• Choose

• Descent condition

• Converges slowly near the optimum point

• From step-size termination criterion:

• Search directions are perpendicular

– Not using the information from the previous iteration

STEEPEST DESCENT METHOD (SDM)

( ) ( )k k= -d c

2( ) ( ) ( ) 0k k k⋅ = - <c d c

( 1) ( ) ( 1) ( ) ( 1) ( )0k k k k k k+ + +⋅ = - ⋅ = \ ^c d c c c c
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• Quadratic approximation

• Find Db(k) that minimizes f(Db(k))

• Unstable when H(k) is singular

• Expensive to calculate H(k)

• Accuracy of H(k) affects convergence

NEWTON’S METHOD
   ( 1) ( ) ( )Minimize ( ) k k kf b b b b

             ( ) ( ) ( ) ( ) ( ) ( ) ( )1( ) ( )
2

k k k k k k k
Kf fb b b c b b H b

  ( )Minimize ( )kb


    


( ) ( )
( ) 0k k
k c H b

b
   ( ) 1 ( )k kb H c Fast convergence (2nd-order)

Hessian matrix
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• Check descent condition

• If H(k) is positive definite, then Db(k) is a descent direction

• Modified Newton’s method (add line search)

NEWTON’S METHOD cont.

  

   

( ) ( )

( ) ( )

0
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• Use gradient information from the previous iteration

• Let d(0) = –c(0) (Steepest descent method)

CONJUGATE GRADIENT METHOD

   ( ) ( ) ( 1)k k k
kd c d




 
  
 
 

2( )

( 1)
0

k

k k

c
c

At optimum, k = 0
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• Newton’s Method

– Fast converges, but expensive to calculate the Hessian matrix

• Quasi-Newton Method

– Approximate the Hessian matrix or its inverse

• Defining terms

QUASI-NEWTON METHOD

( 1) ( ) ( )

( 1) ( )

1 0,

k k k
k K

k k
k

k k k

a+

+

+

= - =

= -

= +D =

s b b d
y c c
H H H H I

: Design change

: Gradient change

: Hessian change

Given

Want to update

H or A need to be 
Positive Definite( ) ( ) ( )k k k= - ⋅d A c

+ line search
( ) 1( ) ( )k k k-= - ⋅d H c



Structural & Multidisciplinary Optimization Group
121

• Quasi-Newton condition

• We want

QUASI-NEWTON METHOD cont.

( 1) ( ) ( )

( 1) ( )

( ) H.O.T.

(curvature)
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Quasi-Newton 
condition

Maintaining curvature
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• Rank-1 updating (approximation of H or A)

• Rank-2 Hessian updating

– Choose u = yk, then

QUASI-NEWTON METHOD cont.

T
1k k ka+ = +H H uu Choose u to satisfy quasi-Newton cond.

T T
1k k k ka b+ = + +H H uu vv

T T
1k k k k k k k k ka b+ ⋅ = ⋅ + ⋅ + ⋅ =H s H s uu s vv s y

( ) ( )k k k k k k k k ka b⋅ + ⋅ + ⋅ =H s y y s v v s y
1 1,k k

k k k
a b= = -

⋅ ⋅y s v s

1k k k k k+ ⋅ = ⋅ + -H s H s y v

k k\ = ⋅v H s

k

k k

=
= ⋅

u y
v H s

Rank-2 updating
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• Summary (Rank-2 Hessian updating)

• Properties:

– Hk+1 is positive definite

– If f(b) is quadratic, HN will be the exact Hessian

• Rank-2 Hessian inverse update

– Choose u = sk

QUASI-NEWTON METHOD cont.

T T

1
( )( )k k k k k k

k k
k k k k k

+
⋅ ⋅

= + -
⋅ ⋅ ⋅

y y H s H sH H y s s H s BFGS update

T T
1k k k ka b+ = + +A A uu vv

1 ( ) ( )k k k k k k k k k k ka b+ ⋅ = ⋅ + ⋅ + ⋅ =A y A y s s y v v y s
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• Quasi-Newton Condition

• Summary

• Have a similar properties with updated Hessian

QUASI-NEWTON METHOD cont.

1k k k k k k+ ⋅ = ⋅ + - =A y A y s v s

k k\ = ⋅v A y

T T

1
( )( )k k k k k k

k k
k k k k k

+
⋅ ⋅

= + -
⋅ ⋅ ⋅

s s A y A yA A s y y A y DFP update

1 1,k k
k k k

a b= = -
⋅ ⋅s y v y
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• Convergence ratio, , indicates how fast the algorithm 
converges to the optimum solution

• Sequence of solution ሺሻ ∗

• Order of convergence

– A sequence 𝑥ሺሻ is said to converge to 𝑥∗ with order 𝑝 where 𝑝 is 
the largest number such that

• Convergence ratio

Rate of convergence

0  lim
→ஶ

𝑥ሺାଵሻ െ 𝑥∗

𝑥  െ 𝑥∗  ൏ ∞

𝛽 ൌ lim
→ஶ

𝑥ሺାଵሻ െ 𝑥∗

𝑥  െ 𝑥∗ 
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• If , the sequence displays linear convergence, and 
must be for the sequence to converge

• : quadratic convergence

• If when , then the convergence is super-linear

• Ex) ሺሻ  ∗

– 𝑝 ൌ 1: ௫ሺೖశభሻି௫∗

௫ ೖ ି௫∗
భ ൌ

ೖశభ

ೖ
ൌ 𝑎 ൏ ∞

– 𝑝 ൌ 2: ௫ሺೖశభሻି௫∗

௫ ೖ ି௫∗
మ ൌ

ೖశభ

మೖ
ൌ ଵ

ೖషభ
→ ∞

– With 𝑝 ൌ 1, 𝛽 ൌ ೖశభ

ೖ
ൌ 𝑎

– Therefore, linear convergence with convergence ratio 𝛽 ൌ 𝑎

Rate of convergence cont.

Order of convergence = 1
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• Ex) ሺሻ ଵ


∗

– 𝑝 ൌ 1: ௫ሺೖశభሻି௫∗

௫ ೖ ି௫∗
భ ൌ


ାଵ

ൌ ଵ
ଵାଵ/

→ 1 ൏ ∞

– 𝑝 ൌ 2: ௫ሺೖశభሻି௫∗

௫ ೖ ି௫∗
మ ൌ

మ

ାଵ
→ ∞

– Therefore, the order of convergence 𝑝 ൌ 1

– 𝛽 ൌ 
ାଵ

ൌ ଵ
ଵାଵ/

→ 1

– Therefore, linear convergence with convergence ratio=1

Rate of convergence cont.
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• Explain the differences and commonalities of steepest 
descent, conjugate gradients, Newton’s method, and quasi-
Newton methods for unconstrained minimization.

• Use fminunc to minimize the Rosenbrock Banana function 
and compare the trajectories of fminsearch and fminunc
starting from (-1.2,1), with and without the routine for 
calculating the gradient. Plot the three trajectories.

EXERCISE: UNCONSTRAINED ALGORITHMS
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• Most cases, constraints determine optimal design

HOW CONSTRAINTS PLAY IN OPTIMIZATION?

Optimum 
solution

Design

Objective

Start

Move

Constraint
violated

Constraint
satisfied

𝑥ଵ

𝑥ଶ

Constraint
violated

Constraint
violated

Objective
decreased

𝑔ଵ ൌ 0
𝑔ଶ ൌ 0

Optimum 
solution

Single constraint example Two constraints example
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• Constrained Optimization Problem

• Transform to equivalent unconstrained problem

• Lagrange Multiplier Method

– Use unconstrained optimization algorithms to solve

HANDLING CONSTRAINTS

Minimize ( )
subject to ( ) 0

( ) 0

f
=
£

x
h x
g x

, , 1 1
Minimize ( , , ) ( ) ( ) ( )

M K

i i j j
i j

L f h gl m +

= =
= + +å åb

b b b b
l m

l m

Active inequality
constraints
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• SUMT (Sequential Unconstrained Minimization Tech.)

– Quadratic loss function

– Gradually increase w during optimization iteration

– As w approaches infinity, solution converges to the original 
constrained problem

– As w increases, the Hessian matrix becomes ill-conditioned

HANDLING CONSTRAINTS cont.

( , ) ( ) ( , , )f Pw wF = +b b h g w: Penalty parameter

2 2

1 1
( , , ) ( ) max(0, )

M K

i jj j
i j

P h g g gw w + +

= =

ì üï ïï ï= + =í ýï ïï ïî þ
å åh g

Violated inequality 
constraints
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• Equality constraint

• Loss function

• Optimum design as a function of w

EXAMPLE

2 2
1 2

1 2

Minimize ( ) 10
subject to ( ) 4

f b b
h b b

= +
= + =

b
b

2 2 2
1 2 1 2( , )= 10 (4 )b b b bf w w+ + - -b

1

2

40
10 11

4
10 11

b

b

w
w

w
w

=
+

=
+

ffb2b1w

7.6193.9920.19051.9051

13.33312.2200.33333.33310

14.14414.2880.36043.604100

14.53214.5180.36333.6331000
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CONTOUR OF LOSS FUNCTION

8

10

12

14

16

18

20

22

24

26

2

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 15

15

15

15

20

20

30

30

50

50

90

90

170

170

330

330

650

650

1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

For non-derivative methods can avoid this by 
having penalty proportional to absolute value of 
violation instead of its square!

w = 1 w = 1000
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• With an extremely robust algorithm, we can find a very 
accurate solution with a penalty function approach by using 
a very high w. However, at some high value the algorithm 
will begin to falter, either taking very large number of 
iterations or not reaching the solution. Test fminunc and 
fminsearch on the example starting from b0=[2,2]. Start with 
w = 1000 and increase.

EXERCISE: PENALTY
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• Constrained optimization 
(Direct solution method)

• Optimum point is on the boundary of the feasible set

– Follow the boundary

– Move into the feasible domain

• Descent function (merit function)

– Must be reduced from iteration to iteration

– Should be the same with f(b) at opt

• e-active constraint set

DIRECT METHODS FOR CONSTRAINED OPTIMIZATION




Minimize ( )
subject to ( ) 0

( ) 0

f b
h b
g b

{ }| 0, 0iI i ge e e= + ³ > Active or violated constraints
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• Linearization of the problem at the current point

• Solve Db using a simplex method

SEQUENTIAL LINEAR PROGRAMMING (SLP)

   ( 1) ( )k kb b b









  

  

   

( 1) ( ) T

( 1) ( ) T

( 1) ( ) T

( ) ( )
( ) ( )
( ) ( ) ,

k k

k k
i i i

k k
j j j

f f
h h h

g g g j I

b b c b
b b b
b b b

  

  

[ ]
[ ]

i i i

i j j

h
g

n N n
a A a



  

  

    

T

T

T

Minimize
subject to 0

0
i i

j j

L U

h

g

c b
n b
a b

b b b
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• QP1:

– Step size constraint

• QP2:

• QP1 with step-size constraint is equivalent to QP2

– Convex objective function + convex feasible set  Global optimum

QUADRATIC PROGRAMMING (QP) SUBPROBLEM

T

T

T

Minimize
subject to = -

£-

c d
N d h
A d g

T 21
2 x£d d

T T

T

T

1Minimize 2
subject to

+

= -

£-

c d d d

N d h
A d g

Equal size

Move limit

More likely
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• Descent function

• Set b(0), k = 0, w0 = 1

• Compute f(b(k)), hi(b(k)), gj(b(k)), c, N, A, V

• Using QP subproblem, solve for d(k)

• Check for convergence ||d(k)|| < e2 &  V < e1

• Update wk

• Line search: b(k+1) = b(k) + akd(k)

• k = k+1, go to step 2

CONSTRAINED SDM

{ } ( )

1
max 0, ,

M K
k

k i j k i
i

f V V h g j Iew w l
+

=
F = + = Î = å

Max. violation
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• Good for inequality constraints

• Linearization:

• Feasible direction: 

• Usable-feasible direction:

• Define

FEASIBLE DIRECTION METHOD

Minimize ( )
subject to ( ) 0

f
£

b
g b

T
0

T
0 0

Minimize
subject to 0 0j j j j

f f

g g g

= +

= + £ £

c d
a d

T 0j £a d
T 0£c d

{ }T Tmax , ib = c d a d
T

T

Minimize ( )
subject to

1 1
i

b

b

b

£

£
- £ £

d
c d
a d

d
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• Equality constraint case

• Optimality condition (KKT)

• Nonlinear system of equations

• Solve using Newton’s method

SEQUENTIAL QUADRATIC PROGRAMMING (SQP)

Minimize ( )
subject to ( ) 0i

f
h =

b
b

( , ) ( ) ( )i iL f hl l= +åb b b

0
0

L f
L

 =  + =

 = =
b N

hl

l

( )
Lé ù é ù

ê ú ê ú= = =
ê ú ê úë û ë û

b b
F y 0 F y

h l

( ) ( ) ( ) T ( )( ) ( ) ( )k k k k+D = +  D =yF y y F y F y 0

(1)
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• Use

• Equivalent QP problem:

SQP cont.

T
L Lé ù ì ü ì ü D ï ï ï ïï ï ï ïê ú = -í ý í ýï ï ï ïê ú Dï ï ï ïë û î þ î þ

bb bN b
N 0 hl

( )

T ( 1)

k

k

L f
+

ì üé ù ì ü ï ï ï ïï ï ï ïê ú = -í ý í ýï ï ï ïê ú ï ïë û î þï ïî þ

bb bN d
N 0 hl

( 1) ( ), K K+D = D = -b d l l l

k-th iteration to find 
KKT condition

T T

T

1Minimize [ ]2
subject to

L+ 

= -

bbc d d d

N d h

T T T T1 ( ) ( )2L L= +  + +bbc d d d N d hl

T
( )L

L
ì ü+  +ï ïï ï = =í ýï ï+ï ïî þ

bbc d N
0

N d h
l

(2)

(3)
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• Solve QP (3) to find k-th iteration of (1)

• Use BFGS to update

• For inequality constraints

SQP cont.

[ ]Lbb

T T

T

T

1Minimize [ ]2
subject to

L+ 

= -

£-

bbc d d d

N d h
A d g
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• Matlab has many optimization functions

• fmincon is most commonly used – nonlinear obj & const. 
(read Matlab fmincon manual)

MATLAB OPTIMIZATION TOOLBOX

FunctionType
fminbndScalar min
fminunc, fminsearchUnconstrained min
linprogLinear programming
quadprogQuadratic programming
fminconConstrained min
fgoalattainGoal attainment
fminmaxMinmax
fseminfSemi-inf min
bintprogBinary integer prog
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• Example

• Create m-file objfun.m

• Create m-file confun.m

MATLAB fmincon FUNCTION

    

    

   

1 2 2
1 2 1 2 2

1 1 2 1 2

2 1 2

Minimize ( ) (4 2 4 2 1)
subject to ( ) 1.5 0

( ) 10 0

bf e b b b b b
g b b b b
g b b

b
b
b

function f = objfun(b)
f = exp(b(1))*(4*b(2)^2 + 2*b(2)^2 + 4*b(1)*b(2) + 2*b(2) + 1);

function [c, ceq] = confun(b)
% Nonlinear inequality constraint
c = [1.5 + b(1)*b(2) – b(1) – b(2);

-b(1)*b(2) – 10];
% Nonlinear equality constraints
ceq = [];
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• Invoke constrained optimization routine

– b contains optimum design variable

– fval contains optimum objective

– You can evaluate constraints at optimum

– [c, ceq] = confun(b)

MATLAB fmincon FUNCTION cont.

b0 = [-1,1]; % Make a starting guess at the solution
options = optimset('LargeScale','off');
[b, fval, exitflag, output, lambda, grad, hessian] = ...
fmincon(@objfun,b0,[],[],[],[],[],[],@confun, options)
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• Possible to provide lower- & upper-bounds of design 
variable

• Possible to provide gradients of objective and constraints

• optimset controls algorithm, convergence criteria, results 
display, etc

• Refer to fmincon manual page

MATLAB fmincon FUNCTION cont.
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• exitflag

MATLAB fmincon FUNCTION cont.

Meaningexitflag

First-order optimality measure was less than options.TolFun and 
maximum constraint violation was less than options.TolCon.

1

Change in x was less than options.TolX.2

Change in the objective function value was less than options.TolFun.3

Magnitude of the search direction was less than 2*options.TolX
and constraint violation was less than options.TolCon.

4

Magnitude of directional derivative in search direction was less than 
2*options.TolFun and maximum constraint violation was less than 
options.TolCon.

5

Number of iterations exceeded options.MaxIter or number of function 
evaluations exceeded options.FunEvals.

0

Algorithm was terminated by the output function.-1

No feasible point was found.-2
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• optimset

MATLAB fmincon FUNCTION cont.

MeaningDataOption

Level of display‘off’ ‘iter’ ‘final’ ‘notify’Display

Obj gradient‘on’ ‘off’GradObj

Cons gradient‘on’ ‘off’Jacobian

Algorithm‘on’ ‘off’LargeScale

IntegerMaxFunEvals

IntegerMaxIter

RealTolFun

RealTolX
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function f=quad2(b)
global a
f=b(1)^2+a*b(2)^2;

end
%
function [c,ceq]=ring(b)

global ri ro
c(1)=ri^2-b(1)^2-b(2)^2;
c(2)=b(1)^2+b(2)^2-ro^2;
ceq=[];

end
%
b0=[1,10]; a=10;ri=10.; ro=20;
[b,fval]=fmincon(@quad2,b0,[],[],[],[],[],[],@ring)
b =10.0000   -0.0000      fval =100.0000

EXAMPLE: QUADRATIC FUNCTION AND CONSTRAINT

2 2
1 2

2 2 2 2
1 2

Minimize 1
subject to i o

f b ab a

r b b r

= + >

£ + £
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[b,fval,flag,output,lambda]=fmincon(@quad2,b0,[],[],[],[],[],[],@
ring)

Warning: The default trust-region-reflective algorithm does 
not solve …. FMINCON will use the active-set algorithm 
instead. 

Local minimum found ….
Optimization completed because the objective function is 
non-decreasing in feasible directions, to within the default 
value of the function tolerance, and constraints are satisfied 
to within the default value of the constraint tolerance.

fmincon OUTPUT
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iterations: 6    
funcCount: 22
lssteplength: 1  stepsize: 9.0738e-06
algorithm: 'medium-scale: SQP, Quasi-Newton, line-

search'
firstorderopt: 9.7360e-08
constrviolation: -8.2680e-11
lambda.ineqnonlin’=1.0000    0

fmincon OUTPUT
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a=1.1;
[b,fval,flag,output,lambda]=fmincon(@quad2,b0,[],[],[],[],[],[],@ring)
Maximum number of function evaluations exceeded;
increase OPTIONS.MaxFunEvals.
b =4.6355    8.9430   fval =109.4628  flag=0
iterations: 14

funcCount: 202
lssteplength: 9.7656e-04
stepsize: 2.2830
algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'
firstorderopt: 5.7174
constrviolation: -6.6754

MAKING IT HARDER FOR fmincon
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b0=b
b0 = 4.6355    8.9430
[b,fval,flag,output,lambda]=fmincon(@quad2,b0,[],[],[],[],[],[],@ring)
b =10.0000    0.0000 fval =100.0000
flag = 1

iterations: 15
funcCount: 108
lssteplength: 1
stepsize: 4.6293e-04
algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'
firstorderopt: 2.2765e-07
constrviolation: -2.1443e-07

RESTART SOMETIMES HELPS
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• For the ring problem with a=10, ro=20, can you find a 
starting point within a circle of radius 30 around the origin 
that will prevent fmincon of finding the optimum? 

EXERCISE: fmincon



Structural & Multidisciplinary Optimization Group
155

• Solve the problem of minimizing the surface area of the 
cylinder subject to a minimum volume constraint as an 
inequality constraint. Do also with Matlab by defining non-
dimensional radius and height using the cubic root of the 
volume.

EXERCISE: INEQUALITY
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• Minimize the weight of ten-bar truss. Design variables are 
cross-sectional areas (A1 ~ A10)

• Minimum area = 0.1in2, b = 360 in., P1 = P2 = 66.67 kips.

• All members has stress allowables (25ksi), except for 
member 9 (75 ksi)

• P1 = P2 = 100kip

EXERCISE: TEN-BAR TRUSS

11
1 3 5 7 8

1 1 1 2 2 2 2a
A A A A A

 
     
 

12 21
5

1a a
A

 

22
2 4 5 6 9 10

1 1 1 1 2 2 2 2a
A A A A A A

 
      
 

 1 22 1 2 2
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1 3 5 7

2 2 P PP P 2P Pb 2
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2 2 2
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4 5 9

2P 2P 4Pb
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• Analytical method of calculating member forces 

• Stresses by dividing by cross-sectional area

• We will practice FEA version later

EXERCISE: TEN-BAR TRUSS cont.

1 2 8
1N P N
2

 

2 10
1N N
2

 

3 1 2 8
1N P 2P N
2

   

4 2 10
1N P N
2

  

5 2 8 10
1 1N P N N
2 2

   

6 10
1N N
2

 

 7 1 2 8N 2 P P N  

1 22 12 2
8

11 22 12 21

b a a bN
a a a a






9 2 10N 2P N 

11 2 21 1
10

11 22 12 21

a b a bN
a a a a








Structural & Multidisciplinary Optimization Group
158

• Make Matlab codes for objfun and confun for ten-bar truss
– Objective: minimize weight (volume) of truss

– Constraints: member stress(i) ≤ allowable stress(i)

• Make Matlab code to optimize the ten-bar truss using 
fmincon
– Use initial cross-sectional area Ai = 0.5in2

– Plot objective history (objective value versus iteration)

– Discuss about EXITFLAG

– Discuss why some members have minimum area

– Bonus points: Study the difference between statically determinant 
and indeterminant systems and discuss how this can affect 
optimization

EXERCISE


