
Gradient-free Optimization

Nelder-Mead Sequential Simplex Algorithm

How to optimize 
when a function 

is not smooth

Gradient-free 
method
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• Most local search algorithms are based on derivatives to 
guide the search.

• For differentiable function it has been shown that even if 
you need to calculate derivatives by finite differences, 
derivative-based algorithms are better than ones that do 
not use derivatives.

• However, we will start with Nelder-Mead sequential simplex 
algorithm that can deal with non-differentiable functions, 
and even with some discontinuities.

LOCAL SEARCH ALGORITHMS



Structural & Multidisciplinary Optimization Group
161

• Simplest in a random search

• Easy to implement

• Very robust

• Very efficient

• Improve random search by adding some logic

– Ex) DoE search with move-limits

– Referred to as a structured random search

• We will consider two structured random searches in this 
course

NON-GRADIENT BASED METHODS
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• Non-gradient based optimization algorithms have gained a 
lot of attention recently
– Easy to program

– Global properties

– Require no gradient information

– High computational cost

– Tuned for each problem

• Typically based on some physical phenomena
– Genetic algorithms

– Simulated annealing

– Particle swarm optimization

NON-GRADIENT BASED METHODS cont.
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• Can be classified as a structured random search

• Does not move from one design point to the next

– Makes use of a population of design points

• Numerically robust

• Increased chances of finding global or near global optimum 
designs

• Provides a number of good designs instead of a single 
optimum

NON-GRADIENT BASED METHODS cont.
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• An old local-search algorithm that contains the ingredients 
of modern search techniques:

– No derivatives

– Population based

– Simple idea that does not require much mathematics

• Basis for Matlab’s fminsearch testimonial to its robustness.

• Simplex is the simplest body in N dimensions

• Has N+1 vertices (triangle in 2D and tetrahedron in 3D)

NELDER MEAD SEQUENTIAL SIMPLEX ALGORITHM



Structural & Multidisciplinary Optimization Group
165

• Start with a randomly generated simplex (n+1 vertices)

• Reflection: the point with highest objective value is reflected 
to the opposite side (preserve volume, nondegeneracy)

• Expansion: If the reflected point is the best, expand the 
simplex further(possibly optimum is further in that direction)

• Contraction: If the reflected point is worse, contract the 
simplex (possible valley floor)

• Reduction: If the contracted point is still worst, reduce the 
size of the simplex (possibly the best point is within the 
simplex)

NM Simplex Algorithm
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• In N dimensional space start with N+1 vertices of a 
selected simplex, evaluate the function there and order 
points by function value:

1. Calculate b0, the center of gravity of all the points except 
bN+1

2. Reflect bN+1 about b0

3. Reflect worst point about c.g.

4. If new point is better than 2nd worst, but not best, use to 
replace worst and go back to step 1. (bN+1 = br)

• Read about expansion and contraction

SEQUENTIAL SIMPLEX METHOD

1 2 1( ) ( ) ( )Nf f f   b b b

0 0 1( ) =1 in Matlabr N   b b b b

0
1

1 N

i
iN 

 b b b1

b2

b3

b0

br
bc
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5. Expansion (when the new point is best). 
If f(br) < f(b1), then move further

If f(be) < f(br), then replace bN+1 by be. Otherwise replace 
bN+1 by br. Go back to Step 1.

6. Contraction (new point is worst than 2nd worst). 
If f(br) >= f(bN), then compute contracted point

If f(bc) < f(bN+1), then replace bN+1 by bc.

EXPANSION AND CONTRACTION

0 0 1( ) 2 in Matlabe N    b b b b

0 0 1( ) in Matlab =0.5c N   b b b b
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7. If the contracted point is not better than worst, then 
contract all points about the best one

REDUCTION (SHRINKAGE)

1 1( ), 2, , 1 In Matlab 0.5i i i N      b b b b 
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• For a 2D problem, the current simplex has f(0,1)=3, 
f(0,0)=1, f(1,0)=2. Where will you evaluate f next?

• If the next two points gave us function values of 4 and 5, 
respectively, where will you evaluate the function next?

• If instead, the next point gave us a function value of 0, 
where will you evaluate the function next?

EXERCISES: NELDER MEAD OPERATORS
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• Commonly called a banana function

• Many versions of Rosenbrock function exists, we use the 
one from Wikeipedia (minimum at (1,1))

ROSENBROCK BANANA FUNCTION

2 2 2
2 1 1( ) 100( ) (1 )f b b b   b
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• Matlab code for 20 optimization iterations

MATLAB fminsearch for BANANA FUNCTION

function [y]=banana(b)
global z1 z2 yg count
y=100*(b(2)-b(1)^2)^2+(1-b(1))^2;
z1(count)=b(1); z2(count)=b(2);
yg(count)=y;
count=count+1;

global z1 z2 yg count
count =1;
options=optimset('MaxFunEvals',20)
[b,fval] = fminsearch(@banana,[-1.2, 
1],options) 
mat=[z1;z2;yg]

mat =
Columns 1 through 8
-1.200   -1.260   -1.200   -1.140   -1.080   -1.080   -1.020   -0.960
1.000    1.000    1.050    1.050    1.075    1.125    1.1875    1.150

24.20      39.64    20.05   10.81     5.16     4.498    6.244      9.058

Columns 9 through 16
-1.020   -1.020   -1.065   -1.125   -1.046   -1.031   -1.007   -1.013
1.125    1.175    1.100    1.100    1.119    1.094    1.078    1.113
4.796    5.892    4.381    7.259    4.245    4.218    4.441    4.813
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REFLECTION AND EXPANSION
2 2 2

2 1 1( ) 100( ) (1 )f b b b   b
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• http://en.wikipedia.org/wiki/Nelder-Mead_method

• Shows progress for the Banana function as well as for 
Himmelblau’s function.

COMPLETE SEARCH EXAMPLES FROM WIKIPEDIA

Banana function Himmelblau’s function
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• Track and plot the first few iterations of fminsearch on 
Himmelblau’s function starting from (1,1).

EXERCISE: fminsearch



Global Optimization

DIRECT Method

How to search 
optimum over the 

entire domain?

Exploration and 
exploitation
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• Optimization problem is NP-hard

• No-free-lunch theorem (Wolpert and Macready)

– No single algorithm can do well on all problems

– If an algorithm is improved for one problem, it will suffer for others.

• Great opportunity for engineers to use problem knowledge 
to tailor algorithms.

• Big headache for journals because they get many 
worthless new algorithms.

GLOBAL OPTIMIZATION ISSUES
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GLOBAL OPTIMIZATION cont.

Global 
optimization 
algorithms by 
Thomas Weise
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• The most popular algorithms imitate natural processes, 
including genetic algorithms, particle swarm optimization, 
ant colony optimization, and simulated annealing.

• They rely on randomness for exploration, so every time you 
run them you may get a different result.

• DIRECT is an example of a systematic deterministic 
exploration of the design space.

• Adaptive sampling algorithms based on surrogates, such 
as EGO, are gaining popularity.

CLASSIFICATION OF GLOBAL OPTIMIZATION ALGORITHMS
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• What does it mean that global optimization is NP hard?

• What is the no-free-lunch principle, and how does it affect 
engineering optimization.

• When should we use local optimizers to solve global 
optimization problems and when we should not?

EXERCISE: GLOBAL OPTIMIZATION
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• A sequential method seeking the global minimum of a 
function (Shubert, 1972)

• Definition: A function ௗ is called Lipschitz-
continuous if there exists a positive constant ା such 
that

• : Lipschitz constant

• For , replace with 

Lipschitzian Optimization

ᇱ ᇱ

𝑓ሺ𝑥ሻ

𝑎 𝑏
KH [2]1
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KH [2]1 Assume f(x) < f(a) and f(b)
Kim,Nam Ho, 9/9/2020
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• Straight lines from and with slope and find 
intersection ( ଵ, the possible lowest point)

Lipschitzian Optimization cont.
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• Evaluate actual function at ଵ

• Repeat the process at the two intervals that were created 
by adding ଵ, that is ଵ and ଵ

– Between two intersection points, choose the lowest one as 𝑥ଶ

Lipschitzian Optimization cont.
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• Evaluate actual function at ଶ

• Repeat the process at the additional two intervals that were 
created by adding ଶ, that is ଶ and ଶ ଵ

– Among all intersection points, choose the lowest one as 𝑥ଷ

Lipschitzian Optimization cont.
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• Pros

– Global search possible

– Deterministic, no need for multiple runs, reproducible

– Few parameters for fine-tuning, except for K

• Cons

– Lipschitz constant has to be known: K might not be easily accessible 

– Convergence speed: K is a trade-off between global and local 
search

– Computational complexity for high dimensions: Initially, need to 
evaluate the function at all corners of a hyperrectangle ~𝑂ሺ2ௗሻ

LIPSCHITZIAN OPTIMIZATION
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• Jones, Perttunen, Stuckman (1993), Lipschitzian 
optimization without the Lipschitz constant

• DIviding RECTanbles

– DIRECT was inspired by Lipschitzian optimization.

– Optimizer divides space into boxes and sample the function at the 
center of rectangles

– When dividing a box, use trisection so that previous point is useful

DIRECT in 1D
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• DIRECT uses the following Lipschitz bound

Lipschitz Bound
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• At a given iteration the design space is divided into boxes, 
and we have the value of the function at the center of each 
box

• We then look at a plot of box sizes (determined by the 
largest dimension of the box) vs. function value and look for 
boxes that should be divided

Direct Algorithm

Box size

O
bj

ec
tiv

e 
fu

nc
tio

n

Small-sized box and good design (exploitation)

Large-sized box but can be reduced
further by dividing box (exploration)
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• This can be seen as a Pareto front of multi-objective 
optimization problem. 

• Those points on the Pareto front correspond to Lipschitzian 
optimization for all possible Lipschitz constants

Direct Algorithm cont.

Box size

O
bj

ec
tiv

e 
fu

nc
tio

n

Slope 𝐾
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• Sample at all the points that are on the Pareto front of size 
and function value, which includes all the points that are on 
the bottom part of the convex hull

Direct Algorithm cont.

Box size

O
bj

ec
tiv

e 
fu

nc
tio

n

Divide these boxes
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• Start with a center point of the entire domain

– Yellow box is potential optimum

• Since the domain is square, divide it in the 
vertical and horizontal directions (bottom box
is the best)

• Divide the bottom box (top and bottom center
box are the best)

• Divide the top box and bottom center box 
(top center, bottom right,
bottom center right boxes 
are the best)

DIRECT Box Division
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• DIRECT uses convex hull of box sizes to balance 
exploitation vs. exploration

• With enough function evaluations every region in design 
space will be explored

• This is clearly not feasible for high-dimensional spaces

• Cox’s paper compares DIRECT to repeated local 
optimization with random start

EXPLORATION VS. EXPLOITATION
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function [ret_minval,final_xatmin,history] = Direct...   
(Problem,bounds,opts,varargin)

% Written by : Dan Finkel (definkel@unity.ncsu.edu)
% Parameters:
%  Problem.f              = Objective function handle
%  Problem.numconstraints = number of constraints
%  Problem.constraint(i).func    = i-th constraint handle
%  Problem.constraint(i).penalty = penalty parameter for
%  bounds    - an n x 2 vector of the lower and upper bounds.
%  opts      - (optional) MATLAB structure.
%   opts.ep        = Jones factor                  (default is 1e-4)
%   opts.maxevals  = max. number of function evals (default is 20)
%   opts.maxits    = max. number of iterations     (default is 10)
%   opts.maxdeep   = max. number of rect. divisions(default is 100)
%   opts.showits   = 1 if disp. stats shown, 0 oth.(default is 1)
%   opts.tol       = tolerance for term. if tflag=1(default is 0.01)
%OUT: minval    - minimum value found
%     xatmin    - (optional) location of minimal value
%     history   - (optional) array of iteration historyory, useful 
for tables and plots. The three columns are iteration, fcn evals, 
and min value found.

MATLAB CODE direct.m
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% 1. Establish bounds for variables
bounds = [-2 2;-2 2];

% 2. Send options to Direct
options.showits   = 1;
options.tol       = 0.01;

% 2a. NEW!
% Pass Function as part of a Matlab Structure
Problem.f = 'gp';
Problem.numconstraints = 1;
Problem.constraint(1).func    = 'circlecon'; %constraint function
Problem.constraint(1).penalty = 1;           %penalty value you choose
%                                                       %
% Problem.constraint(2).func = 'anotherconstraint';     %
% Problem.constraint(2).penalty = 1;                    %

% 3. Call DIRECT
[fmin,xmin,hist] = Direct(Problem,bounds,options);

% 4. Plot iteration statistics
plot(hist(:,2),hist(:,3))
xlabel('Fcn Evals');
ylabel('f_{min}');
title('Iteration Statistics for GP test Function');

SAMPLE FOR CALLING direct.m
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• What is the Lipschtiz constant? What value would be 
appropriate for the function x2+x in the interval (-2,2)?

• Invent function values at every point where the function is 
evaluated in Slide 204 that are consistent with the diagram.

• What are the meanings of the term exploration and 
exploitation in the context of global optimization?

EXERCISE: DIRECT
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• Genetic algorithms imitate a natural optimization process:  
natural selection in evolution.

• Developed by John Holland at the University of Michigan 
for machine learning in 1975.

• Similar algorithms developed in Europe in the 1970s under 
the name evolutionary strategies

• Main difference has been in the nature of the variables: 
Discrete vs. continuous

• Class is called evolutionary algorithms

• Key components are population, parent and child designs, 
and randomness (e.g. mutation)

GENETIC ALGORITHMS
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• Coding: replace design variables with a continuous string of 
digits or “genes”

– Binary

– Integer

– Real

• Population: Create population of design points

• Selection: Select parents based on fitness

• Crossover: Create child designs 

• Mutation: Mutate child designs

BASIC SCHEME
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• Create random initial population

• Generate next population based on the following steps

– Scores each member of the current population based on its fitness

– Selects members, called parents, based on their fitness

– Choose lower/higher fitness members as elite. These elite members 
are passed to the next population

– Produces children from the parents using genetic operations

– Replaces the current population with the children to form the next 
generation

• Repeat the process until stopping criteria are satisfied

Outline of algorithm
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• Crossover: portions of strings of the two parents are exchanged

• Mutation: the value of one bit (gene) is changed at random

• Permutation: the order of a portion of the chromosome is reversed

• Addition/deletion: one gene is added to/removed from the chromosome

GENETIC OPERATORS
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Select parentsSelect parents

ALGORITHM OF STANDARD GA

Create initial
population

Create initial
population

Calculate
fitness

Calculate
fitness

40

100

30

70

Create childrenCreate children

fitness
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• Integer variables are easily coded as they are or converted 
to binary digits

CODING

{ }


1 2 43

1 2 3 4Minimize ( ),

0 1 1 0 1 0 1 1 1 1 0 1 1
b b bb

f b b b b=b b

  

b1 = 6, b2 = 5, b3 = 3, b4 = 11
Represent integer using bits

£ £ £ £ £ £1 4 2 3{0 , 15}, {0 7}, {0 3}b b b b
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• Real variables require more care
• Key question is resolution or interval
• Range                           with a resolution bincr

• The number m of required digits found from

• Ex)                               with bincr = 0.001

• m = 11, bincr = 0.00088

CODING cont.

incr2 1
U L
i im b b
b
-

³ +

£ £{ }L U
i i ib b b

£ £{0.01 1.81}b

-
³ + =incr2 1 1801

U L
i im b b
b
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• For many practical problems, angles limited to 0-deg, 45-
deg, 90-deg.

• Ply thickness given by manufacturer

• Stacking sequence optimization a combinatorial problem

• Genetic algorithms effective and easy to implement, but do 
not deal well with constraints

EXAMPLE: STACKING SEQUENCE OPTIMIZATION
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• Binary coding common. Natural coding works better.
(00  1, 450  2, -450  3, 900  4)
(45/-45/90/0)s => (2/3/4/1) 

• To satisfy balance condition, convenient to work with two-
ply stacks 
(02  1, 45 2, 902  3) or 
(45/-45/902/02)s => (2/3/1) 

• To allow variable thickness add empty stacks 
(2/3/1/E/E)=> (45/-45/902/02)s

CODING - STACKING SEQUENCE
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• Binary coding most common. Real number coding possible 
but requires special treatment.

• Genetic algorithm not effective for getting high precision. It 
is better to go for coarse grid of real values. With n binary 
digits get 2n values.

• Segregate stacking sequence and geometry chromosomes.

CODING - DIMENSIONS



Structural & Multidisciplinary Optimization Group
205

• Random number generator used

• Typical function call is rand(seed)

• In Matlab rand(n) generates nxn matrix of uniformly 
distributed (0,1) random numbers

• Seed updated after call to avoid repeating the same 
number. See Matlab help on how to change seed (state).

• If we want repeatable runs must control seed.

• Need to transform random numbers to values of possible 
gene values.

INITIAL POPULATION
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• Augmented objective

– v = max violation 

– m = min margin

• As we get near the optimum, difference in f* between 
individuals gets smaller.

• To keep evolutionary pressure, fitness is 

– normalized objective 

FITNESS WITH CONSTRAINT VIOLATION PENALTY

* *
max

* *
min max

i
i

f f
fit

f f






* sign( )f f pv bm v= + - + D
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• Roulette wheel selection

• Tournament selection

– Randomly select two individuals and pick the best one as one parent

• Elitist strategies

– Select the best fitness individual of the current population

• Selection pressures versus exploration

• No twin rule

SELECTION
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• Slice of the roulette wheel proportional to its fitness

– Example fitness {0.62, 0.60, 0.65, 0.61, 0.57, 0.64}

– Example reverse rank {4/21, 2/21, 6/21, 3/21, 1/21, 5/21} 

ROULETTE WHEEL
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• Parent designs [04/±452/902]s and [±454/02]s

• Parent 1 [1/1/2/2/3]

• Parent 2 [2/2/2/2/1]

• One child        [1/1/2/2/1]

• That is: [04/±452/02]s

SINGLE POINT CROSSOVER
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• Multiple point crossover

• Uniform crossover 

• Bell-curve crossover for real numbers

• Multi-parent crossover

OTHER KINDS OF CROSSOVER
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• [1/1/2/2/3]=> [1/1/2/3/3]

• [04/±452/902]s => [04/±45/904]s

• [1/1/2/2/3]=> [1/2/1/2/3]

• [04/±452/902]s => [(02/±45)2/902]s

MUTATION AND STACK SWAP
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• Stop when the maximum number of generations reaches

• Stop after running for the maximum computational time
reaches

• Stop when the best fitness becomes less than or equal to 
the limit

• Stop when the relative change in the fitness is less than the 
tolerance

• Stop if there is no improvement during an interval of time

• Stop if the average relative change in the fitness is less 
than the tolerance.

Stopping Criteria



Structural & Multidisciplinary Optimization Group
213

• [x,fval,exitflag,output,population,scores] = 
ga(fun,nvars,A,b,[],[],lb,ub,nonlcon,IntCon,options)

• Outputs

– x: the best location 

– fval: objective function value at x

– exitflag: >0 normal stop, <0 erroneous stop

– output: opt process information

– population: final population

– scores: fitness function values of the population

Genetic algorithm in Matlab
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• [x,fval,exitflag,output,population,scores] = 
ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,IntCon,options)

• Inputs
– fun: objective function

– nvars: the number of design variables

– A, b: inequality constraints 𝐴𝑥 ൑ 𝑏

– Aeq, beq: equality constraints 𝐴௘௤𝑥 ൌ 𝑏௘௤

– lb, ub: lower- and upper-bounds of design variables

– nonlcon: nonlinear constraint function

– IntCon: integer variable

– options: optimization options

Genetic algorithm in Matlab cont.
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• Global optimization balances exploration and exploitation. 
How is that reflected in genetic algorithms?

• What are all possible balanced and symmetric child 
designs of [02/±45/90]s and [±452/0]s with uniform cross-
over?

• When we breed plants and animals we do not introduce 
randomness on purpose into the selection procedure. Why 
do we do that with GAs?.

EXERCISE: GENETIC ALGORITHM
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• Genetic algorithm is random search with random outcome.

• Reliability can be estimated from multiple runs for similar 
problems with known solution

• Variance of reliability, r,  from n runs

RELIABILITY
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